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Inspired by infant development theories, a robotic developmental model combined with

game elements is proposed in this paper. This model does not require the definition of

specific developmental goals for the robot, but the developmental goals are implied in the

goals of a series of game tasks. The games are characterized into a sequence of game

modes based on the complexity of the game tasks from simple to complex, and the

task complexity is determined by the applications of developmental constraints. Given

a current mode, the robot switches to play in a more complicated game mode when it

cannot find any new salient stimuli in the current mode. By doing so, the robot gradually

achieves it developmental goals by playing different modes of games. In the experiment,

the game was instantiated into a mobile robot with the playing task of picking up toys,

and the game is designed with a simple game mode and a complex game mode. A

developmental algorithm, “Lift-Constraint, Act and Saturate,” is employed to drive the

mobile robot move from the simple mode to the complex one. The experimental results

show that the mobile manipulator is able to successfully learn the mobile grasping ability

after playing simple and complex games, which is promising in developing robotic abilities

to solve complex tasks using games.

Keywords: developmental robotics, mobile manipulator, robotic hand-eye coordination, neural network control,

sensory-motor coordination

1. INTRODUCTION

Intelligent robots have been widely applied to support or even replace the work of humans in many
social activities, such as assembly lines, family services, and social entertainment. These robots
are made intelligent by many methods proposed in the literature, with the most common ones
being mathematical modeling and dynamics models, such as Yan et al. (2013), Galbraith et al.
(2015) and Grinke et al. (2015). These methods utilize predefined cognitive architectures in the
intelligent systems, which cannot be used for significant changes during the interaction within the
environment. If the intelligent system is applied in a new environment, the intelligent systems must
be reconstructed. Also the complexity of the model increases exponentially as the complexity of the
task increases. In addition, it is still very challenging in the field of robotics to allow the robot to
learn complex skills and incorporate a variety of skills in an intelligent system.

Asada et al. (2001), Lungarella et al. (2003), and Weng (2004) attempt to let the robot learn
intricate skills using the so-called developmental robotics approaches. These approaches enable
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robots to gradually develop multiple basic skills and thus learn
to handle complex tasks (Berthouze and Lungarella, 2004; Jiang
et al., 2014). In other words, the learning target of a complex
set of skills are divided into the learning of a number of stage
targets (Wang et al., 2013; Zhu et al., 2015), and the robot
achieves the ultimate learning goal by completing a series of
sub learning goals. This method reduces the difficulty for the
robot to learn new skills (Shaw et al., 2014), and gives the robot
the ability to accumulate learning, where the basic skills learned
during the development process are reserved so as to arrive at
the final skill (Lee et al., 2013). When a robot uses the method
of developmental robotics to learn new skills, the target in every
developmental phase must be clearly defined (Stoytchev, 2009).
However, this is practically very challenge for those phases with a
large number of complex tasks, thereby limiting the applicability
of developmental robotics.

It has been observed by infant development researchers that
infants and young children, when developing skills, do not need
to define specific developmental goals (Adolph and Joh, 2007),
and mergence is the primary form for infants to acquire skills
(Morse and Cangelosi, 2017). In particular, a play phenomenon
often accompanies the process of an infant skill development
(Cangelosi et al., 2015), which has led to one infant development
theory that infants develop relevant skills during play. The play
of the early infant is driven primarily by intrinsic motivation
(Oudeyer et al., 2007; Baldassarre and Mirolli, 2013; Caligiore
et al., 2015), and an infant’s development goal is implied in the
game that the infant plays. This theory has not been applied
and verified in developmental robotics. Therefore, a robotic
developmental model that combines the infant developmental
theory and developmental robotics is proposed herein. In this
model, the learning skills of a robot are artificially viewed as game
playing by an infant, and the developmental target is implied
in the game goals. Then, a method of developmental robotics is
ustilised by themodel to accomplish the robot’s skill development
and learning. The proposed system not only reduces the difficulty
of robot learning and allows accumulate learning, but also
mitigates the limitation of applicability as discussed above by
clearly defining goals in the developmental method.

