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Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis

people for performing activities of daily living. However, it is still a complex task for the

BMI users to control the process of objects grasping and lifting with the robotic arm. It is

hard to achieve high efficiency and accuracy even after extensive trainings. One important

reason is lacking of sufficient feedback information for the user to perform the closed-loop

control. In this study, we proposed amethod of augmented reality (AR) guiding assistance

to provide the enhanced visual feedback to the user for a closed-loop control with a

hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI

and the eye tracking for an intuitive and effective control of the robotic arm. Experiments

for the objects manipulation tasks while avoiding the obstacle in the workspace are

designed to evaluate the performance of our method for controlling the robotic arm.

According to the experimental results obtained from eight subjects, the advantages of

the proposed closed-loop system (with AR feedback) over the open-loop system (with

visual inspection only) have been verified. The number of trigger commands used for

controlling the robotic arm to grasp and lift the objects with AR feedback has reduced

significantly and the height gaps of the gripper in the lifting process have decreased

more than 50% compared to those trials with normal visual inspection only. The results

reveal that the hybrid Gaze-BMI user can benefit from the information provided by the

AR interface, improving the efficiency and reducing the cognitive load during the grasping

and lifting processes.

Keywords: brain-machine interface (BMI), eye tracking, hybrid Gaze-BMI, human-robot interaction, augmented

reality feedback, closed-loop control

INTRODUCTION

It has been demonstrated that Brain-machine interface (BMI) can be used for paralysis people to
control the robotic arm for the objects manipulation tasks in activities of daily living (Millan et al.,
2010). BMI users can directly control the robot using the extracted movement intentions from
the brain without any muscular intervention (Schwartz, 2016). Although the user can control the
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robotic arm in three dimensional space to reach and grasp
the objects after training via invasive BMIs (Hochberg et al.,
2012; Downey et al., 2016), where the neural activity of the
brain is measured using the electrodes placed on the surface
of the cerebral cortex or implanted directly into the gray
matter of the brain, it is necessary to place the electrodes
via surgery procedure with medical risks and fewer patients
can benefit from this method (Morgante et al., 2007). Non-
invasive techniques, which measure the brain activity from
the external surface of the scalp without surgical implantation,
are more valuable than the invasive ones, e.g., functional
magnetic resonance imaging (fMRI; Gudayol-Ferre et al., 2015),
functional near-infrared spectroscopy (fNIRS; Naseer and Hong,
2015), magneto encephalography (MEG; Fukuma et al., 2016),
electroencephalography (EEG; Moghimi et al., 2013). The EEG
signals acquired by placing the electrodes on the surface of the
scalp are mostly studied because of its high time resolution, few
risks to the user and requires less expensive equipment.

For the EEG based non-invasive BMI, the EEG signals
obtained during visual cue or motor imagery are mapped to the
commands for the external devices such as humanoid robots
(Duan et al., 2015; Andreu-Perez et al., 2017), virtual helicopter
(Doud et al., 2011; Shi et al., 2015), wheelchairs (Kim et al.,
2017; Li et al., 2017), locomotion exoskeletons (Lee et al., 2017),
telepresence mobile robot (Escolano et al., 2012; Zhao et al.,
2017), and even animals (Kim et al., 2016). In order to obtain
sufficient number of commands for controlling the robotic arm
with multiple degrees of freedom, it is desired to perform the
multiplemental states classification (Hortal et al., 2015; Kim et al.,
2015; Meng et al., 2016). Nevertheless, it is a challenging task in
practice for the BMI user to switch among multiple mental states
constantly. In fact, it is much easier for a user tomaintain a switch
between two mental states than that among multiple states.
However, it is unable to provide a sufficient degree of control
flexibility in such a way. To overcome this shortcoming, many
hybrid methods are proposed by combining BMI with additional
signals, such as eye-tracking (Kim et al., 2014), electromyography
(Leeb et al., 2011; Bhagat et al., 2016), electrooculography (Ma
et al., 2015; Soekadar et al., 2016), fNIRS (Khan and Hong,
2017) and so on, so as to increase the number of commands
(Hong and Khan, 2017). Gaze selection is demonstrated to be
natural, convenient and faster compared with other interaction
approaches (Wang et al., 2016). Therefore, the method has been
proposed in Onose et al. (2012) andMcMullen et al. (2014) where
the target is selected via eye tracking and the classified result
of the EEG signals is used to initiate the automatic reaching,
grasping and delivering actions by a robotic arm.

Although the hybrid Gaze-BMI system by combing eye-
tracking and BMI has shown its ability to help the patients
with motor disabilities to complete the sophisticated motor task,
recent studies have demonstrated that patients working with
assistive devices are not satisfied with fully automatic control
by the robot only (Kim et al., 2012; Downey et al., 2016). In
other words, it is desired for the BMI user to intervene with the
controlling process when working with assistive devices rather
than fully automatic control. Nevertheless, it is still a challenging
task for the user to control the process of objects grasping and

lifting via non-invasive BMI (Popović, 2003). High efficiency
and accuracy are hard to achieve, even after extensive training
(Lampe et al., 2014). An important reason is that usually only
the visual feedback is provided to the BMI user, and the user
relies exclusively on the visual feedback during the grasping and
lifting processes, which may contribute to a time-consuming and
ineffective controlling process (Johansson and Flanagan, 2009;
Mussa-Ivaldi et al., 2010). Moreover, studies show that it will
cause significant increase of the cognitive load if the user has
to rely on the visual inspection only to find out whether the
current controlling process is completed (Biddiss and Chau,
2007; Antfolk et al., 2013). Therefore, it is desired by the patients
to have more intuitive and understandable feedback approaches
in BMI based systems.

