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In this study, an intention-driven semi-autonomous intelligent robotic (ID-SIR) system is
designed and developed to assist the severely disabled patients to live independently.
The system mainly consists of a non-invasive brain–machine interface (BMI) subsystem,
a robot manipulator and a visual detection and localization subsystem. Different from
most of the existing systems remotely controlled by joystick, head- or eye tracking, the
proposed ID-SIR system directly acquires the intention from users’ brain. Compared with
the state-of-art system only working for a specific object in a fixed place, the designed
ID-SIR system can grasp any desired object in a random place chosen by a user and
deliver it to his/her mouth automatically. As one of the main advantages of the ID-SIR
system, the patient is only required to send one intention command for one drinking
task and the autonomous robot would finish the rest of specific controlling tasks, which
greatly eases the burden on patients. Eight healthy subjects attended our experiment,
which contained 10 tasks for each subject. In each task, the proposed ID-SIR system
delivered the desired beverage container to the mouth of the subject and then put it
back to the original position. The mean accuracy of the eight subjects was 97.5%, which
demonstrated the effectiveness of the ID-SIR system.

Keywords: assistive robot, neural network, semi-autonomous control, brain–machine interface, object recognition
and localization

1. INTRODUCTION

Independent living is essential for the patients with motor deficit due to stroke, spinal cord injures,
etc. (Kim et al., 2012; Carlson and del RMillan, 2013; Susko et al., 2016). In order to assist the patients
to live independently, intelligent robotics technology is an attractive solution (Hochberg et al., 2012;
Wu et al., 2015; He et al., 2016).

With less burden during the task execution period, it is a challenging work to accurately and real-
time obtain the intentions of patients, locate the desired object, and efficiently control the robot
manipulator to grasp the object and deliver it to the user. Evidently, intention obtaining approach,
robot control, and object perception are three key points.

1.1. Intention Obtaining Approach
Brain–machine interface (BMI) technology is one of the favored solutions, as it can decode directly
the users’ intentions in terms of their brain signals without nervous peripherals. In 1999, some
researchers applied the invasive BMI to train rats to control a robot arm (Chapin et al., 1999).
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In 2011, Kim et al. (2011) used the microelectrode array signals
to control a point-and-click cursor, which made it possible for
patients with tetraplegic to use the computer. Later, as a repre-
sentative work, Hochberg et al. (2012) proposed an invasive BMI
technology based on the microelectrode array signals, allowing
two patients with long-standing tetraplegia to control a robotic
arm for drinking. Even though the invasive BMI is a good solution,
it needs an operation on users in advance. The patients may
suffer from the expensive craniotomy and additional risks, such as
infections and side effects from operations. Therefore, atraumatic
non-invasive BMI technology is a better choice for most people.

As Onose et al. pointed out, EEG is the only realistically prac-
tical non-invasive BMI approach at present among the existing
non-invasive BMI technologies, because it is relatively affordable
and easy to set-up (Onose et al., 2012; Ferracuti et al., 2013;
Li et al., 2013, 2016; Yu et al., 2013). Other non-invasive BMI
technologies, such as functional magnetic resonance imagery,
magneto-encephalography, and positron emission tomography,
are quite expensive and not portable in terms of the size and
electrical energy usage (Onose et al., 2012). Therefore, a number
of EEG-based BMI paradigms and systems are exploited and
developed in recent years (Schröer et al., 2015; Wang et al., 2015).
Active/voluntary paradigm (e.g., Motor imagery, for short as MI)
and passive paradigm (e.g., P300 and steady-state evoked poten-
tials, for short as SSVEP) are two basic strategies for the inter-
action between users and computers. Although some researchers
employed the MI-BMI to control a robot arm to perform a task
of picking and placing (Wang et al., 2015), the disadvantages
are inherent and difficult to accept, such as less control options,
more preliminary training, low accuracy, and instability (Li and
Yu, 2015). By contrast, P300 evoked potential is more suitable to
detect users’ intention. It has been verified that the P300 allows
very high accuracy and more optional orders with little training
time (less than 5min), which is essential in practical applications
(Prezmarcos et al., 2011; Li and Yu, 2015). In addition, P300-BMI
systems do not require subjects to learn how to modulate their
EEG, and the P300-BMIwas about two times faster than the equiv-
alent Mi-BMI systems (Prezmarcos et al., 2011). A comparison
research between P300-BMI system and SSVEP-BMI system has
also proved that P300-BMI is more robust for subjects, though
SSVEP-BMI has higher bit rate (Lijing et al., 2012). Moreover, the
SSVEP-BMI needs to flash consistently in real time to obtain the
corresponding signals, which is more tiresome for users. Consid-
ering the safety, robustness and less burden, P300-BMI system is
more suitable and applied in the ID-SIR system.

In order to improve the accuracy and information transmission
rate, efficient classification algorithms are necessary. Among
numerous P300-BMI applications, support vector machine
(SVM) and linear discriminant analysis (LDA) have been used to
achieve acceptable results (Lenhardt et al., 2008; Schröer et al.,
2015; Simbolon et al., 2015). As pointed out in Lenhardt et al.
(2008), compared with other complex classifiers such as SVM,
LDA was capable due to its good classification performance as
well as low computational and training requirements. Hoffmann
et al. successfully applied the LDA to obtain high classification
accuracies and bit rates for severely disabled subjects (Hoffmann
et al., 2008). Different from most existing LDA-P300 systems

with a fixed training-round number (Townsend et al., 2010;
Akram et al., 2015; Chang et al., 2016), a self-adaptive Bayesian
linear discriminant analysis algorithm is exploited in this paper
to classify the P300 signals to obtain the user’s intention. It
can effectively decrease the cost of recognition time. The user’s
intention is then translated into control commands that are used
to control the robot manipulator to execute desired tasks.