In contrast to other developmental learning methods (Yang
and Asada, 1996; Berthouze and Lungarella, 2004), the proposed
approach embeds the role of play in early infant development into
the developmental learning approach. Through two gamemodes,
our robot developed mobile reaching and grasping abilities with
no external reward existing in the two game modes. The robot
merely uses its learning status to switch from one gamemode into
next one. Such approach also adopts the intrinsic motivation-
driven learning method. Therefore, the main contribution of this
work is a combined developmental algorithm that allows robot
to acquire new abilities by applying the infant developmental
theory, in which skills are developed through playing. With the
inclusion of game elements, the robot can acquire developed
mobile reaching and grasping skills with emergence.

The remainder of this paper is organized as follows: section 2
introduces the background knowledge of developmental robotics
and the “Lift-Constraint, Act and Saturate” developmental
algorithm. Section 3 outlines our model and designs the

developmental strategy of robots. Section 4 describes the
experimentation and analyzes the results. Section 5 concludes the
paper and points out possible future work.

2. DEVELOPMENTAL ROBOTICS

As a research method with an interdisciplinary background
of developmental psychology, neuroscience, computer science,
etc. (Earland et al., 2014; Law et al., 2014a; Gogate, 2016),
developmental robotics aims to provide solutions in the
design of behavior and cognition in the artificial intelligence
systems (Marocco et al., 2010; Baillie, 2016; Salgado et al.,
2016). Developmental robotics is inspired by the developmental
principles and mechanisms observed during the development of
infants and children (Chao et al., 2014a), and thus the main idea
of developmental robotics is to let a robot imitate a human’s
development process (Adolph and Joh, 2007; Oudeyer, 2017).
The robot achieves sensory-movement and cognitive ability of
incremental acquisition according to the inherent development
principles and through real-time interaction with the external
environment (Cangelosi et al., 2015). Developmental robotics
focuses on two primary challenges in the field of robotics: (1)
learning new knowledge and skills from a constantly changing
environment; and (2) understanding their relationship with their
physical environment and other agents.

Guerin et al. (2013) suggested in developmental robotics that
most patterns need to be learned from a few patterns and the
described knowledge must be developed gradually, by alluding to
the general mechanism of sensory-movement development and
the knowledge description in action-object relationships. Law
et al. (2014a) achieved stage development on an iCub robot.
They successfully built a development model for infants from
birth to 6 months, which is driven by a new control system.
Starting from uncontrolled movements and passing through
several obvious stages of behavior, the iCub robot, like an infant,
finally reaches out and simply manipulates the object. Cangelosi
et al. (2015) used a method of action-centering to perform a
large number of synchronous comparisons with similar human
development and artificial systems. They discovered that human
development and artificial developmental systems share some
common practices from which they can learn. These studies
inspired the establishment of the proposed robotic systems
reported in this paper using the key features and important
theories in human infant development.

One of the two most important research focuses in the field of
developmental robotic is the development of skills corresponding
to a particular stage of an infant’s development (Chao et al.,
2010; Law et al., 2013), and another is the modeling of the
multi-stage development process (Hülse et al., 2010; Law et al.,
2014b). However, it is also of significant importance to study
the impact of play in early infant development, which may also
provide solutions in developmental robotics. Hart and Grupen
(2011) proposed a robot which organizes its own sensory-
movement space for incremental growth. Their solution uses
internal incentive motivations to allow robots to assimilate new
skills which are learned from the new learning phase or the new
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FIGURE 1 | The whole procedure of the game.

environment and become the basis for the next learning phase.
This research has been applied to humanoid robots. Benefiting
from important theories on developmental psychology, those
humanoid platforms can easily reproduce several behavioral
patterns or validate new hypotheses. Savastano and Nolfi (2013)
used a neural robot to imitate an infant’s learning process,
which was demonstrated by a humanoid robot incrementally
learning the ability to grasp. In the experiment, the maturity
limit was systematically controlled and a variety of developmental
strategies were produced. The experiment also shows that human
and robots can learn from each other by a comparative study.
Different with these studies, the experiment platform presented
in this work is a wheeled mobile robot, aiming to study the
influence of play in developmental learning methods.