To this end, we propose to utilize the AR technique to
provide the intuitive and effective feedback for a hybrid Gaze-
BMI based robotic arm control system, where the eye tracking
system is used for the robot position control (i.e., the target
selection) and the movement intention is decoded from the EEG
signals as the confirmation of the target position selected by
the user or the trigger command to be executed on the target.
Experiments for the objects manipulation tasks while avoiding
the obstacle in the middle of the workspace are designed, where
the manipulation tasks are divided into five phrases: reaching,
grasping, lifting, delivering and releasing. For the grasping and
lifting tasks that requires fine operations, the human supervisory
is often desired. For the less demanding tasks, i.e., reaching,
delivering and releasing, they can be automatically completed by
the robotic arm once the movement intention is detected from
the EEG signals. Therefore, our main idea is to maintain as much
manual control as possible in the grasping and lifting processes
using the hybrid Gaze-BMI, while providing the user with the
enriched visual information about the gripper status through the
AR technique in real time. The performance of the hybrid Gaze-
BMI based systems both in open-loop (with visual inspection
only, without AR feedback) and close-loop (with AR feedback)
will be compared in the experiments.

The rest of the paper is organized as follows: section Materials
and Methods describes the components of the proposed system
as well as the experimental protocols used in this study. The
results of the experiments are presented in section Results. The
discussion of this study is provided in section Discussion and
followed by the conclusion in section Conclusion.

MATERIALS AND METHODS

System Architecture
The block diagram of the proposed system is shown in Figure 1.
The functional modules of BMI, eye tracking, image processing,
automatic control and AR interface are integrated in this system
to allow the user performing the objects manipulation tasks.
Image processing is applied to segment all the potential cuboids
from the image of the workspace. The segmented objects can be
selected by the subjects via eye tracking. The outputs decoded
from the BMI are used to (1) confirm the object selection by
the user, or (2) trigger the switching of action sequence, or
(3) constantly control the aperture and height of the gripper
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FIGURE 1 | The block diagram of the proposed hybrid Gaze-BMI based robotic arm control system with AR feedback. Image processing is applied to segment all the

potential cuboids from the image of the workspace. The segmented objects can be selected by the subjects via eye tacking and confirmed using the trigger

commands from the BMI. The initiation commands from the hybrid Gaze-BMI are used to (1) confirm the object selection by the user, or (2) trigger the switching of

action sequence or (3) constantly control the aperture and height of the gripper during the grasping and lifting processes, respectively. AR feedback is provided to the

BMI user during the grasping and lifting processes via the monitor. The robotic arm implements the reaching, grasping, lifting, delivering and releasing tasks, in

response to the trigger commands obtained from the hybrid Gaze-BMI.

during the grasping and lifting processes, respectively. The
intentionally selected object by the user as well as the status
of the grasping and lifting operations is visually fed back to
the user via the computer screen using AR techniques in real
time. Eventually, the robotic arm implements the reaching,
grasping, lifting, delivering and releasing tasks, in response to the
outputs decoded from the hybrid Gaze-BMI. The experimental
setup used in this study is shown in Figure 2. The physical
system is composed of an eye tracker, an EEG headset, a
PC, a robotic arm, and an USB camera. The participants are
seated in front of the computer comfortably wearing the EEG
headset on their head to perform the object manipulation tasks.
The distance from the user to the “23.6” LCD monitor is
∼90 cm. The monitor displays the live video captured from
the workspace. The interaction between the subjects and the
system is via the hybrid Gaze-BMI and the enhanced visual
feedback by AR.

Brain-Machine Interface
A low-cost commercial EEG acquisition headset, Emotiv
EPOC+ (Emotiv Systems Inc., USA), is used to obtain the
user’s intention to rest or to perform hand motor imagery.
This device is consisted of 14 EEG channels (AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4)
and two reference channels (P3, P4). The data are sent to
the computer through Bluetooth with a sampling rate of
128Hz.

The OpenVibe toolbox is used for the training session of
the BMI decoding model. Firstly, the Graz Motor Imagery BCI
Stimulation in the OpenVibe toolbox is used as the EEG signals
acquisition paradigm, where the right arrow and the left arrow
are shown in a random order to guide the user for the motor
imagery tasks as is shown in Figure 3. When the right arrow is
presented, the user should imagine the right hand movements
until the green cross in the window disappears, while the user
should keep relaxed when the left arrow or no arrow is presented.
Participants are asked to remain relaxed to reduce the effects from
muscle signals during the EEG recording process. Nextly, the pre-
processing and feature extraction are applied on the EEG data.
A 5th-order Butterworth band pass filter is utilized for temporal
filtration with cut-off frequency from 8 to 12Hz. The filtered
signals are then segmented with a 1s-long sliding window in
steps of 62.5ms. The commonly used feature extraction method,
i.e., common spatial pattern (CSP), is applied on the signals to
extract the features that discriminates between the hand motor
imagery and the relax states. Subsequently, a linear discriminant
analysis (LDA) classifier is trained to classify the two mental
states. Finally, the learned CSP filter and the LDA classifier are
applied for the online user intent identification. Two kinds of
brain states, i.e., rest and motor imagery, are classified from
the EEG signals, alone with an action power, a unidimensional
scalar index ranging between 0 and 1 representing the detection
certainty that the user has entered the “motor imagery” state.
To achieve a reasonable trade-off between true positives and
false positives, the detection certainty threshold for the “motor
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FIGURE 2 | Experimental setup used in this study. The live video of the workspace captured by the camera and the enhanced visual feedback are presented to the

user via the monitor. Using the eye-tracking device EyeX, the user can select the object that he/she intends to manipulate. The movement intention can be detected

by the BMI device Emotiv EPOC+, which can confirm the user’s selection or initiate the control on the selected object. Dobot executes the reaching, grasping, lifting,

delivering, and releasing tasks in response to the trigger commands from the user. The enlarged Graphical User Interface, which is programmed in C++ under Qt

framework, is shown on the right side of the picture above.

