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Electromyogram (EMG) contains rich information for motion decoding. As one of its major 
applications, EMG-pattern recognition (PR)-based control of prostheses has been pro-
posed and investigated in the field of rehabilitation robotics for decades. These prostheses 
can offer a higher level of dexterity compared to the commercially available ones. However, 
limited progress has been made toward clinical application of EMG-PR-based prostheses, 
due to their unsatisfactory robustness against various interferences during daily use. These 
interferences may lead to misclassifications of motion intentions, which damage the control 
performance of EMG-PR-based prostheses. A number of studies have applied methods 
that undergo a postprocessing stage to determine the current motion outputs, based on 
previous outputs or other information, which have proved effective in reducing erroneous 
outputs. In this study, we proposed a postprocessing strategy that locks the outputs during 
the constant contraction to block out occasional misclassifications, upon detecting the 
motion onset using a threshold. The strategy was investigated using three different motion 
onset detectors, namely mean absolute value, Teager–Kaiser energy operator, or mechano-
myogram (MMG). Our results indicate that the proposed strategy could suppress erroneous 
outputs, during rest and constant contractions in particular. In addition, with MMG as the 
motion onset detector, the strategy was found to produce the most significant improvement 
in the performance, reducing the total errors up to around 50% (from 22.9 to 11.5%) in 
comparison to the original classification output in the online test, and it is the most robust 
against threshold value changes. We speculate that motion onset detectors that are both 
smooth and responsive would further enhance the efficacy of the proposed postprocessing 
strategy, which would facilitate the clinical application of EMG-PR-based prosthetic control.

Keywords: pattern recognition, electromyogram, myoelectric prosthesis, motion onset detection, postprocessing, 
robustness, amputee, rehabilitation robotics

inTrODUcTiOn

Hands are important parts of the human body, which are used to perform various dexterous daily 
actions in an intuitive manner. Complete or partial loss of upper limb would greatly affect the life 
activities of amputees. In an attempt to rehabilitate upper-limb amputees, many research efforts 
have been made toward the development of efficient upper-limb prosthetic devices worldwide. 
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Electromyogram (EMG) contains rich information which could 
be used to decode the motion intentions. It has been shown 
that even complex movements can be identified from EMG 
using a dynamic recurrent neural network approach (Dipietro 
et al., 2003; Cheron et al., 2007), which manifest the possibility 
of manipulating complex prostheses through the EMG signal. 
On the other hand, the progress of prosthetic control studies 
has been relatively slow. An early proposed prosthetic control 
methodology, based on the threshold detection of surface EMG 
measured from residual arms, has been commercially applied 
for a long time. It determines the motion outputs upon detec-
tion of the activity from the corresponding muscles. However, 
this kind of control method is cumbersome and counterintuitive 
(Kuiken et al., 2009; Li et al., 2010; Scheme and Englehart, 2011); 
in addition, the performance of the conventional EMG control 
method is limited by a number of factors such as surface EMG 
crosstalk and variability in signal amplitude (Farina et al., 2014). 
An alternative and more promising approach is EMG pattern-
recognition (EMG-PR)-based prosthetic control method, which 
could enable amputees to intuitively conduct prosthetic devices 
with multiple DoFs (Oskoei and Hu, 2007). This approach usually 
works by extracting a number of features from the segmented 
EMG signals in real time and then using a trained classifier to 
map the EMG features onto a corresponding target motion class 
that serves as an input to the prosthetic controller. The EMG-PR 
approach has been widely proposed and investigated for decades 
and achieved a decent classification accuracy of over 95% from 
offline analysis (Englehart and Hudgins, 2003; Li et al., 2016a), 
but its clinical applications is still limited. The most critical issue 
might be the unsatisfactory robustness and reliability of EMG-
PR-based movement identifications, which are caused by some 
inevasible interferences in the practical uses such as electrode 
shifts (Hargrove et al., 2008; Young et al., 2011), muscle fatigue 
(Wan et al., 2010), and change in limb positions (Scheme et al., 
2010; Fougner et al., 2011; Geng et al., 2012).

These interferences may lead to misclassifications that 
constantly exist and vary during all muscle contraction phases. 
For example, during a dynamic contraction, a transition is 
made between the rest phase and an active muscle contraction, 
the corresponding EMG portion is thus unstable, which leads 
to a majority of misclassifications in the EMG-PR scheme, as 
reported in a recent study (Lorrain et al., 2011). The same study 
addressed the problem by including the dynamic EMG portion 
into the training set, which proved effective in improving the 
classification accuracy during dynamic contractions. Besides, 
other contraction phases are subject to the interferences as well. 
For instance, during the rest phase when there is no intended 
limb motion, external noise may induce disturbances in the EMG 
signal, which could lead to misclassifications. In addition, during 
a constant contraction, a certain motion class is held constant, 
while muscle fatigue and force variations may destabilize the 
EMG signal, and in turn reduce the classification accuracy. 
To diminish erroneous outputs during all these contraction 
phases, there have been a number of approaches that improve 
the performance of different stages of the myoelectric control 
scheme, namely signal preprocessing or filtering (Zhou et  al., 
2007; Hargrove et al., 2009; Phinyomark et al., 2009; Hofmann 

et al., 2016), data windowing (Smith et al., 2011), feature extrac-
tion (Phinyomark et al., 2009, 2012; Rafiee et al., 2011; Veer and 
Sharma, 2016; Samuel et al., 2017), and classification (Oskoei and 
Hu, 2007; Adewuyi et al., 2016). In addition, a few strategies that 
add a postprocessing stage after the original classification output 
(OCO) have been proposed to suppress misclassifications, which 
are referred to as postprocessing strategies in this study. For 
myoelectric control, the postprocessing strategy is used to deter-
mine whether the current classification output is directly sent to 
the prosthetic controller or otherwise, through a postprocessing 
step before sent to the controller. In this way, the strategy may 
reduce erroneous outputs by blocking the potential misclassifica-
tions. The majority vote is among the earliest of such strategies 
that improve the overall classification accuracy and robustness, 
where the current motion output is determined by the past three 
or more outputs (Englehart and Hudgins, 2003). However, the 
majority vote may not be able to suppress two or more consecu-
tive misclassifications. Recently, another postprocessing strategy 
has been proposed where the current output is determined by the 
maximum likelihood estimation from a classifier and the forearm 
muscle activity (Amsüss et al., 2014). Nevertheless, due to factors 
such as muscle fatigue, the muscle activity and the EMG signals 
may change over time during constant contractions, which may 
affect the probability estimation and lead to unwanted rejection 
or change of motion outputs, thus reducing the efficacy of the 
strategy. Hence the existing methods might still be insufficient, 
particularly for tasks which require continuously correct motion 
outputs over a relatively long contraction period.

