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A major challenge in robotics and computational neuroscience is relative to the

posture/movement problem in presence of kinematic redundancy. We recently

addressed this issue using a principled approach which, in conjunction with nonlinear

inverse optimization, allowed capturing postural strategies such as Donders’ law. In

this work, after presenting this general model specifying it as an extension of the

Passive Motion Paradigm, we show how, once fitted to capture experimental postural

strategies, the model is actually able to also predict movements. More specifically,

the passive motion paradigm embeds two main intrinsic components: joint damping

and joint stiffness. In previous work we showed that joint stiffness is responsible for

static postures and, in this sense, its parameters are regressed to fit to experimental

postural strategies. Here, we show how joint damping, in particular its anisotropy, directly

affects task-space movements. Rather than using damping parameters to fit a posteriori

task-space motions, we make the a priori hypothesis that damping is proportional

to stiffness. This remarkably allows a postural-fitted model to also capture dynamic

performance such as curvature and hysteresis of task-space trajectories during wrist

pointing tasks, confirming and extending previous findings in literature.

Keywords: kinematic redundancy, postural synergies, Donders’ law, posture, movement, pointing

1. INTRODUCTION

Recent trends in both industry and healthcare clearly show the need for robots to be able
to cooperate and assist humans in specific tasks. In order to do so, not only our robots will
need to be safe-by-design, incorporating for example compliant mechanisms (Haddadin et al.,
2010; Vanderborght et al., 2013) and force/impedance control architectures (Ficuciello et al.,
2015) (as opposed to the current rigid and position-controlled deployed in industry) but will
also need to behave naturally. In other words, while working with a robot, human operators
not only need to be safe at all times, but shall also feel comfortable. As an example, imagine
a robotic assistant designed to hand-over tools to a human operator. It is quite important
for the robot to assume natural postures, which carry non-verbal semantics very valuable to
human operators (the same object can be passed in different ways, for different purposes). For
this and other reasons, in the last decades, roboticists have started looking into human motor
strategies as a source of inspiration for the formulation of bio-inspired postural/motion controllers
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(Khatib et al., 2004; Schaal and Schweighofer, 2005; Kim et al.,
2011, 2013; Zanchettin et al., 2013).

Another characteristic of modern robots is that they are
general-purpose (unlike, for example, a CNCmachine) and often
bear human-like functionalities, if not resemblance. In this paper
we shall be mainly interested in robotic manipulators. Currently,
many commercial robotic arms are made available (in single or
bimanual configuration) with kinematic similarities to human
arms (Smith and Rooks, 2006; Albu-Schaffer et al., 2008). One
of the specific similarities lies in the degrees-of-freedom (DOF),
typically 6–7 in current robotic manipulators, and the kinematic
redundancywhich comes with it when dealing with most of tasks.
The coordination of redundant degrees-of-freedom is a central
topic in both robotics and neuroscience and we are interested in
two specific aspects: the redundancy problem (Bernstein, 1967)
and the posture/movement problem (Ostry and Feldman, 2003).
This issue was first addressed by the authors in a recent work
(Tommasino and Campolo, 2017) where a principled approach
was proposed to tackle these very issues with focus on capturing
human-like postural strategies: static (or equilibrium) postures
satisfying a given (static) task constraint. In this work, we shall
specialize the computational model and extend our previous
results to the problem of movement generation: given a desired
task constraint, find human-like motions (and postures), both in
task and joint space, that brings the current robot posture to the
desired task-space target.

The Robotics Approach to Kinematic
Redundancy
Motions for robotic manipulators are typically planned in task-
space as it is much easier and intuitive to define a trajectory for a
robotic end-effector than for its multiple (and often) redundant
joints. For example, if we want a robotic manipulator to reach for
a given object we can easily program the robotic gripper to follow
a desired task-space path xd with a given task-space velocity
ẋd rather than programming the trajectory of each individual
joint. However, due to kinematic redundancy, mapping the
desired task trajectory in joint space is challenging as infinite
combinations of joints trajectories are possible for the same task-
space trajectory. This issue has a very long history in robotics
and it has been tackled by roboticists, either at the kinematic
or at the force level, with a local optimization approach and
the use of weighted pseudo-inverses of the Jacobian matrix of
the robot manipulator (Klein and Huang, 1983; Nenchev, 1989;
English and Maciejewski, 2000). For instance, a simple way to
map a desired task trajectory ẋd in joint space is: q̇d = J#W(q)ẋd,
where J#W is any W-weighted generalized pseudo-inverse of the
Jacobian matrix J. However, it was soon realized that such
solution, although simple, very often results in non-holonomic,
or non-repeatable joint trajectories, i.e., the robot equilibrium
posture satisfying a given task-constraint is not unique but
depends on the path that robot followed before reaching the
desired task constraint (Klein andHuang, 1983;Mussa-Ivaldi and
Hogan, 1991). This type of solution is problematic especially for
cyclic task-space movements as non-repeatable joint motions can
result in instability and/or violations of joint constraints. At the

