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The human-robot interaction has played an important role in rehabilitation robotics and

impedance control has been used in the regulation of interaction forces between the

robot actuator and human limbs. Series elastic actuators (SEAs) have been an efficient

solution in the design of this kind of robotic application. Standard implementations of

impedance control with SEAs require an internal force control loop for guaranteeing

the desired impedance output. However, nonlinearities and uncertainties hamper such

a guarantee of an accurate force level in this human-robot interaction. This paper

addresses the dependence of the impedance control performance on the force control

and proposes a control approach that improves the force control robustness. A unified

model of the human-robot system that considers the ankle impedance by a second-order

dynamics subject to uncertainties in the stiffness, damping, and inertia parameters

has been developed. Fixed, resistive, and passive operation modes of the robotics

system were defined, where transition probabilities among the modes were modeled

through a Markov chain. A robust regulator for Markovian jump linear systems was used

in the design of the force control. Experimental results show the approach improves

the impedance control performance. For comparison purposes, a standard H∞ force

controller based on the fixed operation mode has also been designed. The Markovian

control approach outperformed the H∞ control when all operation modes were taken

into account.

Keywords: robotic rehabilitation, impedance control, H∞, Markovian jump linear systems, series elastic

actuators, robust control, force control

1. INTRODUCTION

Physical therapy represents a well-accepted procedure for improvements in the recovery of human
motor function and promotion of higher performance in Activities of Daily Life (ADLs) (Krebs
et al., 2008). Mainly when people have been affected by injuries such as stroke (Hatano, 1976)
and Multiple Sclerosis (MS) (Cattaneo et al., 2002). Robotic-assisted therapy is a promising field
for the development of rehabilitation tasks. Among the advantages offered by robotic devices are
uniformity in the repetition of long-time routines, reliable records of measured variables, and
motivation for the patient’s participation using interactive environments like serious games (Lum
et al., 2002; Chang and Kim, 2013; Gonçalves et al., 2014). However, the fact that these robots
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interact with humans during therapeutic movement, they require
a high degree of security and reliability. Therefore, rehabilitation
robots should identify activities performed by the patient to reach
only pre-defined training objectives, whose principle is known as
Assist-as-Needed Paradigm (Radomski and Trombly, 2013).

Impedance control has been used in the implementation
of this kind of paradigm in rehabilitation robotic systems. It
was initially proposed for manipulator robots to obtain a safe
physical interaction with the environment (Hogan, 1985). Such
a controller aims at establishing a dynamic relationship between
the force and velocity of an actuator. Series elastic actuators (SEA)
provide a simple and efficient solution for the implementation
of impedance controllers (Calanca et al., 2016). However, the
impedance control of SEAs requires an explicit force control loop
whose performance is sensitive to uncertainties and time-varying
human dynamics.

Colgate and Hogan (1988, 1989) addressed the problem of
interaction control and analyzed the energy exchange between
a robotic system and its environment, defined as passive. They
also determined stability criteria for a coupled system. Some
years later this analysis was brought into the context of human-
robot interaction considering three new issues: (1) Human
dynamics is now the environment; (2) This dynamics can exhibit
passive and active behaviors; and, (3) The stability criterion
has been reformulated as complementary stability (Buerger and
Hogan, 2007). Such new concepts emphasize the way the human
dynamics is taken into account. For example, Vallery et al.
(2008) analyzed limits of coupled stability and performance of
an SEA actuator for rehabilitation applications considering the
human dynamics a spring and damping system. Kong et al.
(2009) analyzed those limits considering the human dynamics
only as a mass (inertia). In Oh and Kong (2017), the human
dynamics was considered as stiffness, damping, and inertia. Li
et al. (2017) proposed an adaptive control scheme for SEA-driven
robots which consider two operation modes in the adaptation
process, namely robot-in-charge and human-in-charge. Similar
approaches were proposed in Yu et al. (2015) and Pan et al.
(2017), however, the authors did not take into account the fact
the human-robot system can be modeled by different operation
modes related to abrupt changes in the dynamic behavior.

This paper reports on the implementation of an impedance
controller in a robotic platform for ankle rehabilitation based on
a Markovian approach. The platform uses an SEA and enables
plantarflexion and dorsiflexion movements. The following
three operation modes that may occur in the robot-human
interaction were defined: (1) fixed mode, in which the platform
is mechanically fixed; (2) resistive mode, in which the user
makes efforts against the platform movement; and (3) passive
mode, in which the user does not make any effort against
the platform movement. Such operation modes are modeled as
states of a Markov chain. Based on this modeling, a recursive
robust regulator for discrete Markov jump linear systems (RR-
DMJLS) proposed in Cerri and Terra (2017) is designed to
regulate the force control. It guarantees mean square stability
and optimal performance for this class of stochastic system
(Jutinico et al., 2017). In order to check the effectiveness of the
approach, we performed a comparative study with a standard

H∞ force controller proposed in Pérez-Ibarra et al. (2017)
which is designed based only on the higher-impedance operation
mode (fixed). Although this control approach provides robust
stability for the whole system, including all operation modes,
its performance was outperformed by RR-DMJLS. We present
actual results based on force- and impedance-control for both
controllers.

The paper is organized as follows: Section 2 introduces the
SEA-based robotic platform and its respective dynamic model;
Section 3 describes the design of the robust controllers; Section 4
reports experimental results of a comparative study between the
controllers; finally, Section 5 provides the conclusions and some
final remarks for future work.

2. SYSTEM DESCRIPTION AND MODELING

The SEA-based Robotic Platform for Ankle Rehabilitation
(SRPAR), Figure 1, is a device for robot-assisted training. It
works under two conditions: guidance of a physiotherapist
during pre-established dorsi/plantarflexion movements of the
ankle and active participation of the patient by using serious
games. Both conditions benefit individuals who have suffered
a stroke. Also, the platform is a tool to evaluate the
ankle force and range of movement (Gonçalves et al.,
2013).

The platform uses a DC motor (Maxon Motor RE 40,
graphite brushes, 150 Watt DC motor) linked to a ballscrew
through a belt and pulleys with 2:1 reduction ratio. A
recirculating ballscrew nut converts the rotational motion
of the screw in a linear motion. A pair of steel springs
is attached to the nut and to a movable piece. When
the motor is driven, the nut moves forward or backward
compressing the springs. The movable part is connected to
a kinematic chain which converts linear force into torque
which is transferred to the user. We estimate the nut’s position
by measuring the motor rotation with a magneto-resistant
incremental encoder. Finally, we estimate the spring force
by measuring the spring deformation. A logarithmic sliding
potentiometer is attached to the movable piece located between
the springs. The potentiometer’s cursor moves along with
the piece generating a voltage proportional to the spring
deformation.