This study proposed a postprocessing strategy that stabi-
lizes motion outputs during the constant contraction upon a 
threshold-based motion onset detection process, to improve 
the robustness of myoelectric control especially during the rest 
phase and constant contractions. Three commonly adopted 
motion onset detectors, namely the mean absolute value (MAV) 
(Englehart and Hudgins, 2003), Teager–Kaiser energy operator 
(TKE) (Li et al., 2007), and mechanomyogram (MMG) (Orizio, 
2004), were adopted and examined individually for the proposed 
strategy in order to test and analyze their performance. To evalu-
ate the online performance of the strategy, several metrics such as 
the overall error rates, motion-specific error rates and switching 
rates, were chosen and calculated with the data recorded during 
an online task in a virtual environment. Furthermore, this study 
provided a comparison among different motion onset detectors, 
and proposed the characteristics of motion onset detectors that 
are key to further enhancing the efficacy of the proposed strategy.

MaTerials anD MeThODs

Participants and equipment
A total of 10 subjects including eight able-bodied individuals 
and two male transradial amputees were recruited in this study. 
The able-bodied subjects include six males and two females, 
aged between 20 and 33 years old, and they had certain expe-
rience (ranging from a few months to 2 years) in myoelectric 
control experiments. One amputee was 27 years old with a right 
arm amputation for about 8 years and another aged 32 years old 
with a left arm amputation for about 10 years. In addition, the 
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FigUre 1 | Placement of EMG and force-sensing resistor (FSR) sensors on 
a representative subject. The inset on the lower right corner shows the online 
testing interface, which will be mentioned in the Section “Online Testing 
Protocol.”
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two amputees have been using a body-powered prosthesis for 
>5 years. All the recruited subjects were given written informed 
consent and they provided permission for the publication 
of their photographs and data for scientific and educational 
purposes. The protocol of this study was approved by the ethics 
committee of Institutional Review Board of Shenzhen Institutes 
of Advanced Technology, Chinese Academy of Sciences, China.

In the study, a wireless physiological signal acquisition system 
(Trigno Wireless EMG System, Delsys, Inc., Boston, MA, USA) 
was used to record the surface EMG signals. In addition, a single-
zone force-sensing resistor (FSR) sensor (FSR 402, Interlink 
Electronics, Inc., CA, USA) was connected to the EMG system 
to simultaneously record the MMG signals. As representatively 
shown in Figure 1, each participant was instructed to sit on an 
armless chair in a comfortable manner. The FSR sensor was firstly 
mounted on the skin surface between the palmaris longus and 
flexor carpi ulnaris of her/his dominant forearm, and then fixed 
firmly with an inelastic bandage to avoid any relative displace-
ment between the FSR sensor and the skin as well as the bandage. 
Subsequently, four bipolar surface EMG electrodes were placed 
evenly around the forearm skin right below the bandage, roughly 
covering the extensor digitorum, the flexor digitorum, the extensor 
carpi, and the flexor carpi, respectively. Two other electrodes were 
placed right above the bandage on the extensor and the flexor, 
respectively.

Offline classifier Training and Testing
Seven motion classes, namely hand close (HC), hand open (HO), 
wrist extension (WE), wrist flexion (WF), wrist pronation (WP), 
wrist supination (WS), and no-movement (NM), were included 
in the study because they are commonly performed during daily 
tasks, and represent the degrees of freedom in three dimensions 
(HC/HO, WE/WF, and WP/WS), which have also been used in 
previous studies (Lorrain et al., 2011; Connan et al., 2016; Li et al., 

2016b). Following a video prompt, all the subjects performed one 
after another of the above motion classes in a fixed sequence by 
holding the corresponding muscle contraction for 4 s with a com-
fortable and consistent force level, and resting for 3 s before the 
next contraction. The motion execution sequence was repeated 
four times. The EMG data during each contraction were labeled 
as the corresponding motion class and later used as the training 
set. After 2 min rest, the above procedure was repeated once and 
the EMG data were used as the testing set. During the whole sig-
nal acquisition process, the MMG was simultaneously recorded 
along with the EMG. Both signals were sampled at 1,000 Hz.

The recorded EMG data were segmented using a sliding win-
dow with a length of 150 ms and an increment of 100 ms (50 ms 
overlapping) (Smith et al., 2011), which resulted in 159 windows 
for each motion class in either the training or the testing set. From 
each analysis window, four commonly used time domain features, 
namely MAV, number of zero crossings, waveform length, and 
slope sign changes, were extracted from all six channels of EMG 
data for each motion class in both the training and the testing 
sets (Hudgins et al., 1993; Scheme and Englehart, 2011; Li et al., 
2016b). Each motion class in the training or the testing datasets 
is thus a 159 × 24 matrix. A classifier based on the linear discri-
minant analysis (Englehart and Hudgins, 2003; Adewuyi et al., 
2016) was trained and tested with fivefold cross validation. The 
classification error rate was employed to quantify the offline clas-
sification performance of the trained classifier, which is defined 
as the percentage of the number of misclassifications over the 
number of total classifications in the testing set.