kinematic level, the problem of repeatability can be tackled by
planning an additional joint trajectory (or null-space motion) q̇0
that does not interfere with the planned task-space motions ẋ:
q̇ = J#W(q)ẋ + NW(q)q̇0 where NW(q) is the null-space projector
operator associated to the weightingmatrixW (Klein andHuang,
1983; Nenchev, 1989; English and Maciejewski, 2000)1. While
kinematic motion planning requires an execution level to track
the desired trajectory in joint space (such as computed torque
control or PD control (Murray et al., 1994), weighted pseudo-
inverses and null-space projectors can also be used to solve
kinematic redundancy at the force/torque level: τ = JT(q)F +

NT
W∇qh(q), where τ is the commanded joint torque, F is a task-

space force fields (Mistry and Schaal, 2015)2 that drives the
robotic end-effector along desired task constraints and ∇qh(q) is
the gradient of a real or virtual potential fields that is mapped
in the null-space of the Jacobian transpose matrix to achieve
repeatable joint motions.

In the last decade, task-space control has been extensively
used in robotics to generate human-like and/or adaptive robot
behavior (Schaal and Schweighofer, 2005) either at the tasks-
space level, in terms of adaptive trajectories (Peters and Schaal,
2007; Degallier and Ijspeert, 2010) and Cartesian impedance
(Calinon et al., 2013), then at the joint space level in terms of
null-space control and weighting matrix W (Khatib et al., 2004;
Nakanishi et al., 2008; Dietrich et al., 2015).

Kinematic Constraints and Computational
Approaches to Human Motor Control
In neuroscience is still debated whether the human brain adopts
a hierarchical approach to plan and control movements and
whether the brain plans and control task-space and null-space
motions independently (Jordan andWolpert, 1999; Mussa-Ivaldi
et al., 2011; Mistry and Schaal, 2015). The experimental evidence
that unconstrained planar reaching movements features straight-
line paths and bell-shaped velocity profiles led to the hypothesis
that the human brain plans hand movement in task-space, by
shifting the equilibrium position of the hand according to a
minimum-jerk trajectory. This trajectory would then be tracked
in joint space (hence at a lower level) by an impedance controller
that exploits muscle visco-elasticity [see the Equilibrium-Point
Hypothesis (EPH); Flash, 1987 for more details]. Later studies
however, showed that in other experimental conditions hand
movements were curved and models such as the minimum-
torque change (Uno et al., 1989) and the minimum-variance
(Harris and Wolpert, 1998) were able to capture these human
movement features by solving an optimal control problem
directly in joint space.

Postural Synergies: Donders’ law, Uncontrolled

Manifold and the Leading Joint Hypothesis
Postures are somewhat static, possibly accounted for as equilibria
of some potential field (Campolo et al., 2011), while movement

1Note that any positive-definite matrix can be used as weight and that in general

W is configuration-dependent.
2The task-space force field is usually generated by combining a desired task-space

trajectory with a task-space impedance.
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is in apparent contrast with the very concept of equilibrium.
The Posture/Movement problem stems out from the possible
interference of postural control mechanisms with general motor
strategies (Ostry and Feldman, 2003). In the last few decades,
various approaches have been proposed in computational
neuroscience as an attempt to reconcile posture and movement.

An extensive number of behavioral studies have shown that,
at the joint-space level, during kinematically redundant tasks,
humans adopt a stereotypical strategy that associates a unique
and path-independent posture to a given task (Hepp, 1990;
Haslwanter, 1995). This kinematic strategy is usually called
Donders’ law, since the Dutch ophthalmologist Donders showed
(1847) that for any steady gazing direction (task), the human eye
assumes a unique combination of elevation, azimuth, and torsion
angles (posture). Donders-like strategies have also been found for
pointing tasks involving the head (Ceylan et al., 2000; Crawford
et al., 2003), the wrist (Campolo et al., 2009), the shoulder (Hore
et al., 1992) and for pointing/reaching tasks involving the upper
arm (Liebermann et al., 2006; Ewart et al., 2016).