2.1. Transfer Function Model
In order to describe the dynamic behavior of the system, we
define three sub-systems in the SRPAR: motor-transmission
system, series elastic element, and human-load system
(Figure 1B). A set of assumptions is made to simplify
the dynamic modeling, resulting in a linear model for
the SRPAR. Although these simplifications can result
in a limited model, mainly due to the presence of
nonlinearities, the use of robust controllers to deal with
uncertain parameters can improve the performance of the
system.

Concerning the motor-transmission sub-system, although
some studies deal with only the effect of the inertia in the
motor model (Vallery et al., 2008; Calanca et al., 2014), in this
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FIGURE 1 | SEA-based Robotic Platform for Ankle Rehabilitation (SRPAR). (A) Platform (Gonçalves et al., 2014). (B) Squematic model.

paper we also consider the influence of the motor damping. The
effects of the inertia and damping parameters of the pulley and
ballscrew are also considered as in Yu et al. (2013) and dos
Santos et al. (2015). In addition, the nonlinear effects of friction,
backslash, and efficiency losses in the motor-transmission system
are minimized by controlling the motor velocity instead of
directly controlling the motor torque or current, as discussed in
Wyeth (2006).

Regarding the series elastic configuration, in Petit et al. (2015)
is presented a generic model for robotic systems with variable
stiffness. They describe the output torque of the actuator by
a nonlinear function that depends on the joint deflection and
mechanical stiffness variation of the springs. In this paper, the
springs are modeled as constant stiffness and operate in a
linear region. Since the human limb is attached to the four-bar
mechanism of the SRPAR, rotation of the ankle is transformed
into a linear movement in the same direction of the spring

force by a nonlinear Jacobian. However, due to a small range
of allowed movements related to mechanical constraints of
the SRPAR, this transformation is approximated by a linear
relationship (see Equation 6). The gravity effects on the human
foot are also neglected since the distance between the foots
center of gravity and the rotation axis of the platform is
small.

Different approaches have been proposed to model the
dynamics of the human-load sub-system. For example,
Tagliamonte and Accoto (2014) used a set of second-order
plants to represent human dynamics in order to implement
an impedance controller where passivity concepts are
explored. In Lee et al. (2016), similar second-order models
are used to measure the ankle mechanical impedance in a
unified way. In this paper, we model the human dynamics
as a set of second-order linear plants subject to parameter
uncertainties.
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In the following, we present a transfer function between the
commanded motor velocity ωd

m and the spring force Fs.

2.1.1. Dynamics of the Motor-Transmission System
Motor-transmission can be modeled as a second-order control
system,

MmeqẌw + BmeqẊw = Fmeq − Fs, (1)

where Xw denotes the displacement of ball screw nut, Mmeq and
Bmeq are respectively the equivalent inertia and damping of the
system as defined in Equation (2), and Fmeq is the output force as
defined in Equation (3),

Mmeq = Mt + ρ2(Jp + N2
p Jm) and Bmeq = Bt + ρ2(Cp + N2

pCm).

(2)

Fmeq = ρNpKtim = ρNpKt

(
(Kp +

Ki

s
)(ωd

m − ωm)

)
. (3)

In Equations (2) and (3), Mt and Bt are the mass and damping
of the ball screw nut, J and C are torsional inertia and damping
where subscripts m and p stand for motor and pulley, respectively.

Np is the pulley ratio, ρ = 2π
l

is a rotational-to-linear factor
where l is the ball screw lead. Kt is the motor constant, im is the
motor current determined by the inner velocity control of the
motor, and Kp and Ki are the proportional and integral gains of

the controller;ωm andωd
m are actual and desiredmotor velocities,

respectively.

2.1.2. Dynamics of the Human-load System
Dynamics of the human ankle is modeled by a second-order
system with inertia, damping and stiffness parameters given by:

Jlφ̈l + Clφ̇l + Khφl + Gl(φl) = τh − τplat , (4)

where φl denotes the angular position of the ankle, τ is the
torque, plat and h stand for platform and human being, and
Gl(φl) represents the gravitational effects. Jl = Jplat + Jh and
Cl = Cplat + Ch are the equivalent inertia and damping of the
sub-system, respectively, and Kh is the ankle stiffness.

The linear displacement of the load, Xl, is expressed in terms
of the angular movement of the human ankle joint φl, by:

Xl = l1 sinφl + l2

√

1−

(
h− l1 cosφl

l2

)2

+ l3, (5)

where l1, l2, l3, and h are known distances of the platform
(see Figure 1B). Based on linear and angular load velocities, we
compute the following Jacobian:

J (φl) =
Ẋl

wl
= l1 cosφl −

(
h− l1 cosφl

) (
l1 sinφl

)
√
l22 −

(
h− l1 cosφl

)2 ,

where wl = φ̇l. (6)

Since we are considering a small range of allowed movements,
approximately |φl| < 0.35 rad, this equation can be simplified by

J (φl) ≈ l1. As aforementioned the distance between the foot’s
center of gravity and the rotation axis of the platform is small,
in this case we can neglect the gravitational effect Gl(φl). Hence,
from Equations (4) and (6), the dynamics of the human-load
system is given by:

MlẌl + BlẊl + KlXl = Fs − J−1τh, (7)

whereMl, Bl, and Kl are respectively equivalent inertia, damping
and stiffness of the human-load system, defined by:

Ml = J−2Jl, Bl = J−2JlJ̇ + J−2Cl and Kl = J−2Kh.
(8)

2.1.3. Dynamics of the Series Elastic Actuator
Taking the Laplace transform of Equations (1) and (7), and
solving for Xw and Xl, we obtain:

Xw(s) =
Fmeq − Fs

Mmeqs2 + Bmeqs
, and Xl(s) =

Fs − J−1τh

Mls2 + Bls+ Kl
.

(9)
We make use of the Hooke’s Law to define output spring force

Fs:

Fs = Ks1X = Ks (Xw − Xl) . (10)

From Equations (9) and (10), we have:

Fs(s) = Ks
FmeqZl + J−1τhZmeq

ZlZmeq s+ Ks(Zl + Zmeq)
, (11)

where Zmeq = Mmeqs + Bmeq and Zl = Mls + Bl +
Kl
s

are the mechanical impedances of the motor-transmission and
human-load system, respectively. Finally, the spring force Fs(s)
is expressed as a function of the desired motor velocity ωd

m and
human torque τh, as:

Fs(s) = Ks

(
ρNpKtZl

)
ωd
m +

(
J−1Zmeq

)
τh

ZlZmeq s+ Ks

(
Zls

(Kps+Ki)
+ Zmeq

) , (12)

thus, the system dynamics is defined by the transfer functions
Gn(s) and Gh(s), given by:

Gn(s) =
Fs

ωd
m

=
ρNpKPIKsKtZl

KPIZlZmeqs+ Ks
(
Zl + ZmeqKPI

) , (13)