Online Testing
Online Processing Scheme
The schematic diagrams in Figure 2 show the general processing 
schemes corresponding to five different scenarios labeled from 
(A) to (E). Scenarios (A) and (B) are conventional schemes 
which have been adopted by a number of studies before, and are 
described as follows:

 (A) Original classification output: the OCO was obtained 
from the conventional EMG-PR scheme as proposed by 
several previous studies (Hudgins et al., 1993; Englehart and 
Hudgins, 2003; Adewuyi et  al., 2016). In this scheme, the 
OCO is directly sent to the prosthetic controller as shown in 
Figure 2A.

 (B) 3-Point majority vote (3MV): a 3MV step is added to the 
OCO as previously proposed (Englehart and Hudgins, 2003), 
which has been the most commonly adopted postprocessing 
strategy so far.

The three Scenarios (C) to (E) with the proposed postprocess-
ing strategy are shown in Figures 2C–E. Three different motion 
onset detectors namely MAV, TKE, and MMG were implemented 
by Scenarios (C) to (E), respectively. Each of the three scenarios 
added a common thresholding scheme before sending the OCO 
to the prosthetic controller, so as to stabilize the motion outputs. 
However, the derivation and threshold setting for the three 
motion onset detectors were different, which are described, 
respectively, as below.
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FigUre 2 | The online processing schemes for five scenarios. (a) Original classification output (OCO): The conventional electromyogram-pattern recognition 
(EMG-PR) scheme, where the original classification output was directly sent to the prosthetic controller. (B) 3MV: a 3-point majority vote was applied to the original 
classification output before sending it to the prosthetic controller. (c) Mean absolute value (MAV): the proposed postprocessing strategy based on MAV was 
adopted, where the MAV signal was obtained from the feature extraction step in the conventional EMG-PR scheme, and then implemented in the thresholding 
scheme after summing across all EMG channels. (D) Teager–Kaiser energy operator (TKE): the proposed postprocessing strategy based on TKE is adopted, where 
the TKE was computed for each EMG data point, summed across all EMG channels, and then implemented in the thresholding scheme after extracting the 
maximum in each window. (e) Mechanomyogram (MMG): the proposed postprocessing strategy based on MMG is adopted, where the MMG signal was acquired 
from the force-sensing resistor (FSR) sensor, and the maximal value of MMG was extracted in each window and then implemented in the thresholding scheme.
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 (C) Mean absolute value: the MAV feature extracted from 
EMG data points in each window is commonly used as a 
measure to estimate the contraction force for proportional 
control in prostheses (Hudgins et al., 1993) and has also 
been proposed as a motion onset detector to suppress 
actuation of the prosthetic system when below a certain 
threshold (Englehart and Hudgins, 2003). The sum of the 
six MAV values corresponding to the six channels of EMG 
data was computed for each analysis window as shown in 
Eq. 1, and both the onset and the offset thresholds of the 
EMG burst were set as 3 positive standard deviations of the 
baseline based on Eq. 2:

 
ext AV MAVM i

j
i j=

=
∑

1

6

, ,
 

(1)

 onThMAV off ThMAV SD= = +  u n u n( ) ( )3 , (2)

(D) Here MAVi,j stands for the original MAV of the jth elec-
trode channel and extMAVi is the extracted MAV from the 
ith analysis window; onThMAV and offThMAV represent 
the onset and offset thresholds for MAV, respectively, n is 
the number of window and u(n) is the baseline value of 
MAV. TKE: TKE has been adopted to detect limb motion 
onset from EMG signals with high signal to noise ratio 
(Li et  al., 2007; Solnik et  al., 2008). In this study, the 
maximum TKE value was extracted from each analysis 
window after summing across all the EMG channels, and 
the TKE value of every data point except the first and 

last was computed based on the mathematical expression 
shown in Eq. 3:

 TKEi j k x k x k x k, ,( ) ( )= − −( ) +( )2 1 1  (3)
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 onThTKE off ThTKE SD= = +  v k v k( ) ( )3 , (5)

where TKEi,j (k) stands for the original TKE of the jth elec-
trode channel of the kth point in each window, and extTKEi 
is the extracted TKE from the ith analysis window; onThTKE 
and offThTKE represent the onset and offset thresholds for 
TKE, respectively, x(k) is the EMG value of the kth point in 
each window and v(k) is the baseline value of TKE. Further, 
the highest TKE value for all channels in each analysis 
window was extracted based on Eq. 4. Then, the onset and 
offset thresholds of EMG burst for TKE were set in a manner 
similar to that of MAV as shown in Eq. 5.

(E) MMG: MMG, also named as FMG (force-myogram), 
measures muscle vibrations, and can be obtained by piezo-
electric contact sensors, accelerometers, microphones and 
so on (Madeleine et al., 2001; Orizio, 2004; Silva et al., 2005; 
Castellini and Ravindra, 2014; Li et al., 2016c), besides FSR 
as adopted by this study and recent researches (Ravindra 
and Castellini, 2014; Connan et  al., 2016). The amplitude 
of MMG has strong correlation with the muscle contraction 
force applied and even a little change in force strength would 
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FigUre 3 | The thresholding procedure based on (a) mean absolute value (MAV) or Teager–Kaiser energy operator (TKE), where there were five states in a muscle 
contraction labeled as number 1–4 and 6, and (B) mechanomyogram (MMG), where the six states in a contraction are labeled as number 1–6.
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result to a noticeable change in its amplitude; besides, its 
relatively high correlation with the timing of motion onset 
and offset makes it a good candidate for motion onset detec-
tion (Wininger et al., 2008). From the segmented MMG data, 
the maximum value among the data points in each analysis 
window was extracted to represent the MMG value for that 
window by using Eq. 6:

 extMMG max MMGi i k= { }( ) , (6)

 
onThMMG min IPV= { }1

3
( )l m, ,

 
(7)

 
off ThMMG min PAl l m= { }2

3
( ) ,

 
(8)

where MMGi (k) stands for the original MMG of the kth point 
in each window, and extMMGi is the extracted MMG from the 
ith analysis window; onThMMG represents the onset threshold 
for MMG, while offThMMGl is the offset threshold for motion 
class l for MMG. IPV(l, m) and PAl(m) are the initial peaking 
value and plateau amplitude of motion class l in trial m, respec-
tively. To determine the onset MMG threshold value for the 
EMG burst, the contraction in the training set across all motion 
classes that produced the lowest initial peaking amplitude was 
selected and one third of the amplitude was designated as 
the onset threshold as shown in Eq. 7. Also, the offset MMG 
threshold value for the EMG burst was obtained for individual 
motion class, where two thirds of the plateau’s amplitude dur-
ing constant contractions was set as the offset threshold for that 
specific motion class as shown in Eq. 8.