1.2. Robot Control
For the severely disabled patients, the less brain burden the
system brought in, the better patients may feel. The designed
intention-driven semi-autonomous intelligent robotic (ID-SIR)
system seeks to decrease the need for user continuously sending
commands through “shared control” to realize it. Here, shared
control means that it is a semi-autonomous robot, which only
needs very limited high-level commands of users. It indicates that
users do not need to continuously send instructions to the BMI
system. In practical applications, the user only needs to send one
command to “tell” the BMI block which object is desired. All the
other work will be finished automatically by the robot.

1.3. Object Perception
Object perception is realized by embedding with the computer
vision. Considering the complexity of objects in home/hospital
environments, a region-growing algorithm, and a deep convo-
lutional neural network (CNN) are implemented in the system
for cup detection, as well as a depth information based vision
localization technology is exploited and applied. Compared with
the state-of-art system with color-based classifier (Schröer et al.,
2015), the deep CNN method is more powerful and accurate.
For instance, robot in Schröer et al. (2015) can only grasp a very
specific cup in a predefined place, but the proposed ID-SIR system
can grasp any learnt object from any initial position in the range
of vision and robot attainability.

Before ending this section, the main contributions of this paper
lie as below.

• A non-invasion type intention-driven semi-autonomous intel-
ligent robotic (ID-SIR) system is designed to assist severely
disabled users for drinking. To the best of authors’ knowledge,
it is the first time to realize a non-invasion typemind controlled
robot to grasp a desired object in a random place and deliver it
to the user’s mouth.

• A novel depth camera-based visual detection and localization
method is employed in the perception layer of the proposed
ID-SIR system, which can recognize and locate the desired
beverage container in any place in the range of visual and robot
reachable regions and the user’s month.

• A self-adaptive Bayesian linear discriminant analysis algorithm
is applied to the proposed ID-SIR system, which can effectively
decrease the cost of recognition time.

• Experiments and user studies are presented to verify the effec-
tiveness, robustness, and high accuracy of the proposed ID-SIR
system.

The remainder of this paper is organized in four sections.
Section 2 presents thewhole system in detail. Themethods used in
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the ID-SIR system are stated in Section 3. The experiment results
are discussed in Section 4. Section 5 concludes this paper with
final remarks.

2. SYSTEM OVERVIEW

In this section, the working mechanism and information trans-
mission process of the proposed ID-SIR system (as shown in
Figure 1) is stated in detail. From Figure 1, we can see that the
ID-SIR system includes triple layers, i.e., the perception layer,
decision-making layer, and execution layer. The perception layer
of the system includes a P300-based brain–machine interface
subsystem and a visual detection and localization subsystem.
The decision-making layer is about how to convert and transmit
the intention of users to the control commands of robots. The
execution layer is used for robot control.

First, in the BMI subsystem, an EEG cap and a direct-current
amplifier (NuAmps) are applied to acquire brain signals. After
preprocessing of the signals and feature extraction, a self-adaptive
Bayesian linear discriminant analysis (SA-BLDA) algorithm is
employed for classification, and the intention of the user is
obtained. Finally, an intention command is sent to the decision-
making layer and the visual detection and localization subsystem
as an output signal.

Second, in the visual detection and localization subsystem, two
Microsoft Kinects are applied as the vision input sensors.With the
help of region growing algorithm and deep neural network, the
positions of the beverage containers are detected and obtained.
Applying the Kinect software development kit (SDK), the position

FIGURE 1 | System architecture of the ID-SIR system.

information of the user’s mouth is detected. The position infor-
mation of the desired beverage container and the user’s mouth are
then sent to the decision-making layer in real time.

Third, the decision-making layer works as a connector and
coordinator between the other modules, which is responsible
for information transition and decision-making. It should decide
when and how to deliver which beverage container to the mouth
of the user according to the inputs from perception layers and
feedback from the execution layer.

Fourth, in order to grasp the desired beverage container and
deliver it to themouth flexibly, a robot manipulator of six degrees-
of-freedom (DOF) with three fingers (KINOVA JACO2 robot
manipulator) is applied. Through motion planning and control,
the executive commands, generated by the decision-making layer,
are well preformed on the robot manipulator to move along the
expected path and finish the drinking task.

3. METHODS

In this section, the algorithms and working mechanism of three
layers in the ID-SIR system are presented in detail. Specifically, it
includes perception layer (including BMI and computer vision),
decision-making layer, and execution layer.

3.1. Brain–Machine Interface
In this section, the BMI subsystem of the proposed ID-SIR system
is stated in detail. Specifically, it includes data acquisition and
amplification, graphical user interface, time series and control
mechanism, and mapping intentions to execution commands.

3.1.1. Data Acquisition and Amplification
First of all, EEG cap is worn by the user and the software setting
is prepared. With the application of the cap, the scalp signals
referenced to the right ear are detected.

In the experiment, a 32-channel Quik-CapTM (from Com-
pumedics, Neuroscan, Inc.) is employed. The horizontal elec-
trooculograph (HEOG) and vertical electrooculograph (VEOG)
are about eye movements that are not necessary in our data
analysis process. Therefore, the two channels are ignored in the
designed BCI of the ID-SIR system. The corresponding names of
electrodes and distribution of remaining 30 channels are shown
in Figure 2. As the P300 signals are mainly produced in parietal
lobe and occipital lobe, most of the sampling electrodes distribute
in these zones.

Second, the captured EEG signals from the cap is ampli-
fied, recoded, and transmitted to the computer by a NuAmps
device (Compumedics). In the signal acquisition process, all the
impedances of the electrodes should be less than 5KΩ, the sam-
pling rate of the signals is 250Hz, and the output band pass of the
NuAmps device is between 0.5 and 100Hz.