FIGURE 3 | The graz motor imagery BCI stimulation in openvibe. The right

arrow and left arrow are used to guide the user to perform the motor imagery

and the relax task, respectively.

imagery” state is set to 0.60 by rule of thumb in our experiments.
Namely, motor imagery state with the detection certainty above
0.60 is used to initiate the execution of a command, otherwise
the decoded mental state will be deemed as the “rest” state. The
movement intention decoded by OpenVibe is delivered to the
robotic arm control engine through the Analog VRPN Server
in the OpenVibe every 62.5ms. When the robotic arm is in
operation, no action will be executed.

Image Processing and Eye Tracking
An USB camera, with a resolution of 1,280 × 720 pixels, is used
to capture the live video data of the workspace and sends the
video to the computer via an USB 2.0 connection. For the eye
tracking, a commercial desktop eye tracker, EyeX (Tobii AB Inc.,
Sweden), is used to detect and map the user’s pupil position to
the cursor on the monitor. The eye tracker is fixed at the bottom
of the computer monitor (cf. Figure 2). The data are transmitted
to the computer via USB 3.0 at a rate of 60Hz. The gaze points
acquired from the EyeX system are filtered to remove the minor
gaze fluctuations, which is achieved by calculating the 10-point
moving average. Then the filtered gaze points are fed to the
computer for updating the position of the cursor position on the
monitor every 30ms.

Image processing and eye-tracking are used for the objects
identification and selection in the manipulation tasks. Three
kinds of cuboids (10 × 20 × 10mm) with different colors (red,
green and blue) are used in the experiment (cf. Figure 2 right).
Cuboids in the workspace are detected using image processing
techniques based on their colors. Firstly, the image of the
workspace is converted from the RGB space to the HSV space
to lessen the illumination effect from the natural environment.
Subsequently, the contours of the objects in the image are
confirmed based on the threshold of different colors. Finally,
all the potential cuboids are segmented from the image of the
workspace. It is necessary to perform the calibration procedure
for the eye tracker before the experiment. The calibration
procedure lasts <1min for each subject, during which the user
gazes at seven points shown on the computermonitor one by one.

The user can move the cursor on the monitor over the target
to be manipulated, and then a visual feedback is provided to the
user by highlighting a red rectangle surrounding the target (cf.
Figure 7A). When the object is confirmed by the subject, i.e.,
when the subject fixates upon the object and the motor imagery
state is detected from the EEG signals, the color of the rectangle
changes from red to green (cf. Figure 7B). Similarly, the switch of
the action sequence will be triggered when the user fixates their
gaze points on the specific position andmeanwhile themovement
intention is detected. For example, when the target position for
placing the objects is fixated on with the motor imagery state
being decoded from the EEG signals, the action sequence will
switch from the lifting process to the delivering process.

Robotic Arm
For the actuated system, a desktop robotic arm with 5◦ of
freedom,Dobot (Shenzhen Yuejiang Technology Co Inc., China),
is used. The robotic arm controller can directly convert the
XYZ position to the corresponding joints positions based on
the inverse kinematics. Therefore, the user can directly give the
motion end-point information in 3D environment via the hybrid
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Gaze-BMI, and the controller of Dobot will plan the path to the
target position automatically. Then the robotic arm executes the
manipulation tasks in response to the trigger commands from the
hybrid Gaze-BMI user.

The workspace is predefined using a rectangle (150mm ×

150mm) in the real scene. The webcam screen view coordinates
will then be mapped with the corresponding robot workspace
coordinates, as is shown in Figure 4. Firstly, the coordinates of
the vertexes (p1, p2, p3, and p4 in Figure 4A) in the image plane
are acquired. Nextly, the pose value of the robotic arm in the
four vertexes (P1, P2, P3, and P4 in Figure 4B) of the rectangle is
obtained. Subsequently, a perspective transform matrix from the
pixels to the coordination of the robotic arm is calculated based
on the calibration data (p1∼p4 and P1∼P4). Finally, the position
of the objects in the image plane of the workspace is mapped
to the coordination of the robotic arm based on the perspective
projection. The commands are sent to the robotic arm engine
via its Application Programming Interface (API). In this way, the
height and the aperture of the gripper can be obtained from the
Dobot engine in real time, so as to present the current state of the
tasks to the user with the AR feedback.

Augmented Reality Interface
The AR interface is implemented with OpenCV and OpenGL.
The marker-based tracking method is used to calculate the
camera pose relative to the real world to align the real camera and
the virtual camera in OpenGL. Firstly, the camera is calibrated
using a chessboard. The distortion parameters and the intrinsic
parameters of the camera are obtained during the calibration
procedure. Then, the extrinsic parameters should be solved,
which encode the position and the rotation of the camera relative
to the 3D world. To calculate the extrinsic parameters, a square
with the same center of the cuboids is used as the simulated
marker, as shown in Figure 5. The width of the square is 1mm,
which is calibrated in advance. The virtual objects are of the
same size of the virtual markers. Therefore, the size of the virtual
objects can be controlled by the size of the simulated marker. The
center of the square (O) is assumed to be (0, 0, 0) in 3D world.
Then the extrinsic parameters can be solved using solvePnP in

OpenCV (Opencv, 2017). Finally, a perspective projection in
OpenGL with the field of view and the aperture angle of the
camera from intrinsic parameter are obtained, and the virtual
camera in OpenGL is put in the position given by the extrinsic
parameters to align the virtual and real objects.