In Scenarios (C) to (E), the OCO is processed by a threshold-
ing scheme once the motion onset detectors and their respective 
threshold values are obtained. The application procedures of the 
thresholding scheme for the proposed strategy involve transi-
tions among multiple states, which are conceptually illustrated in 
Figure 3 and also described as follows:

 (1) State 1 (rest stage): when the amplitude of the motion onset 
detector is below the onset threshold, the output is set to NM.

 (2) State 2 (decision stage): when the motion onset detec-
tor’s amplitude exceeds the onset threshold value, the 
output remains unchanged as the OCO for next six active 
windows (each window has a length of 150  ms with an 
increment of 100  ms as previously stated). If the ampli-
tude of the motion onset detector drops below the onset 
threshold during the six windows, the state shifts to State 
3. Otherwise, the majority motion class in the six active 
(non-NM) outputs is defined as the decision output, and 
State 4 ensues thereafter.

 (3) State 3 (rest stage): when the amplitude of the motion onset 
detector drops below the onset threshold, the output is set to 
NM and it goes back to the case of State 1.

 (4) State 4 (locking stage): the decision output obtained in 
State 3 would be set as the constant output throughout the 
contraction period. The contraction period lasts until the 
amplitude of the motion onset detector drops below the 
offset threshold as set previously. When the offset threshold 
is set higher than the onset threshold, as in the case of MMG 
(Figure 3B), State 5 ensues if the amplitude the motion onset 
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FigUre 4 | The online test interface. The blue line represents the predesigned motion sequence while the red line represents the actual motion output of a subject 
in the mechanomyogram scenario. The asterisk indicates the current window of motion execution.
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detector is still above the onset threshold. Otherwise, the 
direct dropping of the amplitude below the onset threshold 
leads to State 6 (for MAV and TKE in the study, as shown in 
Figure 3A).

 (5) State 5 (unlocking stage): when the motion onset detector’s 
amplitude is between the onset and offset threshold values 
(Figure 3B), the output motion class is reset to NM. If the 
amplitude continues to drop below the onset threshold, it 
leads to State 6. Otherwise, if the amplitude rises above the 
offset threshold again within three windows, the state returns 
to State 4 where the decision output is kept the same as previ-
ously. However, if the unlocking stage lasts longer, it goes 
back to State 2 where the decision output will be determined 
again.

 (6) State 6 (rest stage): when the amplitude of the motion onset 
detector drops below the onset threshold, the output is reset 
to NM and the offset threshold is reset as null, which returns 
to the case of State 1. It should be noted that there is a minimal 
duration of resting phase required for performing a different 
motion class after completion of a previous one.

Online Testing Protocol
The online testing session consisted of a designated sequence 
of limb motions as WP-WE-HO-WS-HC-WF, and each motion 
lasted for around 2 s, followed by a rest also around 2 s, as shown 
in Figure 4. The blue line shows the designated start and end 
points of each motion, while the red line shows the real-time 
motion execution by the subject with the MMG-based strategy, 
and the asterisk shows the current window. Subjects might start 
a muscle contraction earlier or later than the designated time, 
depending on their response duration. A trial is successfully 
completed when the subject performs the required motions as 
closely to the predesigned sequence as possible. Four consecutive 

trials were performed by each subject, and the outputs from 
all the five different scenarios (A–E in the Section “Online 
Processing Scheme”) were obtained simultaneously. The values 
of MAV, TKE, and MMG in each window were recorded for 
later use.

Online Performance Analysis
The online performance of all the motion outputs was evaluated 
using six metrics, including total error rate (TER), motion error 
rate (MER), rest error rate (RER), motion-specific total error 
rate (MSTER), motion-specific active error rate (MSAER), and 
motion-specific switching rate (MSSR), as defined in Eqs 9–14.

 
TER Number of errors during the whole online task

Length of
=

  the designated sequence
,
�  

(9)

 
MER Number of errors during contractions

Length of the desi
=

ggnated motion sequence
,
 

(10)

 
RER Number of errors during rest

Length of the designated r
=

eest sequence
,

 
(11)

 
MSTER Number of errors during a specific motion

Length of a
=

  specific motion in the designated sequence
,
 
(12)

 
MSAER

Number of non NM errors during a specific motion
Leng

=
-

tth of a specific motion in the designated sequence
,
 (13)

 
MSSR

Number of output changes to a wrong
non-NM motion clas

=
sses during a specific motion

Length of a specific motion inn the designated sequence
,

 
(14)

Total error rate, MER, and RER are overall metrics which 
represent the error rate for different periods in a complete 
online task. TER can be derived from MER and RER given the 
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TaBle 1 | Averaged offline classification accuracy (%) of each motion class 
shown in a confusion matrix.