It has been suggested that the brain implements Donders’
Law as a flexible family of holonomic constraints (Medendorp
et al., 2000; Crawford et al., 2003) to solve redundancy as well
as to fulfill some optimality criteria that might vary in different
experimental scenarios and physiological conditions (Ceylan
et al., 2000; Medendorp et al., 2000; Wong, 2004).

From a computational perspective, Donders-like postural
strategies, can be captured by solving a constrained optimization
problem which returns the unique optimal posture that
minimizes a given (posture-dependent) objective function while
fulfilling a desired task-constraint (Cruse et al., 1990; De Sapio
et al., 2006; Campolo et al., 2011). Because this type of postural
models only computes static/equilibrium-configurations they are
usually not suitable for planning movements. Transport models
(Vetter et al., 2002) such as minimum-torque-change (Uno
et al., 1989), minimum-work (Soechting et al., 1995), minimum-
variance (Vetter et al., 2002), do provide a solution to the
Posture/Movement problem but, in their original formulation are
incompatible with Donders’ law as they predict path-dependent
equilibrium postures (Admiraal et al., 2004).

Kinematic constraints such as Donders’ law, suggest that
the brain may plan and control equilibrium postures directly
in joint-space, by constraining redundant postures to a sub-
manifold (Donders’ surface) of the joint-space. Experimental
studies involving redundant DOFs however, have also shown that
motor variability is always higher along task-irrelevant directions
(also known in human motor control as uncontrolled manifold)
of the joint-space rather than along task-relevant directions
(Latash et al., 2007). These results led to the Uncontrolled
Manifold hypothesis (Scholz and Schöner, 1999) according
to which the brain does not freeze redundant DOFs into a
holonomic constraint (such as Donders’ law) but instead uses
redundant DOFs to push “bad motor variability” (i.e., directly
affecting the task) along task-irrelevant directions of the joint
space. In other words, according to theUCMhypothesis the brain
would only stabilize elemental variables (such as joint rotations)
that directly affect task performance while leaving task-irrelevant
directions uncontrolled.

An alternative theory on how the brain may simplify the
control of redundant DOFs is the Leading Joint Hypothesis (LJH)
(Dounskaia, 2005). Central to the theory is the fact that link
segments are coupled to each other by non-linear interaction
torques so that motion in one joint unavoidably introduce
motions to nearby joints, especially for fast speed movements.
According to the LJH, the brain, depending on the specific task,
organizes joints hierarchically: the “leading” joint, typically a
proximal joint of the chain, is accelerated/decelerated as in a
single joint movement, hence neglecting interaction torques and
motions at the other joints. Subordinate joints instead, “monitor
the interaction torque effect and create net torque that results
in limb motion characteristics required by the task, including
movement direction, accuracy, and so on.” Although in line with
intuition, the LJH, to the best of authors knowledge, does not
really propose a computational framework.

Optimal Feedback Control and Passive Motion

Paradigm
The UCM and the LJH do provide theories of human
motor control and mathematical frameworks to analyse human
movements in terms of joint variability and leading/subordinate
joints respectively. However, very little is known on how
the brain may actually implement such motor strategies.
Optimal feedback control (OFC) is probably one of the most
accredited computational model of human motor control that
can reproduce both average trajectories of human reaching
movements and, to some extend, can predict the patterns of
motor variability typical of the UCM hypothesis (Todorov and
Jordan, 2002). Contrary to the robotics task-space control, in the
OFC framework there is no distinction between planning and
execution and task and joint space trajectories simply unfolds as
the optimal controller adjusts feedback gains to suit the overall
goals of the system. The OFC also predicts movement variability
in line with the UCM hypothesis as deviations from the average
trajectory are not correct by the controller if they do not affect
task performance (minimum intervention principle).