In the objects manipulation tasks, the AR feedback is provided
to the user during the grasping and lifting processes. Firstly, the
enriched visual information, such as the virtual gripper aperture
and the simulated grasping force, is presented to the user on the
screen during the grasping process in real time. A virtual box
whose length is of the same with the aperture of the gripper is
placed near to the object, representing the information about
the gripper aperture (Figure 7C). When the gripper aperture
becomes smaller than the width of the object, i.e., the objects
has been grasped by the gripper, the grasping force then will be
simulated by two arrows normal to the gripper that are overlaid
over the cuboid in the image (Figure 7D). In addition, the greater
the difference between the size of the object and the aperture
of the gripper is, the longer the arrows are (i.e., the stronger
the grasping force is). Secondly, during the lifting process, the
altitude of the gripper is fed back to the subject through the
height of the virtual box in the middle of the virtual obstacle (see
Figure 7F). The altitude of the gripper on the table is calibrated
in advance. The height of the virtual box is calculated by the
difference value between the real time pose data of the robotic
arm in vertical direction and the height of the gripper on the
table.

Experimental Protocol
Experiments for the objects manipulation tasks are designed to
evaluate whether the hybrid Gaze-BMI users can benefit from
the AR feedback for the grasping and lifting processes, where the
human supervisory is involved. The workspace is shown in the
right side of Figure 2. The user is instructed to select and grasp
the object, then deliver it to the target position. The height of
the virtual obstacle is 15mm, which should be avoided by the
robotic arm during the delivering process. The object should be
released to the rectangular area with the same color as the object.
The grasping and lifting processes are controlled manually by the

FIGURE 4 | Mapping of the object coordinates from the image panel to those of the robotic arm workspace. (A) The coordinates of the object in the image panel.

(B) The coordinates of the object in the robotic arm workspace.
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FIGURE 5 | The maker-based tracking method to calculate the camera pose

relative to the real world.

BMI user, i.e., the user will decide when to stop the grasping
process and whether the height of the gripper is enough for a
safe delivering. The complete objects manipulation protocol is
introduced as follows.

Reaching
Several cuboids in different colors are placed randomly in
the workspace with different orientations (Figure 2 right).
The cuboid will be highlighted with a virtual red rectangle
surrounding it when the cursor (gaze point) is over it
(Figure 7A). Once the reaching action is triggered successfully,
i.e., the gaze point is being over the object and the motor
imagery state has been decoded from the BMI, the color of
the rectangle surrounding it will change from red to green
indicating the confirmation of the selected object (Figure 7B).
The position of the selected object in the workspace is mapped to
the coordination of the robotic arm as the end-point information.
Then the robotic arm will move to the pre-grasp position over
the objects. The orientation of the gripper will be adjusted
automatically, according to the angle of the object in the
workspace based on the image processing results. If a motor
imagery state is detected from the EEG signal while no object is
being selected, this command will be ignored by the system.

Grasping
Subsequently, the aperture of the gripper will be controlled
manually by the user. The gripper is open in the initial state with
an aperture of 25mm. The aperture of the gripper will decrease
1mm each step in the grasping process if the user maintains the
motor imagery state and meanwhile fixates on the object in the
image panel. The aperture of the gripper is mapped to the angle
of the servo to accomplish the control of the gripper. The relation

between the aperture of the robotic arm and the angle of the
servo is estimated based on data fitting, as is shown in Figure 6.
The circle with a letter “G” in it will appear at the bottom of the
GUI, indicating that the user has arrived at the grasping phrase.
The width of the virtual box changes with the aperture of the
gripper (Figure 7C). The arrows shown in the video means that
the grasping force is being generated on the object (Figure 7D).
If the cuboid has already been grasped tidily while the user
insists on generating the trigger commands, the gripper will
continue responding to the commands, and the length of the
arrow will continue to increase so as to present the increasing of
the grasping force.

Lifting
Then the individual should switch the grasping process to the
next action sequence that picking the object up to avoid the
obstacle. The user should fixate their gaze at the red circle with
a letter “G” inside at the bottom of the GUI and perform motor
imagery to initiate the switch. The letter in the red circle changes
from “G” to “M” indicating a successful state switching from
the gasping process to the lifting process (Figure 7E). After that
the user is able to control the robotic arm by moving in the
vertical direction to avoid the virtual obstacle in the middle of
the workspace. The height of the robotic arm will increase 1mm
in response to each trigger command from the hybrid Gaze-BMI.
A virtual box, whose height is equal to the altitude of the robotic
gripper obtained from the Dobot engine, will be presented right
in the middle of the virtual obstacle. In this way, the subject can
easily find out whether the height of the robotic gripper is enough
for a safe delivering (Figure 7F).

Delivering and Releasing
Subsequently, the subject may switch from the lifting process to
the delivering process, by fixating his gaze to one of the three
target rectangular areas in different colors and then performing
motor imagery. Then the Dobot will generate a path in the plane
with the same height as that of the gripper and deliver the object
to the target position automatically (Figure 7G). Finally, once the
OpenVibe has detected the motor imagery state from the EEG
signals, the object will be released and the robotic arm returns
to the initial position automatically, waiting for the next trial
(Figure 7H).

Grasping and lifting processes in open-loop (with visual
inspection only, without AR feedback) are also implemented for
the comparison with the same protocol above. Figure 7 shows
the whole process in the object manipulation tasks both with
and without AR feedback. In the open-loop protocol, the user
decides when to stop the grasping and lifting processes by visual
inspection only, as is shown in Figures 7I–L.