Total classification accuracy: 96.3 ± 2.3

Predicted

actual

hc hO We WF WP Ws nM

HC 94.7 1.1 0.1 1.1 0.9 2.2

HO 0.1 97.6 0.2 1.0 1.1

WE 98.1 0.2 1.1 0.6

WF 0.2 97.5 1.6 0.7

WP 0.1 0.2 95.4 0.9 3.4

WS 0.7 0.4 0.1 0.5 2.3 92.3 3.8

NM 0.2 1.0 0.1 98.7

The numbers in each column are the percentage of the actual motion class 
(corresponding to the leftmost column) classified into the predicted motion class 
(corresponding to the uppermost column). The results along the main diagonal show 
the percentage of correct classifications or accuracy, and their mean is the total 
classification accuracy of the classifier as shown on the top of the table. The other 
elements show the percentage of incorrect classifications or error rate. Empty cells 
correspond to an error rate less than 0.05%.
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respective lengths of contraction and rest periods. While the 
motion errors constitute a major part of the total errors, the rest 
errors, which would lead to unwanted activation of prostheses, 
also affect the robustness of prosthetic control. In addition, 
MSTER, MSAER, and MSSR can reflect the online performance 
for each specific motion class. The active error (represented by 
MSAER), as similarly proposed in a previous study (Amsüss 
et al., 2014), is usually considered as a major factor that would 
limit the myoelectric control performance, because misclas-
sifications into any other active motion classes would affect the 
user experience to a greater extent than those into NM (which 
are later written as non-active errors). Moreover, the switching 
rate (represented by MSSR) is proposed to indicate how many 
times the output changes to a wrong active (non-NM) motion 
class from the rest or the correct motion class during a constant 
contraction.

sensitivity analysis of Motion Onset 
Detectors
The sensitivity of the motion onset detectors (MAV, TKE, and 
MMG) was analyzed and compared based on their perfor-
mances over a certain range of onset threshold values, which 
were represented by the motion error and the rest error as 
defined before. For MAV and TKE, the threshold ranges were 
set between 0.1 and 10 times of their respective initial values, 
whereas for MMG, the onset threshold value range was set 
from half to twice of its initial value, and the offset threshold 
value was set as previously described and kept unchanged. 
The online test results corresponding to each threshold value 
were reconstructed by imposing the new threshold value on 
the recorded MAV, TKE, and MMG in each window during 
the whole online task. The motion errors and the rest errors 
were obtained, respectively, from the reconstructed results for 
each threshold value. In this way, different motion onset detec-
tors were compared in terms of their respective sensitivity to 
threshold value changes.

resUlTs

Offline classification Performance
The offline classification accuracy of each motion class is shown 
in the confusion matrix in Table 1. A total classification accuracy 
of 96.3 ± 2.3% was obtained across all the 10 subjects through 
fivefold cross-validation. It could be observed from the confusion 
matrix that the classification performance of each motion class 
was relatively satisfactory, although WS had the lowest classifica-
tion accuracy at 92.3%.

evaluation of Online Test Performance
A typical result for a trial of the online test is shown in Figure 5, 
where those outputs that were different from the designated 
motion sequence are labeled by color asterisks. The red asterisks 
indicate the active errors (misclassifications into an erroneous 
active motion class), and the green asterisks indicate the non-
active errors (misclassifications into NM), which have been 
defined above in Online performance analysis section. As shown 

in Figure 5, 32 active errors occurred in the OCO sequence, and 
even in the 3MV scenario where a 3MV is additionally applied 
to OCO, the number of active errors was still as high as 25. It 
could be also observed that most of the active errors occurred 
at the later period of muscle contractions, especially for HO 
and WS, which were likely induced by muscle fatigue; while the 
non-active errors usually appear around the motion onsets and 
offsets, which are believed to be induced by the response delay 
of the subjects. Upon applying the proposed strategy based on 
the three motion onset detectors, the number non-active errors 
remained roughly unchanged; however, the active errors were 
greatly reduced to as low as 7, 6, and 4, respectively. This implies 
that the proposed strategy could help stabilize motion outputs 
during active muscle contractions.

Note that we observed that either MAV or TKE was inap-
plicable to the thresholding scheme for two able-bodied subjects 
during the execution of certain motion classes, which will be 
mentioned in the Discussion part. The problem did not exist 
in the case of MMG, though. Therefore, the results of the two 
subjects were excluded in the following analyses.

Overall Metrics
A comparison among all the five scenarios based on TER, MER, 
and RER was performed. The averaged results for the three 
overall metrics are presented in Figure 6. By dividing TER into 
MER and RER, the classification error rates during the muscle 
contractions and the rest phases could be analyzed individually. 
As Figure 6 shows, both MER and RER follow basically the same 
trend as TER: OCO had the highest of all the three error rates 
among all the five scenarios, followed by the 3MV; in contrast, 
these error rates in the case of MAV, TKE, and MMG were much 
lower. Specifically, with respect to MER, both OCO and 3MV 
were around 20% (22.9 and 21.0%, respectively), while the aver-
age MER values for MAV, TKE, and MMG were all below 16%, 
and MMG reached the lowest value at only 11.5%. Then for RER, 
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FigUre 6 | The overall metrics of total error rate (TER, in blue), motion error 
rate (MER, in orange), and rest error rate (RER, in green). Error bars stand for 
standard deviations.

FigUre 5 | A sample result of the online test for five different schemes. In each plot, the horizontal axis represents the number of window while the vertical axis shows 
the actual motion class performed by the subject, in the same way as shown in Figure 4. The arrow on the top with bars of different colors shows the designated motion 
classes. The red and green asterisks represent the active and the non-active errors, respectively, with corresponding error numbers in the whole output sequences.
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the proposed strategy reduced its average values from 7.2% in 
OCO to below 3.2%, and the lowest RER value was achieved by 
MMG again at merely 1.4 ± 1.0%. These results suggest that the 

overall error indices were suppressed by the proposed strategy, 
during both muscle contractions and rest.

To investigate deeper into how the improvement with the 
proposed strategy was achieved on each subject, we specifically 
plotted the TER of OCO and MMG for each subject in Figure 7 
as a representative comparison. From Figure 7, it can be observed 
that there is no much difference between the performance of the 
healthy subjects and the amputees. However, each subject showed 
a lower TER of MMG compared with OCO. In total, there is a 
significant difference (based on paired t-test) between the TER 
of OCO and MMG (p < 0.01), which shows that the proposed 
strategy significantly reduced the motion output errors, and thus 
improved the online test performance of each subject.