Gh(s) =
Fs

τh
=

KsJ
−1Zmeq

KPIZlZmeqs+ Ks
(
Zl + ZmeqKPI

) , (14)

where KPI = Kp+
Ki
s . The nominal SEAmodel is obtained fixing

the output load making Xl = 0 (Robinson et al., 1999; dos Santos
et al., 2015). Thus making Zl → ∞ in Equation (13), we obtain a
transfer function G(s) that only considers platform parameters:

G(s) = Gn(s)
∣∣
Zl→∞

=
ρNpKsKtKPI

KPIMmeqs2 + KPIBmeqs+ Ks
. (15)
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2.2. State Space Model
Consider again the system shown in Figure 1B. In order to
simplify the model, the inner velocity loop control allows us to
model the motor as a pure velocity source; therefore the torque
of the motor τm is given by:

τm = Ktim = Jm
dwm

dt
+ Cmwm ≈ Cmwm (16)

and, in consequence,

Fmeq = ρNpKtim = ρNpCmwm. (17)

From Equations (1) and (17), and taking into account that the
angular position of the motor φm is described in function of the
displacement Xw by φm = ρNpXw, we obtain:

φ̈m =

(
ρ2N2

pCm

Mmeq
−

Bmeq

Mmeq

)
wm −

ρNp

Mmeq
Fs, where wm = φ̇m.

(18)
From Equations (7) and (10), we obtain the following expression:

F̈s =
Ks

ρNp
φ̈m −

Bl

Ml
Ḟs −

(
Kl

Ml
+

Ks

Ml

)
Fs +

KsBl

ρNpMl
wm

+
KlKs

ρNpMl
φm +

KsJ
−1

Ml
τh. (19)

Using Equations (6), (8), (18), and (19) it is
possible to define the following state space
representation of the SRPAR-human system:




F̈s
Ḟs
φ̇m

φ̇l




︸ ︷︷ ︸
ẋa

=




−
Cl
Jl

(
−Ks
Mmeq

−
Kh+KsJ

2

Jl

)
KhKs
ρNpJl

0

1 0 0 0
0 0 0 0

−(KsJ )−1 0 0 0




︸ ︷︷ ︸
Fa




Ḟs
Fs
φm

φl




︸ ︷︷ ︸
xa

+




Ks
ρNp

(
Cl
Jl
−

Bmeq

Mmeq

)
+

ρNpKsCm

Mmeq

0
1

(ρNpJ )−1




︸ ︷︷ ︸
Ba

wm +




KsJ
Jl
0
0
0




︸ ︷︷ ︸
Ga

τh,

(20)

[
wl
φl

]

︸ ︷︷ ︸
y

=

[
−(KsJ )−1 0 0 0

0 0 0 1

]

︸ ︷︷ ︸
C




Ḟs
Fs
φm
φl


 +

[
(ρNpJ )−1

0

]

︸ ︷︷ ︸
D

wm,

(21)

where Fs is the spring force and, φm and φl are angular positions
for motor and load, respectively. The system control input is the
motor angular velocity wm and τh is the human torque which is
considered as an input disturbance.

2.3. Experimental Validation
In order to validate the proposed theoretical model, we identify
the frequency response function (FRF) of the force modeled in
Equation (13). We consider in the human-load interaction, three
specific operation modes: (1) a fixed mode, in which the platform
is fixed in a neutral position, i.e., φl ≈ 0 and Zl → ∞; (2)
a resistive mode, where the human being makes effort against
the platform in order to hold it in the neutral position; and
(3) a passive mode, when the user leaves the platform leads the

movement. For all modes, we apply a desired motor velocity
given by a chirp signal with an amplitude of 209.4 rad/s (2,000
rpm) and sweeping frequencies between 0 and 20Hz (Figure 2).

Due to variations in the activation level of the muscles
acting on the ankle joint, abrupt changes in ankle mechanical
impedance are expected. In addition, operation modes defined
are properly matched with the phases of human gait pattern.
Thus, the fixed mode can be associated with the mid-stance
phase; the resistive mode with the initial contact, terminal stance
and double support of the stance phase; and the passive mode
with the swing phase. Table 1 shows the platform specifications,
as well as the human parameters used for each mode and their
corresponding lower limits. Parameters for Mode 1 were chosen
to satisfy Zl → ∞, in order to obtain similar results to those
presented in Robinson et al. (1999). For Modes 2 and 3, they
were chosen from Lee et al. (2016) taking into account the actual
human impedance during stance and swing phases of walking,
respectively.

3. CONTROL APPROACHES

The block diagram of the control system for the SRPAR is
presented in Figure 3. The platform uses an EPOS driver that
performs two internal control loops for motor velocity and
current. They are based on PI controllers with Kp and Ki gains
shown in (see Table 1). Platform sensors provide data to a signal
conditioning block where SRPAR-human system variables are
computed. The sampling frequency used in this process is 1 kHz.

In order to ensure an appropriate interaction between human
and platform, we implement a standard impedance control

configuration for SEAs that uses the following internal force
control law:

Fd = J−1
(
Kv(φ

d
l − φl)+ Bv(ω

d
l − ωl)

)
, (22)

where Fd is the desired force computed from a sequence of
desired trajectories for load angular position φd

l
and velocity ωd

l
.

It is determined by the virtual stiffness Kv and damping Bv.
We aim to improve the performance and to guarantee the

stability of the system for different modes of human activities,
where changes among them are modeled as random jumps. In
this sense, we design a recursive robust regulator for discrete-time
Markov jump linear systems (RR-DMJLS). Disturbances and
uncertainties due to human-robot interactions, mainly because
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FIGURE 2 | Experimental identification. Frequency response measurements of

theoretical (dashed) and experimental (solid) transfer functions between input

ωdm and output Fs. Graphs show responses for passive (blue), resistive (red)

and fixed (black) modes.

of human parameters (inertia, stiffness, and damping), are
considered in this control approach. For comparison purposes,
we also design an H∞ force controller that does not take into
account these different modes of human activities. We synthesize
a fixed-gain controller using a similar approach presented in
Mehling and O’Malley (2014) and dos Santos et al. (2015). Both
controllers are presented in the following.

3.1. Recursive RR-DMJLS Force Control
Design
In this section, we design a robust force controller for the
SRPAR (Figure 4A). We present first nominal and uncertain
representations for different operation modes of the system.
Then, we model the system as a discrete-time Markovian jump
linear system (DMJLS). In order to guarantee stability and
robust performance, we use the recursive RR-DMJLS algorithm
developed in Cerri and Terra (2017).

3.1.1. Nominal Model
Consider the model presented in Equation (20),

ẋa = Faθ xa + Baθwm + Gaθ τh, (23)

for each operation mode θ ∈ 2: = {1, ..., s}, where s is the
number of nominal models, Faθ ∈ R

nxn, Baθ ∈ R
nxm, and

Gaθ ∈ R
nxm are nominal parameter matrices, xa ∈ R

n is the
state vector, wm ∈ R

m is the input control and τh ∈ R
m is the

input disturbance.