The “Lift-Constraint, Act and Saturate” (LCAS) approach (Lee
et al., 2007), as a developmental learning algorithm, has been
widely applied in the developmental robot system (Chao et al.,
2013; Wang et al., 2014). The LCAS approach contains a loop
with three segments: (1) Lift-Constraint, (2) Act, and (3) Saturate.
First, all possible (or available) restrictions are stated clearly and
their release times are formulated. Then, the robot learns that
all existing constraints are substantiated. When the saturation
rate of a robot’s learning system is stable, a new constraint is
released. From this, the robot learns either new knowledge or
skills leading to the removal of a new environmental constraint.
When the robot has lifted all constraints through learning, and all
saturation rates of the robot learning system are stable, the robot
has successfully learned a series of skills.

3. THE PROPOSED METHOD

3.1. Model Overview
A developmental algorithm is proposed in this work by designing
a game for robots that allows robots to develop skills by playing.
Infants’ stable grasping abilities are developed through grasping
objects around them and infants are not happy until they can
stably do so. Due to the constraints of body, infants pay most of
their attentions on the range of physical activities while learning
skills, which leads to more efficient skill learning. In the process
of learning, infants do not have a clear learning goal, and all the
activities are simply driven by intrinsic motivation and interest.
Inspired by this, in our model, we design a game of pick-up-
toys for a mobile manipulator, in which victory is the mobile
manipulator successfully picking up surrounding toys. By playing
this game, a robot with a mobile manipulator gradually develops
mobile grasping ability. The game has two modes based on task
complexity:

• Simple game mode: All toys are distributed within the
working range of the manipulator, and the robot can perform
toy grasping without moving.

• Complex game mode: Some toys are distributed beyond the
working range of the manipulator, and the robot must move
in order to grasp these toy.

The robot’s skill development process is illustrated in Figure 1.
The robot with the mobile manipulator is initialised to play in the
simple game mode until it successfully completes the game. After

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2017 | Volume 11 | Article 53

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Wu et al. Developmental Learning of Mobile Manipulator via Playing

TABLE 1 | Infant’s developmental stages and the corresponding development

abilities.

The developmental stage Developed ability

Visual fixation period Fixation, saccade

Hand-eye coordination period Hand-eye coordination, near-body grasping

Mobile-direction coordination period Mobile grasping

the robot acquires near-body grasping ability, the game switches
to the complex mode. The game is over when the robot acquires
mobile grasping ability in this game mode.

The key in implementing a mobile robot with grasping ability
is the coordination of the visual system, the manipulator, and
the mobile system. This is mainly implemented by two basic
non-linear mappings: (1) from the robot’s visual space to the
manipulator’s movement space, and (2) from the visual space to
the robot’s mobile space. The two basicmappings are simulated in
this work by two Radial Basis Function networks (RBF), and the
training of these neural networks is accomplished by the robot
playing the game.

3.2. Developmental Strategy
Before acquiring mobile grasping ability, infants must attain a
number of developmental stages as listed in Table 1 (Law et al.,
2010, 2011), in which they develop a variety of basic abilities. A
developmental strategy is designed to support the development
of a robot’s mobile grasping ability, which is implemented by the
LCAS algorithm (i.e., Algorithm 1 shown below) (Chao et al.,
2014b). In this pseudo code, i is the number of learning epochs
under current constraints, and Sat(i) is the saturation rate in
the ith learning epoch. If the Sat(i) is true, the algorithm ends
the training under the current constraint, and releases a new
constraint. The value of Sat(i) is determined by Equation 1, where
i is the number of training epochs; G(i) is the model’s global
excitation value at epoch i; ǫ controls the sampling rate; and the φ
is a fixed value used to control the global excitation’s amplitude of
variation. If the value of G(i) is<φ and the variation of the global
excitation is<ǫ, a new constraint is lifted. In this work, the values
of parameters ψ , ǫ and φ are empirically set to 10, 0.5, and 0.02,
respectively, and theoretical study on these parameters remain as
future work.