3.1.2. Experiment GUI Design
In order to attain the user’s intention to control the robot manipu-
lator to deliver the object (such as a bottle or a cup) to themonth of
the user, a P300-based speller system with 4 symbols are designed
(seeFigure 3). It is displayed as a 2× 2matrices, and each button is
attached with a white word and black background in idle periods.
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FIGURE 2 | Distribution of the 30 electrodes (expect referenced electrode and
ground electrode).

FIGURE 3 | GUI of the proposed ID-SIR system.

As can be seen from Figure 3, the 4 symbol buttons of the GUI are
“cup1,” “cup2,” “cup3,” and “back.” Here, the number of symbols
denotes the intention which can drive the robot to grasp the ith
object (cup/bottle) and deliver it to the user’s mouth (i= 1, 2, and
3). Symbol button “back” denotes the intention that drives the
robot to put the object back.

3.1.3. Time Series and Control Mechanism
In the proposed ID-SIR system, the user’s intention is recognized
by a self-adaptive P300-based BMI system that works with the
time series shown in Figure 4. When the button flashes, it changes
into green background and black words.

A session is a user’s off-line training or online testing time
period, i.e., a subject’s time cost in the training/testing experiment.
In the training process, a character training time is a trial; and in
the testing process, a character recognition time is a trial.

In the proposed ID-SIR system, one session includes N trials
and each trail corresponds to the recognition time cost of a symbol
button. Moreover, one trial is divided intoM rounds. The number
of roundsM is a self-adaption value determined by the user’smen-
tal state. The timeperiod of a round spans from the flash of the first
button to the recover of the final button. The corresponding time
is denoted by tround. In general, the more rounds it takes, the more
accurate the recognition will be and the more time the system will
spend.

In order to enhance the efficiency, a small number of rounds
are expected if the accuracy is satisfied to some extent. According
to the actual applications, a trial is set as 10 rounds in the proposed
ID-SIR system. Each of the four buttons flashes only once per
round, and the total time cost of a round is tround = 1.2 s. The stim-
ulus duration is the time cost when one button keeps continuous

FIGURE 4 | Time series chart of one session: M trials per session and
N rounds per trail.

lighting. In this system, the stimulus duration is 100ms.Moreover,
it is not necessary to start one button’s flashing after others finish.
The delay time between one button’s flash and another button’s
staring point is called inter-stimulus interval (ISI). The ISI is
200ms in the ID-SIR system. An epoch is the time period within
which P300 signal is recorded and detected. In other words, the
P300 signal can be found in an epoch if the user pays attention to
the flash button during the corresponding epoch. In the ID-SIR
system, tepoch = 600ms.

3.1.4. Mapping Intentions to Executive Commands
In order to accurately map the intentions to task commands, a
GUI and a decision-making block are necessary. As can be seen
from Figure 3, there are four executive commands totally, i.e.,
“cup1,” “cup2,” “cup3,” and “back.” During the task execution,
the flashing button stimulates the eyes, and the P300 signals are
detected, recognized, and converted to executive commands. The
robot manipulator is driven by the executive commands to deliver
the expected cup to the user’s month.

To do so, a self-adaptive Bayesian linear discriminant analysis
(SA-BLDA) algorithm is exploited. In this self-adaptive algorithm,
the round number M is dynamically and automatically deter-
mined on the basis of the user’s mind state and the quality of the
signals. The presented SA-BLDA algorithm considers both of the
accuracy and the recognition speed.

3.1.4.1. BLDA Algorithm Description
To recognize the acquired P300 signals, a Bayesian linear discrim-
inant analysis (BLDA) is exploited in the proposed ID-SIR system.
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Considering a regularization parameter, the BLDA algorithm can
avoid overfitting problem (Hoffmann et al., 2008).

(a) Assume that a training set (x, t) consists of P sampling points,
denoted by vector x ∈ RP, and x= (x1, · · · , xP)T. Since we
need to estimatewhether it is a P300 signal or not, it is a logical
problem, and thus target value t ∈ {−1, 1}.

For Bayesian regression theory, target values t consists of x
linearly weighted by w with Gaussian noise nnoise as bellow.

t = wTx + nnoise. (1)

The uncertainty over the value of the target variable can be
described by using a Gaussian probability distribution. That is to
say, t has a Gaussian distribution with the mean µ=wTx, and the
variance σ2 =β−1, i.e.,

p(t|x,w, β) = N
(
t|µ, σ2

)
= N

(
t|wTx, β−1

)
, (2)

where parameter β is the reciprocal of the variance, which denotes
the precision of the Gaussian probability distribution.

For the convenience of analysis, we suppose the P300 signals of
all the trials are independently and identically distributed. If the
number of training samples is denoted by Q, for Q independent
experiment samples and P total sampling numbers, inputs X can
be denoted as X = {x1, x2, · · · , xQ} ∈ RP×Q. Considering the
number of functional keys K, number of trails N, and number
of rounds M, the experiment samples Q=N ·M ·K. If CChannels
channels are used, and the sampling number of a section selected
P300 signal is denoted by SSamples, the total sampling number
P=CChannels·SSamples. According to the definition of a joint proba-
bility, the joint probability of independent experiment samples is
determined by the product of the marginal probabilities for each
sample value separately. Therefore, the likelihood function is

p(t|X,w, β) =
Q∏

n=1
N

(
tn|wTxn, β−1

)
,

=
(

β

2π

)Q/2
· exp

(
−β∥XTw − t∥2

2

)
. (3)

(b) For utilizing the Bayesian framework and for the convenience
of analysis, a prior distribution over the polynomial coeffi-
cients w is considered. For simplicity, a zero mean Gaussian
distribution is formulated as

p(w|α) = N
(
w|0, α−1I

)
=

( α

2π

) P+1
2

( ϵ

2π

)
exp

(
−α

2
wTI′(α)w

)
, (4)

where parameter α decides the precision of this Gaussian distri-
bution. For the linear regression with Pth order polynomial, the
total element number of feature vector w is P+ 1. In practical
applications, parameter ε is usually a small value.Matrix I is a unit
matrix, and I′(α) is

I′(α) =


α 0 · · · 0
0 α · · · 0
...