Although the OFC framework has been very successful
at modeling movement strategies typical of planar non-
redundant point-to-point reaching movements (Scott, 2004),
some computational studies have reported difficulties in solving
optimal control problem in the presence of both kinematic
redundancy and static forces (gravitational and/or elastic). This
is because, to hold the body still at equilibrium (i.e., at the
end of a movement), suitable boundary conditions must be
specified so that the optimal muscle forces can counterbalance
the static forces acting on the body (see Guigon et al., 2007 and
references therein). Recently, this Posture/Movement problem
has been tackled with the Separation Principle according to
which the brain processes static (i.e., configuration-dependent)
and dynamic (i.e., velocity-dependent) joint torques separately
(Hollerbach and Flash, 1982; Atkeson and Hollerbach, 1985;
Guigon et al., 2007). By combining the optimal control
framework with the Separation Principle, Guigon and colleagues
were able to implement human-like motor strategies in
redundant manipulators (Guigon et al., 2007; Taïx et al., 2013).
However, their approach, formulated at the joint-space level,
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results into path-dependent (i.e., dependent on the movement
history and initial body configuration) terminal postures and
therefore such an approach cannot predict kinematic synergies
such as Donders’ law.

An alternative theory to the OFC framework is the so-called
Passive Motion Paradigm (PMP) (Mussa-Ivaldi et al., 1988;
Mohan and Morasso, 2011; Morasso et al., 2015) PMP can be
considered a computational generalization of the EPH, in that
goals and kinematic constraints can be superimposed when viewed
as force-fields. First proposed in the 80 s (Mussa-Ivaldi et al.,
1988), the PMP has evolved over the years and has been proposed
as a theory of human trajectory formation and as bio-inspired
trajectory planner for redundant robots (Mohan and Morasso,
2007; Morasso et al., 2010; Mohan et al., 2011).

One of the major strengths of the PMP lies in its
computational simplicity. While full details of the PMP are
found in Mohan et al. (2011) and references therein, its basic
features are illustrated in Figure 1. In the standard PMPmodel, a
robotic manipulator is seen as a rigid structure (i.e., an arm-like
kinematic chain) with “intrinsic” properties defined at the level of
joint-space (e.g., joint angles q1, q2, q3) and “extrinsic” properties
defined at the level of task-space (e.g., actual and desired endpoint
postures x and xd, respectively). The redundancy problem is
solved by postural mechanisms implemented via the action
of an intrinsic impedance, for example in the form of purely
viscous (mechanical dampers) or viscoelastic (dampers and
springs) elements interconnected at joint level. On the other
hand, movement is planned at task-level and implemented by
an extrinsic impedance, F = K(xd − x) in Figure 1, acting as a
generalized spring which continuously drives the end-effector (at
some position x) toward the goal xd while the intrinsic impedance
takes care of postures.

The standard PMP comes in two forms, with the only
difference in terms of intrinsic impedance: one being purely
viscous and the other being viscoelastic. In the first case, it
can be easily shown (Tommasino and Campolo, 2017) that a
purely viscous intrinsic impedance solves the posture/movement
problem but is incompatible with Donders’ law (as it does
not yield repeatable postures). In the second case, the
intrinsic viscoelastic impedance ensures unique postures (due
to an elastic potential in joint-space) but does not solve the

posture/movement problem. A simple way to see this is that the
intrinsic springs “pull” the end-effector back to a rest position
(q∗), in contrast with the extrinsic spring which pulls the end-
effector toward a target xd. To ensure task completion (i.e.,
x = xd) one should set the target at a different location, say
xd′, so that the end-effector ends up being in equilibrium at the
planned target xd. Computing xd′ is not trivial and somewhat
blurs the separation between task and posture as xd′ depends on
both the intrinsic and the extrinsic elastic potentials.

An Extended Passive Motion Paradigm
(λ0-PMP)
One way to prevent the interference between intrinsic and
extrinsic elastic potentials is to block any effect of the intrinsic
potential onto the task. Inspired by the Separation Principle (of
static and dynamic torques) (Guigon et al., 2007), we recently
proposed the λ0-PMP model (Tommasino and Campolo, 2017),
an extension of the standard PMP. Experimental evidence
shows that the human brain processes static (or configuration-
dependent) and dynamic (or velocity-dependent) force fields
separately (Hollerbach and Flash, 1982; Atkeson and Hollerbach,
1985; Nishikawa et al., 1999; Kurtzer et al., 2005b). Because static
forces such as gravitational or elastic fields are predominant
during slow movements and are not affected by movement
speed, the Separation Principle (Guigon et al., 2007) has been
proposed as a simplifying control strategy for the brain to learn
new movements (Nishikawa et al., 1999), to efficiently time-
scale arm trajectories (Hollerbach and Flash, 1982; Atkeson and
Hollerbach, 1985) and to robustly cope with the effect of gravity
in different environments (Kurtzer et al., 2005a).