Sat(i) =











true; if |G(i)− G(i− ψ)| < ǫ

and G(i) < φ; i = ψ · · · n
false; else

(1)

In the LCAS algorithm, a robot’s constraints are first
substantiated, as shown in Table 2. Once the constraints
are substantiated, the development of the robot proceeds
according to the lift-constraint strategy as listed in Table 3.

The LCAS algorithm in this work is executed in the following
five steps: (1) The target object is placed in the robot’s external
environment. The robot acquires image information about the
environment by removing the “visual resolution” constraint of
the robot’s eyes. (2) After the robot attains watch ability, the

Algorithm 1 Combined Learning Algorithm

1: while not all constraints are released do

2: for i = 0 to n do

3: if Sat(i) is TRUE then

4: quit this for-loop and release a new constraint;
5: else

6: repeat doing the leaning process within this for-loop
(Lines 2-8);

7: end if

8: end for

9: end while

TABLE 2 | The constraint instantiation for mobile robot.

Constraint type Substantiation

Hardware Eye joint, arm joint, wheel motor

Sensory-motor Tactile sensor, arm movement range

Cognitive Neural network

Maturational Network convergence threshold

External/environmental Location of the target object

TABLE 3 | The robot’s lift-constraint strategy.

Lift sequence Developed ability

1. Visual resolution Fixation ability

2. Eye joint Saccade ability

3. Shoulder joint, Elbow joint Hand-eye coordination

4. Wrist joint, gripper joint Near-body grasping

5. Wheel joint Mobile grasping

eye joint constraint is lifted. The robot learns saccade ability by
eye joint movement. (3) Then, the arm joint constraint is lifted
to allow for the movement and sensory abilities of the robot’s
arm. After the motor babbling stage , the robot builds hand-
eye coordination. Accordingly, the robot executes the reaching
action. (4) From this, the tactile sensor constraint in the arm
is removed after the robot builds hand-eye coordination. Based
on hand-eye coordination, the robot detects whether the object
in the gripper uses the tactile sensor. At this stage, the robot
learns near-body grasping. (5) Finally, the wheel joint constraint
is removed, and the robot has mobile ability. Then, the robot
learns mobile grasping by building the mapping between visual
and mobile space.

After the first two steps of training, the robot developed
fixation and saccade abilities, and thus the robot can play
the simple game (Chao et al., 2016). In the simple game
mode, the third and fourth steps of the lift-constraint
strategy are executed, and the robot develops hand-eye
coordination and near-body grasping. The fifth step of the
strategy is executed in the complex game mode, where
the robot develops mobile grasping ability. The entire
procedure for model training and execution is illustrated in
Figure 2.
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FIGURE 2 | The LCAS algorithm implementation and the overall training processes.

FIGURE 3 | The robotic hardware.

3.3. Mobile Robot Hardware System
The mobile robot’s intelligent system is mainly composed of
three subsystems: the visual subsystem, the manipulator, and the
motor, as demonstrated in Figure 3. The detailed functions of the
three systems discussed below.

1. The visual subsystem. The robot’s visual system performs
two tasks including finding the object and locating the object.
Firstly, the visual system analyzes the image color information

captured from the robot’s two eyes, and detects whether the
target is in the field of view. Secondly, if the target is in the field
of view, the visual system, through fixation ability, acquires the
retinal position of the target, S(x1, y1, x2, y2), wherein sl(x1, y1),
and sr(x2, y2) express the coordinates of the target in the left
and right eyes, respectively. The combination of the left and
right eyes represents the target retinal position. Finally, the
visual system, using the saccade ability, combines the retinal
coordination, S(x1, y1, x2, y2), and the eye joint, Sh(j5, j6), to
generate the visual space coordination, P(γ , θ).