Motion-Specific Metrics
A next comparison of the online task performance among the 
five scenarios was based on the three motion-specific metrics 
namely MSTER, MSAER, and MSSR. The averaged results across 
all the subjects, as well as their standard deviations, are shown 
in Figure 8. It can be seen in Figures 8A,B that the results of 
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FigUre 7 | Comparison of total error rate (TER) for each individual subject 
between original classification output (OCO, in gray) and the motion output 
with mechanomyogram (MMG) thresholding (in blue). AB stands for the 
able-bodied subjects, and TR represents the transradial amputees. Error bars 
stand for standard deviations. (**In average, the TER of MMG is significantly 
lower than that of OCO, p < 0.01.)
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MSTER for all the scenarios follow a similar trend to that of 
MSAER, despite that the MSTER values were generally higher. As 
earlier explained for the example result, active errors (MSAER) 
are more useful for analysis of the online performance than 
non-active errors, whereas MSTER counts both. With respect 
to MSAER, OCO had values between 7.7 and 22.6% for five of 
the six active motion classes, and for WS was as high as 33.4%; 
in addition, as shown by the error bars the standard deviation 
of OCO was above 6.9% for each motion class, and reached as 
high as 21.4% for WS, indicating that the online performance of 
the control scheme was highly unstable. After postprocessed by 
a 3MV as in the 3MV scenario, the averaged MSAER value and 
the standard deviation for each motion class were reduced by 
no more than 5.3% (WP) and 3.9% (WS) compared with OCO, 
which implies that the use of a 3MV strategy led to only a slight 
improvement. In contrast, the proposed strategy in all the three 
scenarios reduced the MSAER to below 6.7% with the standard 
deviation no more than 7.2% for five of the six motion classes 
except for WS, which was also reduced to no more than 15.1% 
with a standard deviation of 12.2%. In particular, MMG reached 
the lowest MSAER values for all the motion classes among the 
other motion onset detectors, which were at most 2.5% (WS), 
with a standard deviation of 4.9%. These results indicate that the 
erroneous motion outputs were largely and consistently reduced 
for each motion class.

Furthermore, as shown in Figure  8C, the MSSR values of 
OCO were between 4.9 and 13.7%, and 3MV had MSSR values 
between 1.2 and 6.0% for all the motion classes; while MAV, TKE, 
and MMG all achieved average MSSR values lower than 1.4% for 
each motion class. Especially for HO, the MSSR was 13.7% for 
OCO and 5.8% for 3MV, whereas the proposed strategy nearly 
eliminated the MSSR (all below 0.3%) with all the three motion 
onset detectors. Besides, the standard deviation of MSSR for 
OCO across each motion class was between 4.1 and 9.1%, which 
was reduced to between 1.3 and 5.3%, but was further reduced 
to no more than 3.0% for all motion classes after applying the 

proposed method. It shows that the unwanted motion output 
changes during each motion class were suppressed by the pro-
posed strategy.

comparison among the Motion Onset 
Detectors
The waveforms of the original EMG and the three corresponding 
motion onset detectors obtained from a typical muscle contrac-
tion are shown in Figure 9. Larger fluctuations were observed in 
TKE than MAV during the constant contraction, but TKE had 
much smaller perturbations during the rest period, implying its 
better ability to resist noise. In comparison, MMG produced the 
smoothest waveform among other motion onset detectors, but 
it also showed a larger delay both at the onset and offset of the 
contraction.

Figure 10 shows the performance of MAV, TKE, and MMG-
based thresholding schemes over a range of onset threshold 
values. Both MAV (Figure 10A) and TKE (Figure 10B) showed 
an increase of motion errors and a decrease of rest errors, as their 
respective onset threshold values increased from 0.1 to 10.0 times 
of the initial values, as calculated in Section Sensitivity Analysis 
of Motion Onset Detectors. This indicates that a tradeoff exists 
between the motion error and the rest error, while the initial 
value lies within the optimal range where both error types could 
be minimized. In addition, the slopes of both error types were 
smoother for TKE than those for MAV, which implies that TKE 
is less sensitive to the threshold value change than MAV. In 
addition, MMG (Figure 10C) did not show an obvious change 
in performance when the onset threshold value varied from half 
to twice of the initial value, indicating that MMG has the least 
sensitivity to the threshold value change among all the tested 
motion onset detectors.

DiscUssiOn

interpretation of the Online Task results
The results of this study have shown that the proposed post-
processing strategy could help stabilize EMG classification 
outputs and potentially improve the robustness of myoelectri-
cally controlled prostheses. The performance of the strategy 
using each of the three different motion onset detectors namely 
MAV, TKE, and MMG, was evaluated, respectively. In the 
online testing session, as reflected by a number of metrics, 
the proposed strategy consistently suppressed the erroneous 
motion outputs in all the subjects especially during the rest 
and constant contraction phases, in comparison with either the 
original EMG classification outputs (OCO) or using a 3MV 
strategy. The results thus indicate that the proposed strategy 
could effectively improve the robustness of EMG-PR-based 
prosthetic control.

In this study, the offline classification error rate was relatively 
low across all subjects, averaged at no more than 7.8% for every 
motion class. However, nearly all the error metrics for evaluation 
of the online performance of OCO had much higher values than 
7.8% (except for RER). As previous studies have demonstrated 
as well, the offline performance of myoelectric control does not 
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FigUre 8 | The online performance by motion-specific metrics: (a) motion-specific total error rate (MSTER), (B) motion-specific active error rate (MSAER), and  
(c) motion-specific switching rate (MSSR). Each point on the chart represents the average value across all subjects, and the single-sided error bar shows the 
standard deviation.
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directly reflect the online performance (Ortiz-Catalan et  al., 
2015). And in the online task adopted by this study, we suspect 
that the discrepancy stems from several factors as follows. On 
the one hand, any deviation from the designated sequence would 
be counted as an error by the proposed metrics. Thus, the errors 
also include those induced by the response delay of the subjects, 
apart from the classification errors of the EMG-PR scheme. 
On the other hand, the misclassifications that occur during the 
motion onsets and offsets as well as the resting phase between 
two consecutive motions, may be omitted in the offline test. This 
usually happens when the subject starts a contraction before the 