TABLE 1 | Platform and human parameters.

Parameter Value Parameter Value

Np 2 Jp 0.000055 kg·m2

l 0.0025 m Cm 0.00287 N · m · s/rad

J 0.03 m/rad Jm 0.0000138 kg · m2

Jplat 0.0013 kg· m2 Ks 320000 N/m

Cplat 3.5 N·m·s/rad Mt,Bt,Cp ≈ 0

Kp 30.42 A·s/rad Ki 1.23 A· s/rad

Kt 0.0302 N·m/A Ts 0.001 s

Human parameter Mode 1 Mode 2 Mode 3 Lower limits

Jh (kg· m2) 50 0.08 0.02 0.0001

Ch (N· m· s/rad) 1e5 5 0.5 0.001

Kh (N· m/rad) 4e5 200 20 0

We discretized this model by using Faθ ,k
= I + FaθTs�,

Baθ ,k
= �TsBaθ , and Gaθ ,k

= �TsGaθ , with � =
∑9

kn=0

F
kn
aθ
T
kn
s

(kn+1)!
,

where Ts = 1 ms is the sample time, for each k ∈ Z
+.

To eliminate the steady state error, we augment the model by
including an integral action:

[
xak+1

xintk+1

]

︸ ︷︷ ︸
xk+1

=

[
Faθ ,k

0

CaTs 1

]

︸ ︷︷ ︸
Fθ ,k

[
xak
xintk

]

︸ ︷︷ ︸
xk

+

[
Baθ ,k

0

]

︸ ︷︷ ︸
Bθ ,k

wmk︸︷︷︸
uk

+

[
0
Ts

]

︸ ︷︷ ︸
Brθ ,k

r
k
+

[
Gaθ ,k

0

]

︸ ︷︷ ︸
Gθ ,k

τhk ,

(24)

where rk is a force reference signal and Ca = [0 − 1 0 0]. Fθ ,k and
Bθ ,k are nominal matrices for three nominal models according
to Equation (20), which are based on parameters presented in
Table 1:

Mode 1: F1,k =




0.134 −3.81 219 0 0

4 · 10−4 0.998 0.144 0 0

0 0 1 0 0

0 0 −1 · 10−5 1 0

0 −0.001 0 0 1



,

B1,k =




55.11

0.036

0.001

3 · 10−6

−1 · 10−5



; (25)

Mode 2: F2,k =




0.898 −4.26 7.43 0 0

9 · 10−4 0.998 0.003 0 0

0 0 1 0 0

9 · 10−8 0 0 1 0

0 −0.001 0 0 1



,

B2,k =




6.31

0.003

0.001

6 · 10−6

−1 · 10−6



; (26)
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FIGURE 3 | Overall control scheme for the SRPAR.

Mode 3: F3,k =




0.822 −13.1 2.72 0 0

9 · 10−3 0.993 0.001 0 0

0 0 1 0 0

9 · 10−8 0 0 1 0

0 −0.001 0 0 1



,

B3,k =




10.87

0.005

0.001

6 · 10−6

−2 · 10−6



. (27)

3.1.2. Uncertain Model
Consider the system presented in Section 3.1.1 subject to
parametric uncertainties given by:

[
xak+1

xintk+1

]
=

[
Faθ ,k

+ δF11θ ,k
δF12θ ,k

CaTs + δF21θ ,k
1+ δF22θ ,k

]

︸ ︷︷ ︸
Fδ

θ ,k
=Fθ ,k+δFθ ,k

[
xak
xintk

]

+

[
Baθ ,k

+ δB11θ ,k

δB21θ ,k

]

︸ ︷︷ ︸
Bδ

θ ,k
=Bθ ,k+δBθ ,k

u
k
+

[
0
Ts

]
r
k

+

[
Gaθ ,k

+ δG11θ ,k

δG21θ ,k

]

︸ ︷︷ ︸
Gδ

θ ,k
=Gθ ,k+δGθ ,k

τhk .

(28)

Uncertain matrices δFθ ,k and δBθ ,k are modeled by:

[
δFθ ,k δBθ ,k

]
= Hθ ,k1θ ,k

[
EFθ ,k

EBθ ,k

]
, (29)

where Hθ ,k ∈ R
nxk is a nonzero matrix, EFθ ,k

∈ R
lxn and EBθ ,k

∈

R
lxm are knownmatrices,1θ ,k is an arbitrary matrix that satisfies

||1θ ,k|| ≤ 1. In order to identify matrices Hθ ,k, EFθ ,k
and EBθ ,k

,
we analyze frequency responses of the nominal and uncertain
models described in Equations (24) and (28), where τhk = 0,
by:

xn(z) = (zI − Fθ ,k)
−1(Bθ ,ku(z)+ Brθ ,kr(z)),

→ Gnθ (e
jωTs ) = (ejωTs I − Fθ ,k)

−1[Bθ ,k Brθ ,k ], (30)

xun(z) = (zI − Fδ
θ ,k)

−1(Bδ
θ ,ku(z)+ Brθ ,kr(z)),

→ Gunθ (e
jωTs ) = (ejωTs I − Fδ

θ ,k)
−1[Bδ

θ ,k Brθ ,k ],(31)

with z = ejωTs ≈
1+jωTs/2
1−jωTs/2

. For each operationmode, we compute

a transfer functionWa,θ in order to satisfy:

‖σWa,θ (ejωTs )
‖ ≥ ‖σGnθ (e

jωTs ) − σGunθ (e
jωTs )‖, ∀ω (32)

where σGnθ
and σGunθ

are singular values of the nominal and
uncertain models, respectively, see Figure 5. Notice that upper
bounds defined by singular values of Wa,θ are effective for
frequencies until 1.7 Hz for resistive mode and 3.8 Hz for passive
mode.

Finally, matricesHθ ,k, EFθ ,k
, and EBθ ,k

are found using a genetic
algorithm considering Equation (32):

H1,k = H2,k = H3,k =
[
−1187 −10.3 −0.5 105 10

]T
, (33)

and





EF1,k =
[
−0.86 −330.0 0 0 1308

]
, EB1,k =

[
−118.00

]
, for Mode 1;

EF2,k =
[
−0.43 −661.0 0 72 4448

]
, EB2,k =

[
− 59.30

]
, for Mode 2;

EF3,k =
[
−0.31 − 79.4 0 72 3768

]
, EB3,k =

[
− 47.46

]
, for Mode 3.