2. The manipulator subsystem. The physical structure of the
manipulator system simulates the human arm structure. It
contains four joints, denoted as (j1, j2, j3, j4). Its first three
joints (j1, j2, j3) correspond to the human arm joints (shoulder,
elbow and wrist), respectively. These three joints construct the
movement space of the robot arm. The j4 joint represents the
gripper of the manipulator and is used to simulate the grasp
ability of the human palm.

3. The motor subsystem. The motor system consists of four
wheels, which enable the robot to execute mobile actions, such
as forward motion, backward motion, and turns. Because only
the front two wheels of the mobile robot have a motor, the
robot’s moving motor is denoted as M(m1,m2). The robot
controls its movements by changing the value ofM(m1,m2).

3.4. Game Processes
3.4.1. Simple Game Process

The simple game mode requires the robot to pick up balls that
are scattered within the work range of the manipulator. In this
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FIGURE 4 | The training of the hand-eye coordination network.

FIGURE 5 | The test results of near-body grasping.

game mode, the robot’s eyes only focus on the work range of the
manipulator. After it implements the first two steps of the lift-
constraint strategy and develops fixation and saccade abilities,
the robot can participate in the simple game mode, as shown in
the center frame of Figure 2. When the robot plays the simple
game, it must build a mapping from the visual space to the
manipulator’s movement space. This mapping is simulated by
one of the two RBF networks, R1. Different from the experiment
hardware used by Caligiore et al. (2014), the robot is not a
humanoid robot in this work. Therefore, it is impossible to
use real data collected from infants, and instead the training
samples are re-collected based on the wheeled robot. The training
sample of this network consists of the visual space coordination,
Sh(p, t), and themanipulator’s joint value, (j1, j2, j3, j4). In the RBF
network, the center positions of the RBF neurons are determined
by a K-means algorithm, and the number of RBF neurons is set to
twice the number of input dimensions. In this work, the Gaussian
kernel is applied in the radial basis function. The calculation

of the RBF network is shown in Equations (5) and (6), where
y(x) denotes the network’s output joint value, and wi denotes the
weights of the hidden layer, φi denotes a radial basis function, δ
denotes the width of the Gaussian kernel, and it is empirically set
at
√
5.

y(x) =
i

∑

i=1

wiφi (2)

φi(x) = exp(−
‖x− xi‖2

2δ2
), δ > 0 (3)

In the process of training the robot’s hand-eye coordination,
a yellow ball is placed as a target object in the gripper of the
manipulator. The ball moving randomly with the manipulator,
and the sample e(P,Ma) are collected in each movement. The
sample obtained is placed in the sample pool, E(e1, e2, e3, . . . , en).
When the number of samples in the sample pool reaches a fixed
number, some samples are randomly selected as the training
samples for the R1 network. After that, the R1 network is trained
using the Backpropagation algorithm. During the collection of
the sample, the values of the wrist, j3, and the gripper, j4, are fixed,
because the shoulder j1 and the elbow j2 already represent most
of the movement space of the robot, while the wrist, j3, is more
involved in the grasping action (Marini et al., 2016). When the R1
network training is saturated, the robot develops a basic hand-
eye coordination capability, and the wrist, j3, and the gripper,
j4, can be released. After this constraint is removed, the samples
in the sample pool must be re-collected. The R1 network uses
these newly collected samples for further training, and, finally,
the robot develops near-body grasping ability.

3.4.2. Complex Game Process

When the learning status is stable in the simple mode, the robot
switches to the complex game mode using whole field view. The
procedure for the complex mode is shown in the right-hand box
of Figure 2. In the complex mode, the balls are scattered within
the visual range of the robot, but not in the work range of the
manipulator. To pick up these balls, the robot must relocate
itself. The mapping relationship between the visual space and the
robot’s mobile space is built in the complex mode. This mapping
is simulated by another RBF neural network, R2. The training
method and the set of parameters are the same as those used in
the R1 network.