...
. . .

...
0 0 · · · ϵ

.

Based on Bayes theorem (Bishop, 2006), the posterior distribu-
tion for w is

p(w|X, t, α, β) =
p(t|w, β)p(w|α)∫
p(t|w, β)p(w|α)dw

. (5)

For simplify, training set {X, t} can be replaced by D. Equation
(3) is reformulated as

p(D|w, β) =
(

β

2π

)Q/2
· exp

(
−β∥XTw − t∥2

2

)
, (6)

and equation (5) can be rewritten as

p(w|D, α, β) =
p(D|w, β)p(w|α)∫
p(D|w, β)p(w|α)dw

. (7)

From equation (7), we see that the posterior distribution of w
is proportional to the product of the prior distribution and the
likelihood function, i.e.,

p(w|D, α, β) ∝ p(D|w, β)p(w|α), (8)

where w can be determined by finding the most probable value of
w given data set {X, t}. In equation (8), the likelihood p(D|w, β)
and prior p(w|α) are computed by equations (6) and (4), respec-
tively. The posterior distribution of w is Gaussian because both
of the prior and likelihood are Gaussian, and the mean m and
covariance C are

m = β
(
βXXT + I′(α)

)−1
Xt, (9)

C =
(
βXXT + I′(α)

)−1
, (10)

where α and β can be computed by an iterative algorithm
(Mackay, 1992).

(c) When a new input sample x̂ is obtained, the distribution
function of its predictive regression value t̂ is

p(̂t|β, α, x̂,D) =
∫

p(̂t|β, x̂,w)p(w|β, α,D)dw. (11)

The predictive distribution (11) is also a Gaussian distribution,
and the mean and variance are, respectively, as

µ = mTx̂, σ2 = 1/β + x̂TCx̂. (12)

In this ID-SIR system, the decision is made by mean µ.

3.1.4.2. Self-Adaptive Algorithm Design
First, during each stimulus period, epoch data need to be pre-
processed. Specifically, the sampled EEG data (about 150 discrete
points) in 600ms in each channel are filtered by a narrowband
filter with frequency 0.1–20Hz. In order to compress the data,
the narrowband signal data are then sampled again once every
6 points. They are denoted by symbol SSamples (see Figure 5). All
the 30-channel signals (i.e., CChannels = 30) are combined as a new
vector xwithP=CChannels·SSamples dimensions. During online test,

Frontiers in Neurorobotics | www.frontiersin.org September 2017 | Volume 11 | Article 485

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Zhang et al. Deep Learning Based Semi-autonomous Intelligent Robotic System for Drinking

FIGURE 5 | Elements of matrix X. (The individual agrees to publish his photo).

4 functional keys flash per round, and we can get 4-epoch EEG
data. It means 4 feature vectors can be obtained at each round.

Second, in order to recognize the 4 characters (i.e., “cup1,”
“cup2,” “cup3,” and “back”), an SA-BLDA algorithm is exploited,
and the corresponding flowchart is shown in Figure 6. When the
first P300 signal of one trail comes, the round numberM is set to
zero after the system initializes.When a new EEG signal including
4-epoch data of a new round comes, the round number M is set
to beM+ 1. Afterward, all the EEG signal data of 4 epochs at the
Mth round are preprocessed and 4 feature vectors are constituted
(each vector includes 30 channels data). The algebraic mean value
of the previousM rounds feature vectors is computed. In the SA-
BLDA algorithm, 4 characters are used, so 4 averaged eigenvectors
corresponding to the 4 characters are obtained (i.e., each character
corresponding to one x̂ in (12)). From equation (12), 4 regression
scores (i.e., µ in equation (12)) can be obtained. These scores are
then normalized between 0 and 1, and denoted by notation S.
Parameters Mmin and Mmax denote the minimum and maximum
number of repeated rounds, respectively. In the proposed ID-SIR
system, Mmin = 3 and Mmax = 8. Threshold θ0 is set in view of
training results. The specific selection method is described in the
next section.

3.1.4.3. Selection of Threshold Parameter θ0
Selection of threshold parameter θ0 is a balance issue between
classification accuracy and information transfer rate (ITR). A
practical system is expected to have high classification accuracy
and ITR. To achieve this aim, curves of accuracy and ITR with
various θ0 are firstly presented. In the ID-SIR system, since the
ITR drops while θ0 increases, θ0 is set at the point where the curve
of accuracy first reaches its highest value. A concrete application
example is illustrated in Section 4.

3.2. Visual Detection and Localization
In order to realize the automatic task of assistive drinking, it is
essential to recognize and locate the desired object as well as the

FIGURE 6 | Online classification process of the SA-BLDA Algorithm.

user’smouth. As shown inFigure 7, twoKinect sensors are applied
to execute perception tasks. One is placed in front of the user
to detect the position of the user’s mouth, while the other is set
up beside the table to recognize and locate the cup, bottle, and
pop can. The robot manipulator is placed on one side of the table
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FIGURE 7 | An illustration of coordinate transformation.

between Kinect and the user’s chair. In the ID-SIR system, the
desired object (such as a cup, a bottle, and a pop) can be put at
anywhere in the cross field of Kinect’s scanning zone and robot
manipulator’s working region (i.e., the area around the black and
white calibration board in Figure 7).

In the ensuing sections, the coordinate transformations from
camera coordinate system to the world coordinate system and
further to the robot coordinate system are first discussed. The
methods of the mouth and object (cup, bottle, and pop can)
detection and localization are then analyzed in detail.