In literature, the Separation Principle is typically applied
at joint-space level (larger than task-space, dimension-wise,
when dealing with redundant manipulators), assuming that
static contributions (either due to gravity or to elastic fields)
are perfectly compensated for by the brain (or by the robot
controller) so that they can be removed from the dynamic
equations of the limb under control (Guigon et al., 2007; Taïx
et al., 2013). In our recent work (Tommasino and Campolo,
2017), we derived the λ0-PMP model by (i) re-framing the
problem within the constrained minimization framework and

FIGURE 1 | λ0-PMP as an extension of the Passive Motion Paradigm. (A) Example of a 3DOF human-like arm performing a redundant 2D reaching task. (B) Block

diagram of the general λ0-PMP model.
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applied the Lagrange Multipliers method; (ii) noting that the
Lagrange Multipliers λ define a task-space force field; (iii)
applying the Separation Principle to λ and defining a static task-
space force field λ0 (from which the name of the method). This
task-space force λ0, also highlighted in Figure 1 as an addition
to the standard PMP, produces partial compensation of joint
torques, blocking their effect only on the tasks space, leaving
joint torques free to act in the null-space, and driving the posture
toward minima of the potential without interfering with task-
space objectives. This captures the essence of postural synergies
such as Donders’ law which can now be seen as generated from a
joint-space potential combined with a task-space force field.

Scope of This Work and Contribution
With reference to Figure 1B, for the λ0-PMP, once the Jacobian
matrix J is defined (given the geometry of the manipulator and
of the task), the parameters which need to be determined are
the intrinsic stiffness matrix KJ ; the intrinsic damping matrix W
(or, equivalently, the admittanceW−1); and the extrinsic stiffness
matrix K. Although all these intrinsic and extrinsic parameters
are required to plan motion, this work will focus on the role
of intrinsic properties and in particular the intrinsic damping
matrixW.

In previous works, we focused on postural strategies and
showed howDonders’ Law can be captured via an intrinsic elastic
potential (Campolo et al., 2011; Tommasino and Campolo, 2016)
and how nonlinear inverse optimization can be used to determine
the coefficients of the intrinsic stiffness KJ to fit experimental
data (Tommasino and Campolo, 2017). In this work, we shift
our focus onmovement dynamics, which are primarily shaped by
the damping matrixW. Rather than trying to use the coefficients
of the matrix W as “extra degrees of freedom” to better fit
experimental data a posteriori, we assume a priori that damping is
proportional to stiffness, in line with experimental evidence (Tsuji
et al., 1995; Perreault et al., 2004; Tee et al., 2004; Peaden and
Charles, 2014). In other words, we hypothesize that the same
biomechanical factors which determine the “shape” of KJ (i.e., its
eigenvectors and eigenvalues) also determine the “shape” ofW.

With this hypothesis in place, the intrinsic stiffness still has
an “indirect effect” as it shapes the intrinsic damping matrix W,
whose dynamic effects are not blocked by λ0. We shall specifically
show how this mechanism determines curvature of task-space
trajectories during pointing tasks performed with the wrist, in
line with the experimental evidence also reported in literature
by Charles and Hogan (2010). Lastly, it should be noted that
any stable task-space force field can be used as a movement
planner and some possible choices have already been reported
in Tommasino and Campolo (2017). In line with the PMP, in
this work we assume that the task planner is a virtual elastic
field driving the end-effector toward the desired target. A detailed
comparison of different task-space planners will be reported in a
separate work.

2. MATERIALS AND METHODS

This section presents the λ0-PMP, a novel extension of the
Passive Motion Paradigm, and its specialization to wrist pointing

tasks which will be later used in a comparative analysis with
experimental data.

Although bearing remarkable similarities with the Passive
Motion Paradigm, the theoretical derivation of the λ0-PMP
follows a principled approach, described in detail in Tommasino
and Campolo (2017). However, this similarity allows presenting
our model as an extension of the PMP, facilitating readers already
familiar with the Passive Motion Paradigm itself. To this end,
Figure 1B highlights the differences between the two standard
PMP models (here denoted as PMP1 and PMP2) and ours.