(34)

3.1.3. Probability Matrix
Time transitions among modes defined in Section 2.3 for the
system presented in Equation (28) can be modeled by a Markov
chain {θk}

N−1
k=0

, where θk is called the jump parameter and belongs
to a finite set 2: = {1, ..., s}. Transitions among these different
modes are determined by a probabilitymatrix for state transitions
P = [pij,k] ∈ R

s×s where each input must satisfies the following
constraints:

Prob [θk+1 = j|θk = i] = pij,k, Prob [θ0 = i] = pi,k,
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FIGURE 4 | Force control approaches. (A) Recursive Robust Regulator for DMJLS: the block “Platform + Human” corresponds to the state variable model in

Equation 20, Kint,θk and Ka,θk are the control gains. (B) H∞ control configuration of the system: Gn is the process plant, P is the augmented plant including the

weight functions and Kc is the controller.

s∑

j=1

pij,k = 1, 0 ≤ pij,k ≤ 1. (35)

P is defined heuristically based on empirical observations of
the respective operation modes:

P =



0.95 0.05 0
0 0.9 0.1
0 0.1 0.9


 . (36)

Different intervals for load velocity and position can describe
different behaviors of the human-robot system. Namely, if the
user is passive (1), resistive (2) or if the platform is fixed (3), ωl

and φl provide the jump parameter where,

θk =





1 if ω
f

lk
≤ 1 and |φlk | < 0.1,

2 else if ω
f

lk
≤ 2 and |φlk | ≥ 0.1,

3 else if ω
f

lk
> 2 and |φlk | ≈ 0,

(37)

for each k = 0, ...,N − 1, where w
f

lk
is the low-pass filtered

signal from load velocity absolute value, with fc = 0.1 Hz and
Ts = 1 ms, given by:

w
f

lk
= (1− ̺)w

f

lk−1
+ ̺|wlk−1

|, with ̺ = 2π fcTs. (38)

Since wlk is related to the frequency response of the system,
the jump parameter θk is also related to the robustness of the
regulator. In fact, robust stability and optimal performance is
only guaranteed in the interval of frequencies in which relative
errors are represented by upper bounds ||σWa,i(jω)|| (Figure 5).

FIGURE 5 | Relative errors and upper bounds. Relative errors between

nominal and uncertain models with respect to inputs uk (green) and rk (blue).

Graphs also show upper bounds for inputs uk (red) and rk (black).

3.1.4. RR-DMJLS Algorithm
Equation (28) is rewritten as a discrete-time Markov jump linear
system subject to parametric uncertainties, by:

xk+1 =
(
Fθk,k + δFθk ,k

)
xk +

(
Bθk ,k + δBθk,k

)
uk,

with θk ∈ {1, 2, 3} (39)

for all k = 0, ...,N − 1, where Fθk ,k and Bθk,k are nominal
parameter matrices for each mode given by Equation (25), xk is
the state vector, uk is an input control, and δFθk ,k and δBθk ,k are
uncertain matrices modeled as:

[
δFθk ,k δBθk ,k

]
= Hθk ,k1θk ,k

[
EFθk ,k

EBθk ,k

]
, (40)
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according to parameters presented in Equations (33) and (34).
Consider the robust control problem to regulate the DMJLS

subject to parametric uncertainties defined in Equation (39).
The solution for this problem is achieved through the min-max
optimization problem:

min
xk+1 ,uk

max
δFθk ,k

,δBθk ,k

{
J̃
µ
K (xk+1, uk, δFθk ,k, δBθk ,k)

}
, (41)

for each k = N − 1, ..., 0 and θk ∈ 2, where J̃
µ
K is the uncertain

penalized-regularized quadratic functional:

J̃
µ
K (xk+1, uk, δFθk ,k

, δBθk ,k
) =

[
xk+1
uk

]T [ 9θk ,k+1 0

0 Rθk ,k

]

[
xk+1
uk

]
+

([
0 0

I −Bδ
θk ,k

][
xk+1
uk

]

−

[
−I

Fδ
θk ,k

]
xk

)T [
Qθk ,k

0

0 µI

]

([
0 0

I −Bδ
θk ,k

][
xk+1
uk

]
−

[
−I

Fδ
θk ,k

]
xk

)
,

(42)

where Fδ
θk ,k

and Bδ
θk ,k

are defined in Equation (28); 9θk ,k+1 =∑s
j=1 Pj,k+1pij,k; Pθk,k is a positive definite matrix; Qθk,k and

Rθk ,k are semi-definite weighting matrices. The solution to the
optimization problem expressed in Equations (41) and (42) that
guarantees the optimal state-control sequence {(x∗

µ,k+1
, u∗

µ,k
)}N−1
k=0

for a fixed instant k and state θk, is given by the following
Robust Regulator for Discrete Markov Jump Linear Systems
(RR-DMJLS):

Robust Regulator for DMJLS (Cerri and Terra, 2017).

Initial Conditions: Set x0, θ0, P, Pi(N ) ≻ 0, ∀i ∈ 2: = {1, ..., s}.
Step 1: (Backward). Calculate for all k = N − 1, . . . , 0:

9i,k+1 =

s∑

j=1

Pj,k+1 pij,k




Lµ,i,k

Kµ,i,k

Pµ,i,k


 =




0 0 0
0 0 0
0 0 −I

0 0 F̂i,k
I 0 0
0 I 0




T



9−1
i,k+1

0 0 0 I 0

0 R−1
i,k

0 0 0 I

0 0 Q−1
i,k

0 0 0

0 0 0 Wi,k Î −B̂i,k
I 0 0 ÎT 0 0

0 I 0 −B̂T
i,k

0 0




−1




0
0
−I

F̂i,k
0
0



, (43)

Step 2: (Forward). Obtain for each k = 0, . . . N − 1:[
x∗
k+1
u∗
k

]
=

[
Lµ,i,k

Kµ,i,k

]
x∗
k
.

Equation (43) uses the following auxiliary matrices:

Wi,k =

[
µ−1I − λ̂−1

i,k
Hθk ,kH

T
θk ,k

0

0 λ̂−1
i,k

I

]
,

Î =

[
I
0

]
, B̂i,k =

[
Bθk,k

EBθk ,k

]
, F̂i,k =

[
Fθk,k

EFθk ,k

]
,

λi,k >‖ µHT
θk ,k

Hθk ,k ‖ .

(44)

In this formulation, µ > 0 is a penalty parameter responsible to

guarantee the robustness of the RR-DMJLS. In fact, when µ →

+∞ then Wi,k → 0. In consequence, the DMJLS closed-loop
response is given by:

{
L∞,θk ,k = Fθk ,k + Bθk,kK∞,θk,k

EFθk ,k
+ EBθk ,k

K∞,θk ,k = 0,
(45)

which provides the robust optimal response (x∗
k+1

, u∗
k
). Details of

the necessary and sufficient conditions for existence of the mean
square stabilizing solution and robustness of this regulator can be
found in Cerri and Terra (2017).