3.2.1. Coordinate Transformation
In order to control the robot manipulator to grasp and move
an object, the position information of the object in the robot
coordinate system needs to be known.

First, camera calibration and transformation from the camera
coordinate system to the calibration-board coordinate system are
implemented.

The camera coordinate systems of two Kinects (denoted by K1
and K2), calibration-board coordinate systems (denoted by C1
andC2), and robot coordinate system (denoted by R) are shown in
Figure 7. The relationship between the camera coordinate system
and the calibration-board coordinate system is formulated as

XK
YK
ZK
1

 =
[K
CR K

CT
0 1

] 
XC
YC
ZC
1

, (13)

where XK, YK, and ZK represent the three-dimensional position
information in the camera coordinate system of Kinect; XC, YC,
and ZC represent the three-dimensional position information in
the calibration-board coordinate system; K

CR and K
CT stand for

rotation matrix and translation matrix.
In the ID-SIR system, a common camera calibration method

is used to determine intrinsic and extrinsic parameters of Kinect

(Zhang, 2000), with which parameters K
CR and K

CT are obtained.
By using the SDK of Kinect, the three-dimensional position infor-
mation of all the points of the object is obtained. The method of
getting the three-dimensional position information of the object
and mouth in the camera coordinate system will be illustrated in
the following sections.

Second, the three-dimensional position information of the
object andmouth in the camera coordinate system is transformed
into the calibration-board coordinate system as

XC
YC
ZC
1


Obect

=
[K
CR K

CT
0 1

]−1


XK
YK
ZK
1


Object

, (14)

where K
CR and K

CT are obtained during camera calibration of
Kinect.

Third, the three-dimensional position information of the object
and mouth in the calibration-board coordinate system is trans-
formed into the robot coordinate system as

XR
YR
ZR
1


Obect

=
[R
CR R

CT
0 1

]−1


XC
YC
ZC
1


Object

, (15)

where R
CR and R

CT stand for rotationmatrix and translationmatrix.
Fourth, the three-dimensional position information of the

object (cup, bottle, and pop can) and mouth in the robot coor-
dinate system are sent to decision-making layer to implement the
drink delivering task.

3.2.2. Object Detection and Localization
As mentioned above, a Kinect sensor is employed to collect the
three-dimensional point cloud in the camera coordinate sys-
tem. We first implement a plane extraction algorithm for back-
ground detection and elimination. Next, an object segmentation
in the non-background proportion of the point cloud is applied.
According to the collection of potential objects’ three-dimensional
point sets in the camera coordinate system, the corresponding
RGB images of potential objects are isolated and identified with
the recognition algorithm based on the library which includes
images of the target object. After the recognition and coordinate
transformation, the three-dimensional position information of
the selected potential object in the robot coordinate system is
obtained and sent to the decision-making layer to implement
robot manipulator control.

3.2.2.1. Background Extraction
In order to recognize and locate the desired object on the
table rapidly and accurately, plane extraction for background–
foreground separation is essential. In the ID-SIR system, a region
growing (RG) algorithm is exploited to search the horizontal
background plane HPlane.

In the point cloud, we assume that the horizontal plane is a
plane where all the normal vectors of points are nearly perpendic-
ular. According to this assumption, all the neighboring points with
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nearly perpendicular norm vectors are considered as the points
on the same horizontal plane. Based on this hypothesis, the RG
algorithm is developed, and the corresponding flowchart is shown
in Figure 8.

First of all, the normal vectors of each point in the point cloud
are calculated. Without loss of generality, the point P, whose
coordinate information is (xk, yk, zk) in the point-cloud space (or
termed camera coordinate system), maps to the point of which
the pixel coordinate is (ik, jk) in the pixel space (or termed image
coordinate system). As shown in Figure 9, the normal vector v⃗P of

FIGURE 8 | A flowchart describing the procedure of the region growing
algorithm.

FIGURE 9 | An illustration of normal vector v⃗p of point Pk.

point Pk is computed as

v⃗P = v⃗1 × v⃗2, (16)

where v⃗1 = P1 − P3 and v⃗2 = P2 − P4, P1(ik, jk−1), P2(ik+1, jk),
P3(ik, jk+1), and P4(ik−1, jk) are the four surrounding points beside
Pk in the image coordinate system. All the normal vectors of the
points in the point cloud are computed according to equation (16).

Second, search all the normal vectors that are nearly parallel
to the perpendicular direction and add them into a potential
horizontal plane set MPoint. Here, the point Pk can be seen as a
seed (i.e., a starting point) of the region growing, in which the
four surrounding points PS of the seed are checked whether their
normal vectors are perpendicular and the distance DS between PS
and the seed are smaller than a threshold value DThreshold.

The surrounding qualified points are collected into the poten-
tial planar point set MPoint and inserted into a queue. They work
as new seeds of the region growing. The circulation of the region
growing will stop only when the queue is empty. Moreover, if
the number of potential point set nMPoint is larger than a certain
value nC, the potential planar point setMPoint would be added into
the plane set CPlane. Finally, when the scanning of all the normal
vectors v⃗P is completed, the plane set CPlane will be output as the
horizontal plane HPlane.

3.2.2.2. Object Segmentation
In order to segment the expected object from the background,
convex hull searching and two-times region growing (RG) algo-
rithms are exploited. The flowchart of the algorithm is shown in
Figure 10. The schematic diagram of two-times region growing
algorithm is illustrated in Figure 11.

First, according to plane set CPlane, the convex hulls of objects
in the RGB image are computed. A convex hull is the minimum
polygon, which roughly describes the outline of an object.

Second, two-times region growing algorithm is proposed to
obtain a complete object. The first-time region growing is applied
to obtain all the point sets within the convex hulls, and the second-
time region growing algorithm is used to handle the convex hull
boundary so as to obtain a complete object. Specifically, there are
three steps.