λ0-PMP
One of the computational advantages of the PMP is its ability
to solve the redundancy problem without explicit kinematic
inversion and cost function computation (Mohan and Morasso,
2011). To see how this is accomplished, consider a redundant
manipulator with forward kinematics

x = FK(q) (1)

where x ∈ R
m is a given end-effector pose, q ∈ R

n is a given
manipulator configuration and the inequality m < n denotes
kinematic redundancy. As an example, Figure 1A shows a planar
human-like arm with a three-dimensional joint space (consisting
of three rotational joints q = [q1 q2 q3]

T) and with a two-
dimensional task-space encoding of the actual hand position x

and the desired hand position xd. Once the Forward Kinematics
(FK) of the manipulator is defined in relation to a specific task,
one can compute the task Jacobian, an n×mmatrix which maps
joint space velocities q̇ into task-space velocities ẋ:

ẋ =
∂FK

∂q
q̇ := J(q)q̇ (2)

The redundancy problem lies in the fact that, even with a full-
ranked Jacobian matrix, there might exist many (infinite) joint
velocities which result in the same velocity at the end-effector ẋ.
This problem can be solved with amechanical analogy, imagining
that a mechanical manipulator, with negligible inertia and purely
viscous (symmetric and positive-definite) joint impedance W
producing viscous joint torques Wq̇, is passively moved at the
end-effector with an imposed velocity ẋ. This action will produce
a unique joint velocity

q̇ = W−1JT(q)
(
J(q)W−1JT(q)

)−1

︸ ︷︷ ︸
B(q)

ẋ (3)

This type of redundancy solution is also known as a W-
weighted generalized pseudo-inverse (Klein and Huang, 1983;
Doty et al., 1993) but, rather than its derivation, here we want
to emphasize its physical interpretation. The highlighted term

B(q) :=
(
J(q)W−1JT(q)

)−1
represents the task-space damping,

i.e., the damping force perceived at the end-effector (task-space)
while imposing a task-space velocity ẋ and solely due to the
joint-space dampingW and its mapping via the Jacobian J(q).

To accomplish a task such as reaching for a target xd, a
simple way is to “pull” the end-effector toward the target with
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the action of an extrinsic spring K, producing a task-space force
F = K(xd−x) on the hand always directed toward the target. The
first and most basic form of PMP (Mohan and Morasso, 2011)
corresponds to the thin-line loop [denoted PMP1 and including
K, W−1, J(q) and JT(q)] in Figure 1B. This form of PMP can
solve redundancy but is incompatible with Donders’ law. More
details can be found in Tommasino and Campolo (2017) but it
is straightforward to see that, once on the target, i.e., x = xd,
no force is produced by the extrinsic spring (x − xd = 0) and
any posture q such that xd = FK(q) will therefore be maintained
indefinitely.

To guarantee unique postures, an elastic scalar potential
can be introduced in the joint-space, for example, via an
intrinsic stiffness matrix KJ at the joint-level. This will subject
the manipulator to joint torques τ el : = KJ(q − q∗) which
continuously drive the manipulator toward a given “rest”
posture q∗ (an equilibrium for the intrinsic elastic potential).
The addition of elastic joint torques τ el leads to the second
form of PMP, denoted as PMP2 and highlighted in Figure 1B.
As shown in Tommasino and Campolo (2017), this solves
redundancy and accounts for Donders’s law but does not solve the
posture/movement problem due to the contrasting effect of the
extrinsic spring K, which pulls the end-effector toward the target
xd, and intrinsic stiffness KJ which pulls the whole manipulator
toward the “rest” posture q∗. It is easy to show that, in general, xd
is not an equilibrium for the system. If x = xd, then the extrinsic
spring K will produce no force (xd − x = 0) and the effect of the
intrinsic stiffness KJ on the task will not be contrasted, moving
the end-effector away from xd.