prompt appears and holds through the recording period, while 
no signal is acquired during the resting phase. Furthermore, 
the multiple types of erroneous outputs can influence the real-
time task completion process to different degrees; for example, 
active errors are more detrimental than non-active errors, as 
previously mentioned. As a result, a single metric may not be 
sufficient to quantify the online performance of myoelectric 
control. Therefore, three overall metrics (TER, MER, and RER) 
plus another three motion-specific metrics (MSTER, MSAER, 
and MSSR) were adopted in this study for online performance 
evaluation.
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FigUre 9 | Waveforms of the original EMG signal and the three 
corresponding motion onset detectors obtained from a typical muscle 
contraction. The vertical axis of each plot shows the amplitude range of the 
signal.
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It should be noted that the values of the overall metrics (TER, 
MER, and RER), which corresponds to the error rates during 
different muscle contraction periods, are higher than the offline 
classification error rates for the OCO. Due to the response delays 
of both the subjects and the control scheme, the timing differ-
ences between the predesigned sequence and the actual motion 
sequence performed by the subject in real-time are hardly 
evitable, which are also counted as errors even if they are not 
misclassifications. Therefore, the overall metrics assess not only 
the classification accuracy of the EMG-PR scheme, but reflect 
the actual performance of the online task by the subject with the 
control system as a whole. The results have shown that, the pro-
posed postprocessing strategy could reduce both rest and motion 
errors by approximately 60–80 and 30–50%, respectively, and 
their standard deviations were largely reduced as well, compared 
with both the OCO and the 3MV (Figure 6) scenarios. Hence 
the unwanted motion outputs during both rest and contraction 
phases could be effectively and consistently suppressed by the 
strategy.

In addition, the motion specific metrics were used to assess the 
control performance from three aspects: total error rate (MSTER), 
active error rate (MSAER), and switching rate (MSSR). Both the 
MSTER and the MSAER, as well as their standard deviations 
across subjects, were significantly reduced with the proposed 

strategy (Figures 8A,B), indicating its ability to suppress errone-
ous outputs during constant contractions. Moreover, the strategy 
nearly eliminated the unwanted motion output changes during 
constant contractions, as reflected by the MSSR in Figure  8C. 
Thus, the proposed postprocessing strategy proved its efficacy and 
consistency in stabilizing the motion outputs, which would lead 
to a higher robustness and thus an improved online performance 
of prosthetic control.

analysis of the Postprocessing strategy
The proposed strategy works by using a threshold to detect the 
motion onset and then locking the EMG classification outputs 
until the arrival of the motion offset. The current commercial 
prostheses that adopt either an on/off approach or a finite-
state-machine approach are also activated by a threshold; 
however, using the same threshold to map muscle activities 
to motion classes severely limits the number of DoFs these 
prostheses are able to control (Farina et al., 2014). In contrast, 
the thresholding scheme in the proposed strategy serves as 
a postprocessing step that is added to the EMG-PR-based 
prosthetic control system, thus retaining its intuitiveness and 
the number of DoFs. We observed that a major contribution 
to the improvement of the overall performance was from the 
constant outputs during the Locking stage. These outputs were 
determined as the decision output by the Decision stage, where 
a multipoint majority vote is applied to the EMG classification 
outputs in the first several windows after the motion onset. The 
strategy assumes that the decision output is the motion class 
that the subject intends to perform throughout the contraction 
period. In this way, almost any interference such as muscle 
fatigue during the contraction that may cause misclassifica-
tions, could be blocked out.

However, this study only tested muscle contractions around 
2  s, thus it remains to be seen if the strategy could retain its 
efficacy under even longer contractions, but presumably so long 
as the signal is above the offset of the selected motion onset 
detector, the motion output would be stable. In addition, if a 
motion class has a relatively low accuracy from offline clas-
sification, the decision output is likely to be incorrect after the 
majority vote (Englehart and Hudgins, 2003). Therefore, the 
performance of the proposed strategy depends on the original 
EMG classification accuracy, and the efficacy of the strategy 
is based on the precondition that the offline classification 
accuracy of any motion class is at least acceptable. Also, the 
proposed strategy’s performance would be affected by electrode 
shift in practical use of myoelectric control systems. Previously 
proposed methods that addressed this issue may be incorpo-
rated into the scheme of the strategy to maintain its efficacy 
under these interferences (Young et al., 2011). Like other post-
processing methods, one limitation of the proposed strategy is 
the delay produced at contraction onsets and offsets. The length 
of delay depends on the motion onset detector implemented in 
the thresholding scheme, which will be discussed in the next 
section. In addition, the number of windows used to determine 
the decision output through a multipoint majority vote was 
arbitrarily set as six in this study, whereas an optimal value has 
yet to be determined. Moreover, the current strategy scheme 
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FigUre 10 | Performance based on motion and rest errors for the motion 
onset detectors over a range of threshold values. For (a) mean absolute value 
(MAV) and (B) Teager–Kaiser energy operator (TKE), the threshold values were 
adjusted from 0.1 to 10 times of their initial threshold values, respectively, as 
shown on the center of the horizontal axis. For (c) MMG, the threshold values 
were adjusted between 0.5 and 2 times of the initial threshold value.
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does not support simultaneous control where multiple motion 
classes are performed simultaneously or even with time-varying 
combinations. Recent studies have demonstrated the possibility 
of decoding complex motions or free-arm movements from 
EMG such as drawing figures, through a dynamic recurrent 
neural network approach (Dipietro et al., 2003; Cheron et al., 
2007). In particular, similar to motion onset detection in this 
study, EMG burst detection has been used to predict leg move-
ments from shoulder activity and was achieved by a dynamic 
recurrent neural network in a later study (Cheron et al., 2007), 
which could even generalize and predict movements beyond 
the training set. However, these methods are based on analyz-
ing the whole EMG segments during muscle contractions, 
which might be difficult to directly implement in prosthetic 
applications where real-time motion identification is required. 
Nonetheless, they offer a further exploitation of the EMG signal 
and could pave the way for the development of more intelligent 
prosthetic systems. The proposed strategy in its current form 
may not be directly applicable in those control schemes. One 
possible solution to this limitation is using probability-based 
and history-dependent algorithms to adaptively adjust the 
threshold values, and modifying the thresholding scheme to 
allow multiple DoFs of motion outputs at the same time, which 
remains to be explored in the future.