• Step 1. Traverse the three-dimensional point cloud. Judge
whether the points in the point cloud are inside the convex hulls
and belong to plane setCPlane. If the points are inside the convex
hulls (i.e., the points inside the green dotted line) but do not
belong to the plane set CPlane, they are considered as interior
points PInterior of the object. These interior points will be put
into the potential object point setMObject, and considered as the
seed of the region growing.

• Step 2. Starting from the seed, if the four points around the seed
are inside the convex hulls, but do not belong to plane setCPlane,
and the distance between two points is less than a threshold,
then these four points are regarded as interior points PInterior
of the object and will be put into the potential object point set
MObject. All the qualified interior points PInterior are collected
and put into a potential object point setMObject. If the number
nMObject of the points in potential object point setMObject is larger
than a certain value n′

C, the set MObject is considered as a real
object point set.
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• Step 3. In order to avoid erroneous judgment of the points near
the convex hull boundary, two-times region growing algorithm
is exploited to obtain the complete object. In Figure 11, the
green dotted line represents the convex hull and the red solid
line represents the object region after two-times region growing
process. If a point belonging to object point set MObject is on
the convex hull boundary (i.e., the yellow points on the green
dotted line), then the point is considered as a seed of two-
times region growing. If any of the four points (i.e., the orange
points) surrounding the seed are outside the convex hull and

FIGURE 10 | A flowchart describing the object segmentation procedure.

the distance between two points is less than a threshold, then
the corresponding points surrounding the seed are considered
as the part of the object and put into potential object point
set MObject. In addition, the points surrounding the seed are
considered as new seeds as the next round judgment until there
are no such points. Finally, all the potential object point sets
MObject are put into the total object set O.

3.2.2.3. Object Recognition
In order to recognize objects effectively, a deep convolutional
neural network (CNN) is designed and applied. Specifically, the
architecture of our CNN is presented in Figure 12.

The network contains eight layers with weights: the first four
are convolutional layers and the remaining are fully connected
layers. Every convolutional layer is followed by a max-pooling
layer with kernels of size 2× 2. The neurons in the fully connected
layers are linked to all neurons in the previous layer. The rectified
linear units (Relu) is applied to every convolutional layer and fully
connected layer as the activation function.

The first convolutional layer filters the 3× 200× 200 input
image with 32 kernels of size 3× 3× 3. The second convolutional
layer takes the max-pooled output of the first convolutional layer
and filters it with 64 kernels of size 32× 3× 3. The third convo-
lutional layer has 128 kernels of size 64× 3× 3 connected to the
max-pooled output of the second convolutional layer. The fourth
convolutional layer has 256 kernels of size 128× 3× 3. After the
convolutional layers, a flatten layer is employed to transformed the
multidimensional feature maps into single dimensional feature
maps, which can be put into the fully connected layers. Four
fully connected layers have 256, 128, 64, and 4 hidden units,
respectively. Between the third and forth fully connected layers,
“dropout” technique is applied to reduce the overfitting problem
by setting the output of each hidden neuron to zero with proba-
bility 0.5. The output of the last fully connected layer is connected
to a 4-way softmax which produces a distribution over the 4 class
labels (i.e., background, cup, bottle, and pop can).

3.2.2.4. Object Location
After the recognition, the position information of the desired
beverage container in the camera coordinate system is calculated

FIGURE 11 | Schematic diagram of two-times region growing algorithm in object segmentation.
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FIGURE 12 | An illustration of the architecture of our CNN.

as the mean value of position information of all the points of
the actual object point set. With the coordinate transformation
from the camera coordinate system to the robot coordinate system
(see Section 3.2), the three-dimensional position information of
the desired beverage container in the robot coordinate system is
obtained and is sent to the decision-making layer.

3.2.2.5. Mouth Detection and Localization
In order to complete the automatical assistive drinking task, the
position information of the user’s mouth is required. As men-
tioned at the beginning of Section 3.2, a Kinect sensor is put in
front of the user and capture the mouth. With the assistance of
the Kinect SDK 2.0, the 3D location of the user’s mouth in the
camera coordinate system is obtained. By using the coordinate
transformationmentioned in Section 3.2.1, the three-dimensional
position information of the user’s mouth in the robot coordinate
system is obtained and is sent to the decision-making layer.

3.3. Robot Manipulator Control
As shown inFigures 7 and 13, KINOVA JACO2 robotmanipulator
is employed in the ID-SIR system. The robot manipulator has
six joints and three fingers. Each finger has a controllable joint
and a passive joint. When the controllable joint is grasping an
object, the passive joint rotates automatically so that it can hold
the object more firmly. Consequently, the robot manipulator has
an adequate ability to grasp an object firmly and deliver it to the
user’s mouth steadily.

By using the official API, the end-effecter of the robot manip-
ulator (i.e., the three fingers) can be controlled to move from
an initial position to an expected position automatically and
smoothly. Therefore, only several separated key points in the
task space are required to obtain the continuous tracking tra-
jectories of joint space. At present, only the positions of the
desired beverage container and the user’s mouth are variable. The
remaining position points in the delivering process are prede-
fined. With the consideration of the manipulator’s stability and
user’s safety during the task execution, joint velocities of the
manipulator are limited at an appropriate speed. Moreover, the
manipular state, including position and direction information, is
captured and transferred to the robot controller in real time so
as to perform accurate control. The manipular state is also sent
back to the decision-making layer to make sure that the task is
finished.

FIGURE 13 | The ID-SIR system assists a user for drinking (the individual
agrees to publish his photo).

4. EXPERIMENTS AND USER STUDY

The study was approved by the Ethics Committee of South China
University of Technology.Written informed consent was obtained
from each subject. In order to verify the effectiveness of the
proposed ID-SIR system, two experiments are designed: one is the
CNN training and the other is whole system evaluation.Moreover,
comparisons among existing BMI-based assistive robotic systems
and our ID-SIR system are also presented. Figure 13 shows a
scenario of a user drinking with the help of the ID-SIR system.