Performance Evaluation
Eight participants (all males, 24.5 ± 1.2 years old) are recruited
from the campus to perform the objects manipulation tasks
using the proposed system. All of them are healthy and
right handed. This study is carried out in accordance with
the recommendations of the Ethics Committee of Southeast
University with written informed consent from all subjects. All
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FIGURE 6 | The relation between the aperture of robotic gripper and the angle of the servo.

subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Firstly, the BMI decoding model was trained for each subject
in the training session described in the subsection brain machine
interface. The training session for each subject was composed
of a randomly sorted sequence of 40 trials, 20 for the hand
motor imagery tasks and 20 for the relax tasks. The execution
of each task lasted for 4 s, and it was spaced from the beginning
of the next task with an interval lasting randomly from 1 to 3 s,
during which the subject could relax concentration. Each task was
triggered through visual cues displayed on the screen. The 5-fold
cross-validation BMI decoding performance on the data from the
training session is then reported.

Secondly, the online evaluation of the robotic arm control
system based on the hybrid Gaze-BMI with or without AR
feedback was performed. For each subject, the online evaluation
session consisted of a randomly sorted sequence of 30 trials, 15
for the system with AR feedback and 15 for the system without
AR feedback (i.e., with normal visual inspection only). The online
decoding model of BMI is obtained by training with all the
data from the training session above. For each online trial, the
BMI user operates the robotic arm to transfer a cuboid to the
target area in the same color while avoiding the virtual obstacle
in the middle of the workspace. The subject can have a rest
whenever needed between two trials. We do not limit the task
completion time for each trial and the user is asked to bare
successful grasping and safe delivering in mind. Therefore, all the
subjects can successfully accomplish the object transferring task
both with and without the AR feedback.

The online manipulation performance will be evaluated with
the following two indices: (1) The number of trigger commands
used in both the grasping and the lifting process, as used in
Tonin et al. (2010) and Kim et al. (2012). The BMI user generates
the trigger commands with the hybrid Gaze-BMI, thereby the
number of commands used in the grasping and lifting processes

can be used to characterize the efforts of the hybrid Gaze-
BMI users with or without AR feedback during the object
manipulation tasks. When the object has already been grasped
tidily while the user still maintains the motor imagery state and
fixates on the object, the robotic arm will continue to execute the
trigger commands. Though the aperture of the gripper may not
change dramatically, the contact force on the object will increase
which may be harmful to the object and the robotic gripper.
Similarly, when the height of the gripper is enough for a safe
delivering while the user still produces the trigger commands,
the gripper will continue moving in the vertical direction. Those
unnecessary mental commands will increase the workload of the
BMI users and reduce the efficiency of the controlling process. (2)
The height gap of the robotic gripper in the lifting process. This
index is used for the following considerations. When the BMI
user move their gaze point to the target area and perform motor
imagery to finish the lifting process, the robotic arm will move
to the target area in the plane with the same height as that of the
gripper. An ideal condition is that the final height of the robotic
gripper in the vertical direction (Z) is just fine for a safe delivering
over the obstacle. Therefore, the height gap of the gripper in the
lifting process is defined as the altitude difference between the
gripper and the obstacle. Those two indices are used to evaluate
whether the BMI user can benefit from the AR feedback to
successfully complete the delivering task with less efforts. The
performance difference between the proposed approach with AR
feedback and the one with visual inspection only was evaluated
using the one-tailed Wilcoxon rank sum test.

RESULTS

The Classification Performance of the BMI
The 5-fold cross-validation classification accuracy of the BMI
for each subject is shown in Table 1. The average classification
accuracy for the relax state is 85.0 ± 6.3%. An average accuracy
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of 86.4 ± 6.4% for the motor imagery state is achieved using
the BMI decoding model. The aggregated classification accuracy
across the subject is 85.16%, with a standard deviation of 4.83%.
The highest accuracy of the BMI achieved on subject 6 is 94.01%.
Subject 7 has obtained the worst performance with an average
accuracy of 77.42%.

Online Manipulation Performance in
Grasping Process
The average number of commands used in the grasping process
for each subject is shown in Figure 8A. The number of trigger

commands used for the objects grasping with AR feedback is
generally less than that with visual inspection only. In particular,
for subject 4, the number of trigger commands has been reduced
from 33 to 17 when the enhanced visual feedback is provided.
With normal visual inspection only, (i.e., no AR feedback is
provided), it is hard for the users to clearly observe the status of
the grasping process, especially when the robotic arm hinders the
objects from the subjects’ view (e.g., Figure 7J). Furthermore, in
order to grasp the object tightly, the user has to generate more
controlling commands by the hybrid Gaze-BMI in the grasping
process without AR feedback than that with AR feedback. By

FIGURE 7 | The process of objects manipulation tasks with and without AR feedback. The area of the gripper is expanded as is shown in (C–L). Reaching: (A) The

robotic arm is in the initial position. An object can be selected by the gaze points of the user, and a red rectangle will then appear around the object, indicating that the

user is starring at it. (B) The color of the rectangle changes from red to green when the target object is confirmed by the user once the motor imagery state is

detected. Next, the robotic arm moves to the position for the subsequent grasping. Grasping (AR): (C) The circle with a letter “G” in it will appear at the bottom of the