comparison among Motion Onset 
Detectors
The effectiveness of the proposed strategy also relies on the 
performance of the motion onset detector, especially the stabil-
ity (or smoothness) and the responsiveness (or correlation with 
the timing of motion onset and offset), which are the metrics 
used in previous studies (Wininger et al., 2008; Connan et al., 
2016). In this study, although all the three adopted motion onset 
detectors (MAV, TKE, and MMG) achieved similar improve-
ments in the online performance, the derivatives of EMG (MAV 
and TKE) failed to work for two subjects. We did not observe 
distinct waveforms during certain motion classes performed 
by these two subjects, and thus the threshold values could not 
be determined, which was possibly caused by the presence of 
noise in the EMG signal. In contrast, the MMG-based scheme 
effectively worked across all the subjects involved in this study, 
indicating that MMG may remain applicable even when the 
motion EMG signals are weak. Besides, Figure 9 indicates that 
the MMG signal has a much higher smoothness than both MAV 
and TKE, which has been corroborated by a recent study as 
well (Connan et al., 2016). For further comparison, we assessed 
the stability of MAV, TKE, and MMG by reconstructing their 
respective performance over a range of threshold values. As 
shown in Figure 10, when the threshold value varied, MMG 
showed merely slight perturbation in performance as reflected 
by the motion and rest errors; however, the other two motion 
onset detectors were highly subject to changes in the threshold 
value, especially MAV. Therefore, MMG is the most stable one 
among all the three motion onset detectors in terms of sensitiv-
ity to threshold value changes, and when EMG electrodes are 
the only available sensors, TKE would be more appropriate 
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than MAV as a motion onset detector if stability is of high 
priority.

On the other hand, MMG is not as responsive as the deriva-
tives of EMG, namely MAV and TKE, for motion onset detec-
tion. In fact, compared with MAV and TKE, MMG resulted 
in a relatively larger delay at both the beginning and the end 
of a contraction, thus the offset threshold value was set much 
higher than the onset threshold for MMG. As a result, active 
contractions often have to start from rest or nearly rest, which 
impedes rapid switches between consecutive active contrac-
tions. Besides, we found that the sensitivity of MMG in motion 
onset detection is related to the subcutaneous fat interfering 
between skin and muscle. For people with dense subcutaneous 
fat, the shape change of the muscle may be dampened, which 
might reduce the sensitivity of MMG and thus motion onset 
detection. For slim people whose arm muscles are small, the 
MMG sensor (FSR) is more likely to shift on the skin surface, 
which might render the MMG signal unstable and impede 
motion onset detection. One potential solution to this issue is 
to use other types of MMG sensors which are more sensitive, 
such as microphones (Orizio, 2004), or to combine different 
MMG sensors to increase the sensitivity. Another limitation 
of MMG is its potential influence on the EMG due to a rigid 
mechanical discontinuity on the muscle surface introduced 
by the MMG sensors (Orizio, 2004). Although this effect was 
quite slight according to the classification results of this study, 
the MMG sensors might shift over time, leading to a lower 
reliability of the proposed strategy. In contrast, MAV and TKE 
as derivatives of EMG, requires no additional sensor apart 
from the EMG electrodes. Besides, MAV and TKE can drop 
quickly to the baseline during the motion offset, enabling a 
much faster transition between two consecutive contractions 
than MMG.

In general, for the currently proposed strategy scheme, TKE 
would be the most applicable among the three motion onset 
detectors, considering the improvement in performance and 
the robustness, as well as the need for other sensor types. On 
the other hand, the MMG-based scheme has produced the most 
significant improvement in the control performance, and it is 
the most robust against threshold value changes in this study. In 
addition, MMG is expected to be more insensitive to the long-
term change in muscle contractions as a result of muscle fatigue 
(Wan et al., 2010). Therefore, MMG is still a promising motion 
onset detector and its use in myoelectric control would benefit 
the chronic robustness of limb prostheses. We speculate that a 
combination of MMG and derivatives of EMG could utilize the 
advantages of both types of motion onset detectors. Moreover, a 
recently proposed EMG amplitude estimator based on Bayesian 
filtering (Hofmann et al., 2016) has proved smoother and more 
responsive to sudden changes in the EMG signal than MAV. 
Further exploration of such alternative motion onset detectors 
would add to the improvement of the proposed postprocessing 
strategy in myoelectric control.

Outlook
We have observed obvious improvements in the online robustness 
of EMG-PR-based control through the proposed postprocessing 

strategy. It was worthy of note that the online task was based on 
a virtual environment rather than a real prosthesis. It needs to 
further investigate whether the proposed strategy would work 
equally well on amputees when they are wearing actual prostheses. 
In practical use, additional noise or interference is inevitable, which 
would affect the reliability of motion onset detection. Furthermore, 
amputees generally have lower motion classification accuracy 
than able-bodied people. In particular, the electrode configura-
tion (on the forearm) in this study was intended to simulate the 
use of the prosthetic device by transradial amputees, whereas for 
transhumeral amputees, the electrodes are usually placed on their 
shoulders, and EMG classification for multiple motion classes can 
be even more difficult. These factors might influence the accuracy 
of the decision output. In this study, we have made a preliminary 
investigation into the efficacy of the proposed strategy on two 
transradial amputees using the same online testing scheme, and 
the improvements in their performance were comparable to those 
in the able-bodied subjects. Nevertheless, an additional study on 
the effectiveness of the strategy involving more amputees wearing 
real prostheses will be carried out in the future.
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