The training samples of the R2 network are based on two
sequences: (1) the movement trajectory of the target in the robot’s
visual space, PS(ps1, ps2, . . . , pst), and (2) the variation sequence
of the robot’s moving motor value MS(M1,M2, . . . ,Mt). In PS,
pst denotes the coordinate distance of the ball in the robot’s visual
spaces when the robot moves from step t to step t+ 1. The values
of pst is determined by Equation (4), where pt(γ , θ) denotes the
position of the target in the visual space at step t, and pt+1(γ , θ)
denotes the position at step t + 1. Likewise, the change of the
motor value from step t to step t+ 1 is represented asMt . So, the
former n-step movement trajectory and the accumulated change
of the motor are expressed by Equations (5) and (6) respectively,
where PAn denotes the accumulated distance from the target to
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FIGURE 6 | The procedure in simple game mode.

the robot when the robot moves n steps, and MAn denotes the
accumulated change of the motor.

pst = pt+1(γ , θ)− pt(γ , θ) (4)

PAn = Pn+1 − P1 (5)

MAn =
n

∑

n=1

Mn, n ≤ D (6)

In the complex game, a target is placed within the field of the
robot’s vision, rather than within the manipulator’s work field.
Then, the robot is set to randomly move n steps. If the ball enters
the manipulator work field occasionally during the n steps, the
entire movement trajectory is chosen as a sample. However, if the
ball is out of the field of robot’s vision during the n steps, this
trajectory is abandoned, and the target is randomly placed in a
new position to start the iteration again.

This stage also requires the following two additional
restrictions on the mobility of the robot. (1) Because the
accuracy of the robot hardware is limited, the number of mobile
steps n in a task must be less than the threshold, denoted as
D. If the number of steps is too big, the accumulated error
of the motor will be very large. (2) If the target disappears
from the visual field during the robot moving, the task is
considered to be a failure, and a new task is started by
resetting the game. When the robot reaches the target position

FIGURE 7 | The training of the eye-mobile coordination network.

within the number of steps, t, less than the threshold, the
PAn and the MAn are combined into a sample e(PAn,MAn).
The training R2 network begins after enough samples have
been collected in the sample pool E(e1, e2, e3, . . . , en). After the
mapping relationship is properly established by training the
R2 network, the robot develops mobile grasping ability. When
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FIGURE 8 | The procedure in complex game mode.

performing a mobile grasping task, the robot completes the
task in two steps. Firstly, the robot moves toward the target
within the work range of the manipulator using the trained
R2 network. Then, the robot uses R1 to complete near-body
grasping.

4. EXPERIMENTS AND ANALYSIS

4.1. The Simple Game
In order to train the hand-eye coordination network, 2,200
training samples and 512 test samples were collected. The error
change during the training process is shown in Figure 4. In this
figure, each circle denotes the average error after the experiment
has been ran for 50 times; and each vertical bar denotes its
standard deviation. The training err quickly reduced before the
wrist and gripper joints were released. The average error was
reduced to<0.05 after just 500 training epochs, which is the point
that the robot has successfully learned the hand-eye coordination.
Then, the constraints of the wrist and gripper joints were released
and the training of the robot’s near-body grasping capability was
initiated. Figure 4 shows that, in the near-body grasping training
stage, the training error begins to decline slowly after a rapid
increase, eventually converging to about 0.06. After the network
finished training, we tested it with 512 test samples, with the
results shown in Figure 5. The overall average error for the 512
tests is about 0.07. Given that it is generally a success if the
average error is<0.1 in robot hardware systems, it is clear that the
proposed robot has successfully learned the near-body grasping
skill.