4.1. CNN Training
In order to train our CNN to recognize the desired object, a
specific data set needs to be established.Without loss of generality,
we task three kinds of objects (i.e., a cup, a bottle, and a pop) as
an example. The data set was designed to contain 4 classes, i.e.,
cup, bottle, pop can, and background. Thus, 26,564 images in total,
approximately 6,500 samples for each class, were gathered through
a Kinect applying the region growing algorithm. The data set was
then divided into training set and validation set randomly with a
rate of 7:3.

Before training, data augmentation was implemented as gen-
erating new images with rescaling and horizontal reflections to
reduce the overfitting problem. After 5 epoch of training with
“adam” optimization scheme, our CNN finally achieved 0.9905
accuracy on the validation set.
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4.2. Whole System Evaluation
Eight volunteers were asked to attend the evaluation experiment.
The whole system evaluation process consisted of two parts: off-
line training and online testing. These volunteers were all healthy
subjects (19–21 years old), among which only one subject (i.e.,
subject 8) had experience in using P300-based BMI system before
and the other seven subjects had no experience in BMI system.

4.2.1. Off-Line Training
The EEG signal data were acquired by the following three steps.
First of all, a target symbol was given randomly by the computer
and displayed in the text box above the four buttons. Second, the
subject was asked to pay attention to the given target symbol.
Third, the buttons flashed in a random order. Each subject had to
complete 40 off-line trials (i.e., N= 40) and the chain of potential
signals, including useful EEG P300 signals and noises from 30
channels, were recorded in this training process.

After the data acquisition, the data set was processed by the
method of self-adaptive Bayesian linear discriminant analysis (SA-
BLDA) illustrated in Section 3.1, and the classifier model of the
subject was obtained, which was employed to detect the intention
command in online testing process.

Figure 15 illustrates the relationship among accuracy, ITR
and θ0 in the SA-BLDA algorithm. As analyzed in Section 3.1.3,
parameter θ0 is set at the point where the curve of accuracy first
reaches its highest value. According to this rule, the final selections
of θ0 of all the subjects and the corresponding accuracy and ITR
are listed in Table 1. From the table, we can see that the off-line
training process is fast, and the accuracy is high. Specifically, all
the accuracies are greater than 95%, and all the ITR are less than
20 bits/min.

4.2.2. Online Testing
During the online testing process, each subject was asked to
control the robot manipulator to finish 10 times assistive drinking
tasks. In each task, the subject chose a beverage container through
the P300-based BMI subsystem and controlled the robot to deliver
the beverage container to his mouth, and then sent the “back”
command to drive the robot manipulator to send the drink back
to its original position. Evidently, two commands were required
to complete each task: (i) grasp and deliver the desired beverage
container to the month, (ii) put the beverage container back.
Therefore, during the online testing experiment, each subject was
asked to finish 20 control commands (i.e., trial number N = 20).

TABLE 1 | Selections of θ0 and the corresponding accuracy and ITR of eight sub-
jects during off-line training process.

Subject θ0 Accuracy (%) ITR (bits/min)

S1 0.70 98.57 14.83
S2 0.25 100.00 31.00
S3 0.50 95.71 19.31
S4 0.55 100.00 19.60
S5 0.55 97.14 20.30
S6 0.70 98.57 15.31
S7 0.00 100.00 33.33
S8 0.50 95.71 19.84

The snapshots of a subject experiencing one assistive drinking task
are shown in Figure 14.

The experimental results of eight subjects’ online testing are
shown in Tables 2 and 3. In the second and third columns of
Table 2, the average round number Ma and the corresponding
average time of P300 signal recognition tP300 of each subject are
presented, respectively. The fourth and fifth columns list eight
average time and average accuracy when users completed 10
times drinking tasks. It is worth pointing out that a drinking task
includes delivering process and returning process. In other words,
the time cost of a drinking task includes time periods of P300
signal recognition, object recognition, object localization, and
robot operating. As seen from Table 3 that the mean time of P300
signal recognition is 5.25 s and the average time of completing one
task is 84 s in the online testing. The average accuracy of 10 times
drinking tasks controlling the robot manipulator is 97.50%. The
eight online experiments verify the effectiveness of the proposed
ID-SIR system.

Table 3 shows the evaluation of the eight subjects to the
proposed ID-SIR system after their experiences. The first four
questions are about the functions of the ID-SIR system and the
average scores are 4.25, 4.75, 4.13, and 4.75, respectively. These
four high scores demonstrate well that the ID-SIR system is very
capable and suitable for the assistive drinking tasks. The scores
of Q5 and Q6 (reaching to 3.5 and 4.25, respectively) shows that
subjects did not bear so much burden in the experiment and the
user experience of the ID-SIR system is acceptable. The 4.13 score
of the last question indicates that it is possible for the ID-SIR

FIGURE 14 | Snapshots of a subject completing one delivering task by using
the ID-SIR system (The individual agrees to publish his photo).

TABLE 2 | Results of ten times online assistive drinking testing.

Subjects Ma tP300 (s) tTask (s) Accuracy

S1 7.60 8 86 100%
S2 4.20 4 79 90%
S3 6.10 5 84 100%
S4 6.10 5 87 100%
S5 6.60 5 89 100%
S6 6.95 6 88 100%
S7 4.00 3 82 100%
S8 6.75 6 82 90%
Mean 6.04±1.29 5.25±1.49 84±3 97.50%±4.63
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FIGURE 15 | The relationship among accuracy, ITR and θ0. (A)–(H) Subjects 1–8.

TABLE 3 | Evaluation of eight subjects in experiments.