Let µ = 9.998 × 106 and λi,k = 1 × 1017 in order to satisfy
Equations (44) and (45); weightingmatricesR1,k = R2,k = R3,k =
1, Q1,k = Q2,k = Q3,k = I5 and P1(N ) = P2(N ) = P3(N ) =

1 × 1010 × I5; and the probability matrix P defined in Equation
(36). By using the robust regulator presented in Equation (43), we
obtain the following control law:

u
k
= K∞,θk,k xk = Ka,θkxak + Kint,θkxintk , (46)

where Ka,θk is the gain to the states xak and Kint,θk is the gain
to the state xintk . Table 2 shows the control gains obtained for
three Markovian modes. We do not consider uncertainties in the
third term of EFi,k , as a consequence, the algorithm decouples
the state variable φm guaranteeing the controllability of the
system (see K3).

Considering the control law presented in Equation (46), the
closed-loop response for Equation (28) without considering the
disturbance τhk , is given by:

TABLE 2 | Control gains.

Markov

modes

K1 K2 K3 K4 Kint Gains

θ = 1 [−0.0073 −2.787 0 0 11.027 ] = [Ka,1 Kint ]

θ = 2 [−0.0073 −11.149 0 1.213 74.983 ] = [Ka,2 Kint ]

θ = 3 [−0.0065 −16.724 0 1.516 79.394 ] = [Ka,3 Kint ]
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[
xak+1

xintk+1

]
=

[
Faθ ,k + Baθ ,kKa,θk Baθ ,kKint,θk

CaTs 1

]

︸ ︷︷ ︸
Fθ ,k+Bθ ,kKθk

[
xak
xintk

]
+ Brθ ,k rk+

[
δF11θ ,k + δB11θ ,kKa,θk δF12θ ,k + δB11θ ,kKint,θk
δF21θ ,k + δB21θ ,kKa,θk δF22θ ,k + δB21θ ,kKint,θk

]

︸ ︷︷ ︸
δFθ ,k+δBθ ,kKθk

=Hk1k(EFk
+EBk

K∞,θk ,k
)=0

[
xak
xintk

]
,

(47)
where δFk + δBkK∞,θk,k = 0 guarantees the robustness of the
system according to Equation (45).

3.2. H∞ Force Control Design
Consider the nominal model:

Gn(s) =
ρNpKsKtKPI

KPIMmeqs2 + KPIBmeqs+ Ks
. (48)

We use a mixed-sensitivity shaping approach S = (1+ GnKc)
−1

to ensure tracking performance and disturbance rejection, and
KcS to limit the control signal (Skogestad and Postlethwaite,
2007). TheH∞ problem is defined as:

min
Kc

‖N(Kc)‖∞, N =
[
weS wuKcS

]T
=
[
z1 z2

]T
,

‖N‖∞ = max
ω

σ̄ (N(jω)) ≤ γ ,
(49)

where we(s) and wu(s) are respectively performance and control
weights, Kc is a stabilizing controller that bounds N by an
attenuation level γ , and σ̄ (N) is given by the usual Euclidean
vector norm:

σ̄ (N) =
√
|weS|2 + |wuKcS|2. (50)

We define the performance weighting we(s) by:

we =
s/10(Ms/20) + ωb

s+ ωbǫs
, (51)

where ǫs = 10−5 is the maximum steady-state error, Ms = 2 dB
is the maximum peak of S, and ωb = 10π is related to the close-
loop bandwidth.We determine the control input weightingwu(s)
with

wu = 1/Mu, (52)

where Mu = 523.6 rad/s (5,000 rpm) is the maximum value
for u. The control system is considered according to Figure 4B.
Based on Equations (51) and (52), the H∞ force controller Kc(s)
is obtained:

Kc(s) =
2.78e9s3 + 2.18e12s2 + 6.95e13s+ 6.95e10

s4 + 5.52e6s3 + 3.34e11s2 + 1.35e13s+ 4.3e6
. (53)

Finally, the controller is discretized by using a zero-order hold,
with Ts = 1 ms,

Kc(z) =
6.16z2 − 12.11z + 5.95

z3 − 1.96z2 + 0.96z
. (54)

4. EXPERIMENTAL RESULTS

In order to evaluate the stability and performance of the
proposed control approaches, time and frequency response tests
are performed with a healthy user for three different operation
modes presented in Section 2.3. We show a comparative
study of force controllers and impedance controllers, according
to Figure 4. This study was approved and carried out
in accordance with the recommendations of the Ethics
Committee of the Federal University of São Carlos (Number
26054813.1.0000.5504).

4.1. Force Controllers
In this section, robust force controllers presented in Section 3,
RR-DMJLS and H∞, are compared. Two performance criteria
are used for this purpose. We consider the rise time tr and
a normalized mean error between spring and desired forces
defined as

eqc =
1

N

N∑

k=1

∣∣∣∣
Fd − Fs

max{Fd}

∣∣∣∣ · 100%, (55)

where N = 8/Ts is the number of samples.
Figure 6 shows time responses of the system using the RR-

DMJLS force controller. In these experiments, three different
levels (100, 0, and −100 N) of desired forces, Fd, are set during
a total time of T = 8 s. In tests performed for fixed and resistive
modes, shown in Figures 6A,B, the Markovian modes remained
constant. Notice in the test shown in Figure 6C, the Markov
chain changes betweenModes 2 and 3. The RR-DMJLS responses
are similar for three modes available, maintaining an appropriate
tracking despite natural differences between human and robot
dynamics. Notice that tr are similar to the respective desired force
levels and themean errors eqc are 14.24, 11.97, and 11.9%, for tests
shown in Figures 6A–C, respectively.

Figure 7 shows the force control response of the RR-DMJLS
while tracking a sinusoidal force reference. In this experiment,
the user is asked to be resistive to the movement of the platform
during the first fifteen seconds, and then to remain passive during
the next fifteen seconds. We observe that force control maintains
a similar response despite the abrupt change in the human
dynamics (resistive → passive). Notice that jumps between
Markovian states reflect time transitions between different
operation modes of the system. However, for a condition where
the operation modes change more frequently, these transitions
would be detected with a certain delay. We hypothesize that
this delay is related to the jump parameter identification method
considered (Equation 37). It could be improved by estimating
alternative variables. For example, the stiffness and damping
parameters of the human being.

Figure 8 presents time responses of the system using the
H∞ force control approach. In this case, also are applied three
different levels of desired forces Fd in T = 8 s, for each operation
mode: fixed, resistive, and passive. The rise time tr is lower for
fixed and resistive modes in comparison with the passive mode.
The mean errors obtained for fixed, resistive and passive modes
were 5.89, 8.23, and 23.29%, respectively. Comparing mean
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FIGURE 6 | Recursive RR-DMJLS force controller. (A) Fixed mode. (B) Resistive mode. (C) Resistive and passive modes. For each operation mode, graphs show

desired (black) and actual (blue) spring forces (top), and Markov chains (bottom).