GUI, indicating that the user has arrived at the grasping phrase. The orientation of the gripper is adjusted automatically based on the orientation of the object in the

workspace. The aperture of the gripper is presented to the user based on AR feedback interface via a virtual box near the object. (D) When the selected object has

been grabbed tidily, two virtual arrows normal to the gripper are then overlaid over the object, simulating the grasping force. Lifting (AR): (E) the letter in the circle

changes from “G” to “M” indicating a successful switching of action sequence from the grasping process to the lifting process. The user can control the gripper

moving in the vertical direction to lift the object. The height of the gripper to the table is represented by that of a virtual box in the middle of the obstacle. (F) When the

height of the virtual box is higher than the obstacle, it is deemed that the altitude of the robotic arm is enough for a save delivering. Delivering and Releasing: (G) when

the lifting process is completed, the user fixates his/her gaze on the target rectangle and performs motor imagery to trigger the robotic arm moving to the target

position automatically. Besides, the color of the rectangle around the object changes from green to cyan, indicating a successful action sequence switching. (H) The

object is released in the target position. Then Dobot returns to the initial position automatically, waiting for the next trial. Grasping and Lifting (NoAR): (I–L) the grasping

and lifting processes without AR feedback, where the hybrid Gaze-BMI user has to decide when to stop the current process by the visual inspection only.
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contrast, the aperture of the gripper and the simulated grasping
force between the gripper and the objects are shown for the user
with AR feedback in real time. Therefore, it is much easier for the
user to handle the grasping process. The results have revealed that
the grasping task can be completed with less trigger commands
and more consistent performance across the subjects with AR
feedback than that with visual inspection only. The number of
trigger commands used in the grasping task with the AR feedback
is statistically less than that without the AR feedback for each
subject (ps1 = 0027, ps2 = 0.0022, ps3 = 0.0089, ps4 = 0.0032,
ps5= 0.0025, ps6= 0.0018, ps7= 0.0029, ps8= 0.0010).

TABLE 1 | The BMI cross-validation classification accuracy for each subject.

Participant ID Correct rate (%)

Relax Motor imagery Total

S1 74.7 92.3 82.7

S2 80.6 82.1 81.4

S3 87.5 92.3 89.2

S4 87.2 88.8 86.9

S5 92.1 75.3 82.8

S6 92.1 96.4 94.0

S7 90.6 84.2 87.0

S8 75.3 79.8 77.4

Mean ± STD 85.0 ± 6.3 86.4 ± 6.4 85.2 ± 4.6

Online Manipulation Performance in Lifting
Process
The average number of commands used in the lifting process
is shown in Figure 8B. In order to avoid the obstacle in the
middle of the workspace, the user should control the gripper
moving in the vertical direction until the height of the gripper
is higher than the obstacle for a safe delivering. The number of
commands generated from BMI has been reduced significantly
with AR feedback. When no AR feedback is provided, it is hard
for the user to decide whether the height of the robotic gripper
is already higher than that of the obstacle in the lifting process.
Therefore, to ensure a safe delivering, the user tends to generate
more controlling commands by the hybrid Gaze-BMI. In the
approach with AR feedback, a virtual box, whose height is equal
to the altitude of the robotic gripper obtained from the Dobot
engine, was presented right in the middle of the virtual obstacle.
Furthermore, the height of the virtual box changes along with
the altitude of the gripper in real time. In this way, the user
can better perceive the status of the lifting process based on the
enhanced visual feedback. The results have revealed that all the
subjects can finish the lifting task in around 20 trigger commands
with AR feedback. By contrast, much more commands are used
in the same task with visual inspection only than the one with
AR feedback. The number of trigger commands used in the
lifting task with the AR feedback is also statistically less than
that without the AR feedback for each subject (ps1 = 0.0054,
ps2 = 0.0066, ps3 = 0.0089, ps4 = 0.0039, ps5 = 0.0135, ps6 =

0.0018, ps7= 0.0036, ps8= 0.0010).

FIGURE 8 | Comparisons of the number of trigger commands and the height gaps in the objects manipulation tasks between the system with AR feedback and those

with visual inspection only. The statistically significant performance difference has been marked by “*” (p < 0.05). (A) The number of trigger commands used in the

grasping process for each subject. (B) The number of trigger commands used in the lifting process for each subject. (C) The height gaps of gripper for each subject in

the object lifting process. (D) The height gaps of the gripper and the number of trigger commands used in the grasping and lifting processes averaged over all the

subjects.
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The height gap of the robotic gripper for each user is shown
in Figure 8C. The height gaps with AR feedback are generally
smaller than those with visual inspection only for all subjects,
which shows that the subject is capable of find out when to finish
the lifting process in time with less efforts based on the enhanced
visual feedback. Moreover, the results also show that the height
gaps in the lifting task are much more consistent across the
subjects with AR feedback than those without AR feedback. The
gripper height gaps obtained with AR feedback are statistically
smaller than those without AR feedback (ps1 = 0.0040, ps2 =

0.0066, ps3 = 0.0018, ps4 = 0.0040, ps5 = 0.0282, ps6 = 0.0018,
ps7= 0.0015, ps8= 0.0021).

Overall Manipulation Performance for All
Subjects
Figure 8D shows the average height gaps of the gripper as well
as the average number of trigger commands used in the grasping
and lifting processes for all the subjects with the system with or
without AR feedback. The average height gap of the gripper is
<4mm with AR feedback, whereas it is more than 9mm when
only the visual inspection is provided, leading to a reduction
in more than 50%. The average number of commands for all
subjects decreases from 26.75 to 18.28 and 30.92 to 18.12 in
the grasping and lifting processes, respectively. Furthermore,
the standard deviation of the number of commands with AR
feedback is smaller than that without AR feedback. This is
because different subjects may have different understandings of
the current task status with visual inspection only. By contrast,
it is easier for all the subjects to perceive the task status with
AR feedback, and to take advantage of the feedback information
provided by AR interface in completing the grasping and lifting
tasks. Therefore, the performance with AR feedback of all the
subjects is more consistent than that with visual inspection
only, indicating that the AR feedback indeed can enhance the
performance of the hybrid Gaze-BMI controlled grasping and
lifting processes in the objects manipulation tasks.