Figure 6 shows the robot’s performance during the game after
it has learned the near-body grasping skill. In the first step, the
robot detects whether the target is within the working range
of the manipulator. If the target is within that range, the robot
proceeds to the second step, where it views the target, by a saccade
and obtains the exact position of the target within its field of
vision. After that, the robot maps the visual position of the target
into the movement space of the manipulator, and drives the
manipulator toward the target position. Finally, the manipulator
reaches and grasps the target.

4.2. The Complex Game
The eye-mobile network was trained after succesfully trained the
hand-eye network. In this stage, 600 samples were collected, of
which 500 samples were used for training and the remaining 100
samples for testing. The threshold, D, is set as 7. This experiment
has also been run for 50 times. Changes of the average error in the
training process are shown in Figure 7. As seen in Figure 7, the
training error immediately declines rapidly and reaches a stable
minimum, indicating that the mapping between the robot’s visual
and mobile spaces is not very complicated.

Figure 8 illustrates the robot’s performance during the
complex game mode after the eye-mobile network has finished
training. In Step 1, the robot uses the visual system to obtain
the position of target and detect whether the target lies within
the working range of the manipulator. In Step 2, if the target is
not in the working range of the manipulator, the robot drives the
mobile system toward the target position until the target appears
in the working range of themanipulator. In Step 3, after the target
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FIGURE 9 | The comparison of two methods in simple game mode.

appears in the working range of the manipulator, the robot stops
moving and reacquires the visual position of the target. In Step 4,
the robot drives the manipulator toward the target, and in Step 5,
the robot reaches and grasps the target.

4.3. Performance Analysis and
Comparative Study
The experiment discussed above allows the robot, step by step,
to learn the near-body grasping skill using a developmental
approach. In order to facilitate comparative study, another
experiment with the same target of near-body grasping skill was
designed using conventional direct training in the simple game
mode. The performance of these two methods is compared in
Figure 9, where the dotted line is the change of average training
error that is learned directly in the simple game mode, and the
solid line is the change of average error using the developmental
method. As the results shown in Figure 9, in the first 2,000
epochs, the training efficiency of development method is higher
than that of the direct training method. After 2,000 training
epochs, the training efficiencies of these two methods achieve at
a close error value. This phenomena proves that our approach
is superior to the conventional method in learning efficiency.
In the experiment using the developmental method, in the first
500 epochs, the network was trained using training samples for a
robot whose wrist and gripper joints were constrained. After the
error is less 0.05, the constraint was removed and the entire range
of samples was used to retrain the network. As shown in Figure 9,
as the number of epochs increases, the error rate for both the
2-step developmental and direct training approaches decreases.
However, over the entire range of epochs, the error decreasing
rate of the developmental approach is faster than that of the direct
approach, indicating that using the developmental method in a
game improves the learning efficiency of a robot.

To summarize, with the experiment of playing game, the robot
successfully learned the mobile grasping ability by playing simple
and complex games. Through the above experiments, we can
conclude the following two results: (1) the proposed approach

enables robots to learn skills by modeling the play activities
during human infant development. (2) The developmental
method with the game elements improves the robot’s learning
efficiency.

4.4. Comparison and Discussion
A comparison of Figure 4 with Figure 7 shows that the error
rate for the eye-mobile network decreases more rapidly than
that for the hand-eye network. However, in the early training
epochs, the error rate is higher for the eye-mobile network than
for the hand-eye network, because the mobile system has only
two joints, but the manipulator has four. Therefore, mapping
from visual space to mobile space is simpler than mapping to
the manipulator movement space. On the other hand, fewer
dimensions also make the output more sensitive to the input
values. In Figure 7, the reason of the rapid error decreasing in
R2 is that a simplified motor mode, mapping the visual space to
robot’s motor position space, is used in this work. The target’s
visual coordination and the robot’s wheel movement trajectory
are collected as training samples, in which, the motor mobile
value has only two dimensions. The mapping between the robot’s
visual andmobile spaces is not complicated. However, if the work
uses the mobile platform’s dynamic control model, which can
support the acceleration control for our robot, the network will
require more learning time for the more complicated control. In
Figure 4 the error rate rises rapidly after the wrist and gripper
joints are released at the five hundredth epoch, because the
mapping becomes more complex. However, the error rate after
the rapid increase is still lower than that for the directly learning
approach, proving that the learning in the previous stage is
helpful for the next learning stage.