FIGURE 7 | Recursive RR-DMJLS force controller. Force response (solid),

sinusoidal force reference (dashed) with a change of operation mode (top).

Markov chain (bottom).

errors between both controllers, we obtain better performance for
theH∞ force controller for the fixedmode. For the passive mode,
the RR-DMJLS provides better performance. However, when we
design the H∞ control based on the passive mode, it does not
stabilize the system when it is operating in the fixed mode. An
advantage of the RR-DMJLS is the uniformity of performance
obtained for the whole system.

Figure 9 shows frequency responses of the closed-loop system
using the H∞ and recursive RR-DMJLS force controllers. For
passive and resistive modes, we apply a desired force signal given
by a chirp signal with amplitude of 100 N, sweeping frequencies
between 0 and 8 Hz. Some indexes for both controllers are
compared. For the H∞ force controller, shown in Figure 9A,
we have: maximum magnitude during passive mode, |Gfp|max

=

−1.6 dB, and resistive mode, |Gfr|max
= 0.86 dB; bandwidth for

passive mode, Bwfp−3dB
= 0.2 Hz, and bandwidth for resistive

mode, Bwfr−3dB
= 1.39 Hz; phase at cut-off frequency for passive

mode, αfp = −43◦, and for resistive mode, αfr = −79◦. For the
frequency response of the RR-DMJLS shown in Figure 9B, we
obtain: |Gfp|max

= 0.9 dB; |Gfr|max
= 0.32 dB; Bwfp−3dB

= 1.2
Hz; Bwfr−3dB

= 1.5 Hz; αfp = −110◦; and αfr = −75◦. Notice
that the bandwidth of the closed-loop system is greater for the
RR-DMJLS controller.

FIGURE 8 | Time response of the system with H∞ force controller.

4.2. Impedance Control
To obtain the RR-DMJLS force control response during
impedance controlled movements, we perform two experiments
in which the system must track a kinematic reference. In
both cases, the user was asked to be resistive during first ten
seconds and then to be passive during the next ten seconds.
Figure 10A shows the force and impedance control for a
pure stiffness control configuration and Figure 10B a stiffness-
damping control configuration. Notice that the torque tracking
performance is similar for two modes in spite of the transition
between them. Regarding the passive case, the position tracking
is better for the pure-stiffness configuration. However, since this
configuration has no damping parameter, the velocity tracking
is worse. We can include a damping coefficient. However, it
can decrease the performance of the position tracking. Thus,
there exists a compromise between these control objectives that
must be considered by the assistance strategy. Regarding the
Markovian states, notice that increasing Bv it reduces the velocity
of the system and enforces the system to remain in the same
Markovian state, Figure 10B.

Figure 11 shows time responses using the impedance control
with the inner H∞ force control loop, for K = 15 N·m/rad,
following a sinusoidal trajectory for ankle angular position. In
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FIGURE 9 | Frequency closed-loop response of the system with force control. (A) H∞ force control. (B) Recursive RR-DMJLS force control. Graphs show responses

for passive (blue) and resistive (red) modes.

FIGURE 10 | Impedance control with inner RR-DMJLS force control. Torque and impedance control responses for: (A) Kv = 15 N·m/rad and Bv = 0 N·m·s/rad, and

(B) Kv = 15 N·m/rad and Bv = 5 N·m·s/rad. Graphs show desired (blue) and measured (red) values for the platform torque (top), angular position of the ankle joint

(middle-top), angular velocity of the ankle joint (middle-bottom); and Markov chain (bottom).

this case, the user is asked to remain passive during the first ten
seconds, and then to be resistive during the next ten seconds.
Results show that the torque tracking performance is worse when
the human being is in passive mode.

In order to quantify the performance achieved by the
proposed controllers, we compute the real stiffness and damping
parameters of the system. For this purpose, we calculate the
torque τKv generated by the virtual stiffness Kv and the torque
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τBv generated by the virtual damping Bv with

τKv = τplat − Bvωe and τBv = τplat − Kvφe, (56)

where φe = φd
l

− φl is the angular position error and ωe =

ωd
l
− ωl is the angular velocity error. We compute the root mean

square (RMS) errors of themeasured variables in the experiments
shown in Figures 10, 11. The RMS of the angular error φe is given
by:

RMS{φe} =

√√√√ 1

N

N∑

k=1

φ2
ek
, (57)

where N = 10/Ts is the number of samples in each test (passive
or resistive). In a similar way, we calculate RMS values for angular
velocity error ωe, torque generated by virtual stiffness τKv , and
damping τBv . Notice that, when Bv = 0 then τBv = 0 and
τKv = τplat . Actual stiffness Kr and damping Br are given by:

Kr =
RMS{τKv}

RMS{φe}
and Br =

RMS{τBv}

RMS{ωe}
, (58)

see Table 3. The error between the virtual stiffness and the
actual stiffness are calculated, eKv = |(Kv − Kr)/Kv|100%
and the error between the virtual damping and the actual
damping, eBv = |(Bv − Br)/Bv|100%. We compare results of
the impedance control with Kv = 15 Nm/rad and Bv = 0
Nms/rad. Impedance control with RR-DMJLS presents higher
stiffness accuracy in both passive and resistive modes, 15.28
Nm/rad and 16.13 Nm/rad, respectively. With H∞ controller, it
provides 16.44 Nm/rad in passive mode and 7Nm/rad in resistive
mode. Stiffness errors eKv of the RR-DMJLS force control are
smaller than the H∞ force control. This difference can be seen
in the passive mode (θ = 3), where the eKv error of the H∞

is approximately seven times greater than the RR-DMJLS. In
the test with Kv = 15N·m/ rad and Bv = 5N·m·s/ rad, the
performance is preserved.

Figure 12 shows the frequency response for the impedance
which is measured between output torque and angular position
error. For passive and resistive modes, we apply a desired
angular position trajectory given by a chirp signal with amplitude
0.2 rad, sweeping frequencies between 0 and 8 Hz. In these
experiments, impedance controller is defined as pure stiffness
configuration; therefore, magnitude of the impedance should
be almost constant. Notice that it is guaranteed only until 1
Hz. Figure 12A shows the behavior of the RR-DMJLS-based
impedance control. Figure 12B shows the frequency response
for the H∞-based impedance control. Notice for this controller
that the performance decreases when the system operates in
the passive mode. We can see that the RR-DMJLS is a more
resilient impedance control if compared with H∞-based control
for different operating modes and desired impedances.

5. DISCUSSION AND CONCLUSIONS

The model-based robust force control approach was evaluated
in a robotic platform for ankle rehabilitation, improving

FIGURE 11 | Impedance control with inner H∞ force control. Graphs show

desired (blue) and measured (red) values for the platform torque, τplat (top),

and angular position of the ankle joint (bottom).