DISCUSSION

Subject Variability of the Manipulation
Performance
Firstly, we will illustrate the necessity to remove the subject
variability effect of the BMI decoding when evaluating the
manipulation performance for the systems with or without
the AR feedback. It is well-known that there is the BMI
decoding performance variability across the subjects (Huster
et al., 2015; Ouyang et al., 2017), which is also the case for
our implementation of BMI (see subsection The Classification
Performance of the BMI). Because the aim of our online
experiments is to testify the possible manipulation performance
improvement by introducing the AR feedback to the hybrid
Gaze-BMI based robotic arm control system, the subject
variability factor associated with the BMI decoding should be
removed. To this end, the number of trigger commands used
in both the grasping and the lifting process, and the height
gaps of the robotic gripper in the lifting process were utilized as

the indices for the system manipulation performance, since the
commands only can be triggered when the motor imagery state
has been detected successfully.

Secondly, the subject variability on the manipulation
performance of the complete system will be discussed. As can be
observed from Figure 8, these three manipulation performance
indices are almost consistent across subjects when the AR
feedback is provided in the system, whereas this is not the case
for the system without the AR feedback. This is mainly due to
the reason that the AR feedback can provide the timely hints
for the user to switch on the next action. For example, once the
subject observes the arrows overlaid over the gripper, which
simulate the grasping force between the gripper and the object,
the subject can stop generating the trigger commands by the
hybrid Gaze-BMI. By contrast, when there is no AR feedback
provided, the user has to rely on their own perception of the
grasping status by normal visual inspection only. As a result,
the manipulation performance of the system without the AR
feedback has demonstrated significant subject variability.

AR Feedback vs. Visual Inspection Only
The objects manipulation tasks with AR feedback and with visual
inspection only are performed by the subjects, respectively. In
this work, AR feedback is presented in the real scene, which
will help the user to understand the meaning of the feedback
information. The most significant advantage of AR feedback
is that it can provide abundant and flexible information for
the patients in an intuitive way via the visual communication
channel. In specific, the change in color of the virtual rectangle
surrounding the objects indicates the user’s conformation of the
selected objects, the width of a virtual box is used to represent
the aperture of the gripper, the arrow stands for the simulated
grasping force in the contacted phase, and the virtual box, whose
length is the same as the altitude of the gripper, is overlaid right
in the middle of the virtual wall. For the object manipulation
tasks, the grasping and lifting processes are executed manually
by the hybrid Gaze-BMI users with AR feedback. The hybrid
Gaze-BMI can provide a sufficient degree of flexibility for the
robotic arm control with the combined gaze selection and BMI
control strategy. Meanwhile the subject can utilize the enriched
visual information provided by the AR interface to establish the
closed-loop control. The performance of the hybrid Gaze-BMI
based system using AR feedback is improved notably compared
to the one without AR feedback, in terms of both the number of
commands used in the controlling process and the height gap of
the robotic gripper.

It is necessary to point out that the AR feedback is not a rigid
requirement in the objects manipulation tasks according to our
experimental results, because the subject can also complete the
tasks without AR feedback. However, the performance of the
proposed method is improved significantly with the enhanced
visual feedback. When no AR feedback is provided, the BMI
users tend to rely exclusively on the visual feedback. However,
the object may be hided from the field of view by the robotic
gripper, in addition, it is hard to estimate the difference between
the altitudes of the gripper and the height of the obstacle with
the normal visual inspection only. Therefore, this approach may
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contribute to time-consuming and ineffective performance, thus
increasing the workload on the BMI user. The experimental
results has demonstrated that the closed-loop control for the
grasping and lifting tasks can be achieved by the hybrid Gaze-
BMI based system integrating with the AR guiding assistance.
Furthermore, the performance of the BMI user with the enhanced
visual feedback is improved significantly over that with visual
inspection only.

Fully Automatic Control vs. Manual Control
Previous studies have demonstrated that subjects can perform the
objects manipulation tasks using the BMI. The object is selected
in the workspace using gaze tracking (McMullen et al., 2014)
or using EEG P300-evoked response to the visual cue over the
object (Lenhardt and Ritter, 2010; Ying et al., 2017). In those
studies, once the object is confirmed by the BMI user, the task
will be completed by the robotic arm automatically without the
user’s intervention, which may fail to improve the user’s level
of gratification (Kim et al., 2012; Downey et al., 2016). Rather
than completing the task automatically, we divide the task into
five phrases. For the grasping and lifting tasks requiring fine
operations where the human supervisory is desired, they are
controlled by the BMI users manually. For the less demanding
tasks, such as reaching, delivering and releasing, are completed
by the robotic arm automatically once the movement intention is
detected from the EEG signals.

The main challenge of the manual control is that the feedback
information from the visual inspection only is not sufficient
for the user, which may lead to time-consuming and ineffective
grasping and lifting tasks (Johansson and Flanagan, 2009).

In order to achieve an effective and efficient manual control
in the grasping and delivering processes, AR feedback is used to
provide the user with the enhanced visual feedback information
about the current status of the tasks. Specifically, the aperture
and the altitude of the gripper are controlled manually by the
user, and the user can decide when to stop the current action and
switch to the next action by means of the information providing
by AR interface. In this way, the user is able to maintain as much
control as possible in the grasping and lifting processes via the
hybrid Gaze-BMI, while obtaining the feedback information via
the AR interface.