After testing the robot’s near-body grasping ability, we further
analyze the test results from the perspective of the manipulator’s
movement space. Because the gripper joint has only two ways
to open and close, it has little effect on the variation of the
manipulator in the movement space. Therefore, we analyze just
the first three joints of the manipulator. The analysis results are
shown in Figure 10. Triangles represent the test sample for which
the error rate is >0.1; circles represent the others. Figure 10
shows that most of the high error actions have at least two joints
and an angle value near the extremum. In other words, these
actions, distributed around the edge of the movement space, may
be due to the instability of control when the manipulator’s servos
are near the maximum and minimum angles. Instead, the robot’s
grasping errors are generally below 0.1 at all other places. By
removing the hardware factor, we assume that the robot has built
the mapping from the visual space to the manipulator movement
space.

For comparison, many developmental models used humanoid
robots as experimental platforms (Marocco et al., 2010; Shaw
et al., 2014; Morse and Cangelosi, 2017) in particular, several of
them are infant-like robots. Those humanoid platforms directly
benefit from important theories on developmental psychology,
so that these platforms can easily reproduce several behavioral
patterns or validate new hypotheses. In contrast, the shape and
configuration of a mobile manipulator are very different from
those of a human; therefore, the developmental theories need to
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FIGURE 10 | The results of the near-body grasping test.

be adjusted to fit the robot system.However, currently, themobile
manipulators are competent to practical applications, which
also requires the robots to have cognitive abilities. Thus, new
developmental theories validated by mobile manipulators can
be rapidly applied in real-life applications. Moreover, our work
focus on using the “Play” strategy to create the mobile reaching
ability for our robot, with the two game modes created. Our
system not only involves spontaneous and intrinsically motivated
exploration of actions and objects in varying contexts (Lee,
2011) but also, contains developmental characteristic by applying
the “LCAS” developmental learning algorithm. Without setting
specific goals, the robot uses its learning status to develop from
the simple game mode to the complex one. The combination
of developmental robotics and play modeling leads our robot to
have faster learning rate.

5. CONCLUSION

Scientists have found that infants develop a number of skills
when playing games in infant developmental research. In this
paper, we combined these infant development theories with the
LCAS algorithm to generate a developmental algorithm, which
does not require specifically defined developmental goals for
a robot. We designed two game modes and two RBF neural
networks to simulate the procedures necessary for a robot to
play in these game modes, with the support of a developmental
strategy. The experiments demonstrated that a robot successfully
learned moving and grasping skills. From results analysis and
comparison, it can be concluded that: (1) a robot can successfully
learn near-body grasping and moving grasping skills through
play, and (2) in regard to a robot learning these skills, the
developmental approach reduces the complexity and accelerates
the learning speed.

Our model also has some limitations which can be mitigated
in the future. For instance, in order to implement the hand-eye

coordination system rapidly, our model uses an open-loop
method, which may lead to several failed grasping. In addition,
our model does not use the data obtained from real infants.
In order to address these, a close-loop method may be used to
improve the success rate of grasping. In addition, as an infant
develops skills through play, the infant’s intrinsic motivation
and ability to imitate are closely related to that play (Santucci
et al., 2013; Oudeyer et al., 2016). In other words, infants
achieve unsupervised learning in their environment through
intrinsic motivation, which plays an important role in the control
of the infancy learning stage transformation. However, infants
learn new skills faster than other babies if they have a strong
ability to imitate during the learning process. Therefore, the
applicability of the proposed system can be extended in the future
by incorporating intrinsic motivation and ability.
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