TABLE 3 | Experimental measurements of the system stiffness and damping.

Test with inner Test with inner RR-

H∞ force control, DMJLS force control,

Kv = 15 and Bv = 0. Kv = 15 and Bv = 0.

Kr eKv Kr eKv

θ (N·m
rad

) (%) (N·m
rad

) (%)

2 16.44 9.60 15.28 1.86

3 7.00 53.33 16.13 7.53

Test with inner RR-DMJLS force control,

Kv = 15 and Bv = 5.

Kr eKv Br eBv

θ (N·m
rad

) (%) (N·m·s
rad

) (%)

2 15.38 2.53 4.86 2.80

3 15.91 6.06 4.70 6.00

its impedance control performance. First, the robot-human
dynamics was modeled considering the ankle impedance
a second-order system with inertia, stiffness, and damping
parameters. Since we do not have exact knowledge of the human
parameters, our system is subject to parametric uncertainties and
we have defined three operation modes related to the human-
robot activity whose time transitions were modeled via a Markov
chain. For comparison purposes, anH∞ force controller was also
evaluated. Although it can guarantee coupled stability, the force
control performance decreases when the system is in the passive
operation mode.We have also designed and implemented an RR-
DMJLS for dealing with abrupt changes and system uncertainties
by guaranteeing robust mean square stability of the system.
Experimental results show RR-DMJLS outperformed the H∞

force controller.
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FIGURE 12 | Frequency response for the measured impedance, J Fs/φe, and force error, |Fs/Fd − 1| · 100%, for Kv = 15, Kv = 5 and Bv = 0. (A) Inner recursive

RR-DMJLS force control. (B) Inner H∞ force control.

5.1. Related Work
The impedance control configuration used is based on Hogan
(1985) and it is aimed at the regulation of the dynamical behavior
in the interaction port by variables that do not depend on
the environment. The actuator together with the controller are
modeled as an impedance, Zr , with velocity inputs (angular)
and force outputs (torque). The environment is considered an
admittance, Ye, in the interaction port. Colgate and Hogan (1988,
1989) presented sufficient conditions for the determination
of stability of two coupled systems and explained how two
physically coupled systems with Zr and Ye with passive port
functions can guarantee stability. These concepts have been
useful for the implementation of interaction controls for almost
three decades. The stability of two coupled systems is given by Zr
and Ye eigenvalues and the performance is evaluated by through
the impedance Zr .

Buerger and Hogan (2007) described a methodology in which
an interaction control is designed for a robot module used for
rehabilitation purposes. They considered an environment with
restricted uncertain characteristics, therefore the admittance is
rewritten as Ye(s) = Yn(s) + W(s)1(s). The authors also used
a second-order dynamics to model the stiffness, damping, and
inertia of the human parameters. Complementary stability for
interacting systems was defined, where stability is determined
by an environment subject to uncertainties. Therefore, a coupled
stability problem is considered a robust stability problem.

Regarding the human modeling, the dynamic properties of
the lower limbs and muscular activities vary considerably among
subjects. This is relevant since SRPAR has been designed for users
that suffer diseases that affect the human motor control system,
e.g., stroke and other conditions that cause hemiplegia. Typically,
such diseases change stiffness and damping in the ankle and

knee joints, hence producing spasticity or hypertonia (Lin et al.,
2006; Chow et al., 2012). Therefore, the development of a control
strategy that guarantees a safe interaction between patient and
platform, mainly in virtue of uncertainties related to the human
being, is fundamental.

Li et al. (2017) and Pan et al. (2017) proposed adaptive control
schemes for SEA-driven robots. They considered two operation
modes in the adaptation process, namely robot-in-charge and
human-in-charge, which are close related to the passive and
resistive operation modes, respectively, proposed in this paper.
However, the control adaptation is based on changes in the
desired position input of the SEA controller and estimation of
coordinate accelerations through nonlinear filtering.

In human-robot interaction control systems, the efficiency of
the force actuator operation deserves special attention. Although
SEAs are characterized by a low output impedance, an important
requirement for improving such efficiency is the achievement
of a precise and proportional output torque with respect to
the desired input. Pratt (2002), Au et al. (2006), Kong et al.
(2009), Mehling and O’Malley (2014), and dos Santos et al.
(2015) developed force controllers for ankle actuators using SEA.
In this paper, we proposed a force control methodology that
can deal with system uncertainties and guarantee robust mean
square stability. Similar performance was obtained in different
tests performed. Accuracies of 98.14% for resistive mode and
92.47% for passive mode were obtained in the pure stiffness
configuration. In the stiffness-damping configuration, with Kv =

15 and Bv = 5, the accuracy obtained in the resistive case was
of 97.47% for stiffness and 97.2% for damping, and in the passive
case was of 93.94% for stiffness and 94% for damping.

On the contrary, using a fixed-gain control approach based on
H∞ synthesis, the performance was not similar among operation
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modes. We showed that this strategy can guarantee coupled
stability; nevertheless, force control performance decreases when
the system is in the passive operation mode. This is reflected
in the impedance control accuracy for the pure stiffness
configuration, falling from 90.4% in the resistive mode to 46.67%
in the passive mode.

5.2. Shortcomings and Possible
Improvements
In order to control the SRPAR, we proposed a methodology
to force control based on RR-DMJLS. It considers a discrete-
time Markovian model with three states associated with the
operating modes of the system. The model was augmented for
eliminating the steady state error through the inclusion of an
integral action. We also found appropriate uncertain matrices
considering frequency responses for relative errors between
perturbed and nominal models.

Regarding the observation of the operation modes, in
Figure 10A there exists a delay in the jump identification from
resistive to passive mode, and in Figure 10B the proposed
jump identification method was not even able to identify the
jump between modes. This behavior is directly related to virtual

damping Bv selected since load angular velocity w
f

lk
is lower than

2 rad/s. A possible solution to the problem is the estimation of
the virtual stiffness and damping of the human being for the
definition of the bounds of the identification method.

Based on our observations of the system behavior, we have
defined a probability matrix P that models those transitions
among different modes. We hypothesize the probabilities may

vary in function of the user’s physiological conditions, therefore,
our probability matrix can be considered partially or completely
uncertain. In a future study, we aim at using our methodology
subject to uncertain transition probabilities with the unknown
Markov chain proposed in Bortolin and Terra (2016).

Other approaches may improve our methodology. For
example, a disturbance observer, as proposed in Kong et al.
(2009), could compensate the effect of human torque τh in
Equations (14) and (20). Optimal robust filter for DMJLS
(Ishihara et al., 2015) and extended robust Kalman filter proposed
in Inoue et al. (2016) could better estimate the states of the
SRPAR.
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