Comparison with Other BMI Systems
It is important for patients working with assistive devices to
restore their ability for performing activities of daily living such
as objects manipulation. Patients with severs motor disabilities
cannot fully benefit from assistive devices because of their limited
access to the latest assistive products (Millan et al., 2010). To solve
the problem, many researchers have focused on BMI based on
both invasive and non-invasive neural signals (Nicolas-Alonso
and Gomez-Gil, 2012; Chaudhary et al., 2016).

For the invasive BMI, the neural activities of the brain are
measured using the electrodes placed on the surface of the
cerebral cortex or implanted directly into the gray matter of
the brain. Then the acquired neural signals are used to control
the robotic arm continuously in three dimensional (Hochberg
et al., 2012; Collinger et al., 2013; Downey et al., 2016). In

Hochberg et al. (2012), the neural activity is collected with the
implanted microelectrode array, and the endpoint velocity of the
robotic arm is continuously mapped from the decoded neural
activity without other assistance. However, it is very difficult to
establish a fine continuous mapping for the low-level control of
the robotic arm from the noisy neural activities, two tetraplegia
and anarthric patients can only complete the tasks in about 60%
trials. Moreover, it has to implant the electrodes via surgical
procedures with medical risks.

For non-invasive BMI, various modalities have been
proposed such as fMRI, fNIRS, MEG, and EEG (Nicolas-
Alonso and Gomez-Gil, 2012). Although fMRI and MEG
have better spatial resolution compared with EEG, these
two methods need expensive equipment which is non-
portable (Muthukumaraswamy, 2013). fNIRS is a relative
new measurement method which employs infrared light to
characterize non-invasively acquired fluctuations in cerebral
metabolism during neural activity. Though fNIRS uses low cost
equipment and an acceptable temporal resolution, one of the
major limitations of fNIRS based BMI is the inherent delay of
the dynamic response (Naseer and Hong, 2015). Therefore, the
EEG signals by placing the electrodes on the surface of the scalp
are mostly studied, due to its high temporal resolution, few risks
to the user and requires less expensive equipment.

It has been shown that the EEG signals acquired during
multiple types of motor imagery tasks can be decoded for moving
the robotic arm in multiple directions (Wang et al., 2012).
Nevertheless, it is difficult to achieve an accurate classification
of multiple mental states using EEG signals of poor signal-to-
noise ratio. Furthermore, it is a challenging task in practice for
the BMI user to switch among multiple mental states constantly.
It is much easier to implement a 2-class based BMI, but it lacks
sufficient flexibilities for controlling the robotic arm. Therefore,
the hybrid Gaze-BMI is used in our study: the user’s gaze points
on the monitor are provided by the eye-tracking for the object
selection, and themovement intention of the user can be detected
by the BMI for confirming the selected object or initiating the
control command to be executed on the selected object.

Limitations and Future Work
One of the drawbacks of our study is that AR feedback is provided
to the subjects via the computer monitor. It will reduce the
hommization of this system and limit the scope of application
to communication with the assistive devices via the computer
monitor. Besides, we are also aware that patients may interact
with various objects with different size and colors in activities
of daily living, while the object manipulated in this study are of
the same size. Besides, the AR feedback in our paper is based on
the difference between the width of the objects and the gripper
aperture, whichmay limit the usability of this method in activities
of daily living.

The purpose of our study is to find out whether the hybrid
Gaze-BMI user can benefit from AR feedback to perform
the closed-loop control in the grasping and lifting tasks.
Such a functional ability will be enhanced with the following
improvements in our future work. Firstly, the ponderous
computer monitor can be replaced by the wearable AR glasses
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integrated with eye tracking to increase the flexibilities and
the scope of application. Secondly, the gripper with pressure
sensors will be used to monitor the grasping status, and the real
force generated in the contacting phrase will be presented to
the user using AR techniques. Thirdly, the participants in this
study are all healthy individuals, the feasibility of this method
will be evaluated on the patients with motor impairments after
stroke. Lastly, the performance of the proposed system will be
integrated with other kinds of feedback interfaces, such as the
haptic feedback, the auditory feedback, and so on.

In addition, the hybrid Gaze-BMI and the proposed AR
feedback method for the assistive robot used in our paper can
be seamlessly applied for the rehabilitation robot. For example,
patients use eye gaze to indicate a desired position in a real
environment setting, the robotic arm exoskeleton can be used
to assist the patients to perform the reaching movement along
online human-like generated trajectories when the self-initiation
movement intention is detected with BMI. Besides, the wearable
AR glasses can be exploited for the user to provide AR feedback
for the operation status in order to implement an effective closed-
loop control.

CONCLUSION

In this paper, we have proposed a novel AR guiding assistance
for closing the hybrid Gaze-BMI based robotic arm control
loop. The subjects are trained to reach, grasp, lift, deliver
and release an object while avoiding the obstacle in the
workspace, by operating a robotic arm with the hybrid
Gaze-BMI. Instead of perceiving the current states of the
tasks by the visual inspection only, the AR interface has
been established in the real scene from the workspace to
feedback the current gripper status for the subjects. The hybrid
Gaze-BMI users are instructed to rely on the AR feedback
information while accomplishing the objects manipulation
tasks.

The experimental evaluation of the complete setup was
conducted with eight healthy subjects. The average BMI
classification accuracy across the subjects is 85.16 ± 4.83%. The
number of trigger commands used for controlling the robotic
arm to grasp and lift objects with AR feedback has reduced
significantly compared to that without AR feedback, and the
height gaps of the gripper in the lifting process have decreased
more than 50% compared to those trials with normal visual
inspection only. The results have revealed that the hybrid Gaze-
BMI user can benefit from the information provided by the
proposed AR interface, improving the efficiency and reducing the
cognition load during the hybrid Gaze-BMI controlled grasping
and lifting processes.
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