Questions S1 S2 S3 S4 S5 S6 S7 S8 Mean

(Q1) The ID-SIR system can decode your intention precisely (1=Strongly disagree,
5=Strongly agree)

5 4 4 4 5 4 3 5 4.25±0.71

(Q2) The ID-SIR system can recognize and localize the desired beverage container in real time
(1=Strongly disagree, 5=Strongly agree)

5 5 4 5 5 4 5 5 4.75±0.46

(Q3) The ID-SIR system can deliver the desired beverage container to your mouth
accurately (1=Strongly disagree, 5=Strongly agree)

3 4 4 4 5 5 3 5 4.13±0.83

(Q4) Do you think that the ID-SIR system successfully delivered you the desired beverage
container automatically? (1=Not at all, 5=Very much)

5 5 5 4 5 5 4 5 4.75±0.46

(Q5) During the experience were you fatigued? (1=Very much, 5=Not at all) 4 4 4 4 3 3 3 3 3.50±0.53

(Q6) Do you think that it was a joyful experience? (1=Not at all, 5=Very much) 4 4 5 4 5 4 4 4 4.25±0.46

(Q7) Do you think that the ID-SIR system is able to help people with stroke or
neurodegenerative diseases to have a drink on their own? (1=Not at all, 5=Very much)

4 3 5 3 4 5 5 4 4.13±0.83

system to continue to perform experiments on patientswith stroke
and neurodegenerative diseases.

4.3. Comparisons with the Existing
Systems
In order to highlight the advantages and effectiveness of our
system, comparisons among existing BMI-based assistive robotic
systems and the ID-SIR system are shown in Table 4.

As shown in Table 4, a robotic system in Hochberg et al. (2012)
first applied the invasive MI-based BMI technology with a robot
manipulator to complete foam balls reaching and grasping tasks
and achieved the accuracy as 95.6% (touch) and 62.2% (grasp)
spending about 7 s per task. Later, a female patient with tetraplegia
and anarthria was assisted by the system to drink coffee from a
bottle speeding more than 85 s each time with 67.7% accuracy.
However, this system is inefficient and cause great burden on
users. Users have to concentrate continually to control the robot

manipulator in real time. Besides, sensors need to be implanted in
users’ brains and more than 1month is required for the operation
recovery and training. The robotic assistive systems in Wang
et al. (2015) and (Katyal et al., 2013) employed non-invasive
BMI technology and eye-tracking technology to a control robot
manipulator to grasp or pick objects. Besides, vision algorithms,
such as Euclidean clustering extraction (ECE) algorithmor sample
consensus (SC) algorithm, were also used to locate objects in
RGB-D images. However, they did not consider about detection
or assistive drinking problems. Regarding the assistive drinking
problem, the system in Schröer et al. (2015) incorporated non-
invasive MI-based BMI technology with object localization and
mouth detection to control the robot. However, the system took
almost 2min to complete one task and the color-based classifier
for recognizing a specific colorful plastic cup limited the choices
for users.

In order to overcome the deficits of existing systems
listed in Table 4, our ID-ARR system applies non-invasive
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TABLE 4 | Comparisons among existing BMI-based assistive robotic systems and our ID-SIR system.

System Year BMI Visual system Task Run time Accuracy

Hochberg et al. (2012) 2012 Invasive Experiment judgment Reach and grasp foam ball About 7 s 95.6% (Touch)
MI 62.2% (Grasp)

Grasp, deliver and drink ≥85 s 67.7%
Katyal et al. (2013) 2013 Non-invasive Object localization (ECE, SC) Reach and grasp balls 10.8±0.54 s Unknown
HARMONIE SSVEP Eye tracking (API)
Wang et al. (2015) 2015 Non-invasive Object localization (ECE) Pick and place 97.8 s 100.0% (Task)

MI Eye tracking (HMM) 47.6% (EEG)
Schröer et al. (2015) 2015 Non-invasive Object localization (color) Grasp, deliver and drink 2min 100.0% (Task)

MI Mouth detection (haarcascade)
ID-SIR 2017 Non-invasive Object localization (RG, CNN) Grasp, deliver and drink 84 s 97.50% (Task)

P300 Mouth detection (SDK)

P3000-based BMI technology to complete the assistive drinking
task automatically and reduce great burdens on users. It only
requires users to have short time training at the beginning and
concentrate only two times to give out commands during each
whole drinking process. Besides, two-times region growing algo-
rithm and convoluted neural network are applied to recognize and
locate the object, which are more effective and generalizable in
practical environments.

5. CONCLUSION

In this paper, an intention-driven semi-autonomous intelligent
robotic (ID-SIR) system has been designed. The system is com-
posed of a P300-based brain–computer interface (BMI) subsys-
tem, a robot manipulator and an automatic-visual-inspection
subsystem. It can detect a desired object and deliver it to the
mouth of the user. In order to detect the intention of the user, a
self-adaption Bayesian linear discriminant analysis algorithm has
been exploited and performed to improve training efficiency and
accuracy. Besides, a novel two-times region growing algorithm
has been proposed to obtain the complete object. One of the
important contributions of this paper is that the combination of
BMI and semi-autonomous robot technologies eases the burden
on the brain and satisfy user’s assisted-living requirement. By
using our system, eight subjects successfully complete 10 times
assistive drinking taskswith satisfactory accuracies (≥97.5%). The
experiment results have verified the capability of the proposed
ID-SIR system and the corresponding algorithms. Comparedwith

the existing BMI system, the advantages of the proposed ID-SIR
system are that (1) the object is not predefined and can be put at
anywhere in the cross field of sensor’s scanning zone and robot
manipulator’s region and (2) both the accuracy and efficiency
are considered in the P300-BMI subsystem. Further studies will
be conducted to set up the system on a mobile platform and
investigate the practical performance on patients.
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