The unwanted interference due to intrinsic elastic torques τ el

can be removed by adding the task-space force:

λ0 := B(q)J(q)W−1
τ el (4)

The task-force λ0 is the last piece of the puzzle needed to
complete the description of the λ0-PMP model shown in
Figure 1B. For a complete theoretical derivation, the reader
should refer to Tommasino and Campolo (2017), here we only
wish to provide its physical intuition. As mentioned above,
τ el is an elastic torque field responsible for Donders’ law, in
the sense that it constantly drives the manipulator toward
“natural” or “comfortable” postures (Campolo et al., 2011). In
doing so, however, it also interferes with the task completion
(posture/movement problem). In order to block its effect only in
the task-space (so, preserving Donders’ law in joint-space) one
could proceed as follows: the elastic torque τ el, if unblocked,
would produce a joint velocity q̇el = W−1

τ el with a resulting
task velocity ẋel = J(q)q̇el. The task-force λ0 can be seen as
the force needed to contrast the (task-space) damping force
B(q) ẋel = B(q)J(q)W−1

τ el. The novel concept of a task-space
force λ0 is very useful as it provides a force perspective which
allows other force-control strategies to be simply superimposed
onto our postural mechanisms. The extrinsic spring force F =

K(xd − x) plays the role of Task Planner. In fact, as shown in
Tommasino and Campolo (2017), other type of force-control
strategies could be superimposed, such as a visco-elastic task-
space force field or an optimal force field planner minimizing the

total task-space force moving the end-effector toward the desired
target.

Remark: With reference to the diagram in Figure 1B, the
task-space damping B(q) in Equation (3) transforms task-space
velocities ẋ into task-space forces which balance out the effect
of the extrinsic spring K, leading to the following task-space
dynamic equation:

B(q)ẋ = K(xd − x) (5)

Although the task-space damping is posture-dependent and
more equations are needed to fully solve the dynamics, some
remarkable properties can already be noted: (i) the task-
damping B(q) in Equation (3) directly depends on the intrinsic
dampingW which, therefore, directly affects task-space dynamics
(Equation 5); (ii) the intrinsic stiffness KJ does not appear
in Equation (5) and therefore does not directly affect the
task dynamics, however, it does it indirectly through postures
adjustments in the null-space which affect the Jacobian and
therefore B(q).

Although in this work we only consider elastic joint-space
potentials, other potentials (for example due to gravity) and their
gradient can be simply added in parallel to the elastic torque
τ el in Figure 1 and, the λ0 would only block, in task-space, the
effects of these posture-dependent torque fields but not velocity-
dependent (i.e., dynamic) torques, such as viscous effects due to
W. The reader is referred to our previous work (Tommasino and
Campolo, 2017) for this and other details. The role of the λ0 also
offers a force field perspective to the UCM and LJH hypothesis.
By compensating only the task-space components of intrinsic
potential fields, the null-space is left uncontrolled and motions
along task-irrelevant directions are due exclusively to the passive
dynamics of the limb under control.

Application to Wrist Pointing Tasks
Building on previous experimental and computational studies
(Campolo et al., 2009, 2010, 2011; Charles and Hogan, 2012;
Formica et al., 2012; Tommasino and Campolo, 2017), we are
specifically interested in capturing human-like motor strategies
during pointing tasks performed with the wrist. To implement
the model in Figure 1B, we shall first determine the Jacobian J
from the forward kinematics; the intrinsic stiffness (KJ) matrix
and the rest posture q∗; the damping (W) matrix as well as the
extrinsic stiffness matrix K.

Forward Kinematics
With reference to Figure 2, we assume that the wrist is used to
point a virtual laser beam onto a point on a computer screen,
i.e., a two-dimensional task-space of coordinates x = [x1 x2]

T ∈

R
2. The human wrist is modeled as an ideal, three-dimensional

gimbal comprising the following three orthogonal, rotational
axes (from proximal to distal):

– the Prono-Supination (PS) axis, aligned along ex := [1 0 0]T ;
– the Flexion-Extension (FE) axis, aligned along ez := [0 0 1]T ;
– the Radial-Ulnar-Deviation (RUD) axis, aligned along

ey := [0 1 0]T .
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FIGURE 2 | Center-out task and kinematic spaces involved in wrist pointing. 3D wrist configurations can be equivalently expressed in terms of 3× 3 rotation matrices

R(q), rotation vectors r or joint rotations q. The forward kinematics x = FK(q) maps 3D wrist orientations onto the 2D task, expressed in screen coordinates x. Adapted

from Campolo et al. (2011).

The joint-space is therefore three-dimensional and can be
described via a joint vector q = [qPS qFE qRUD]T ∈ R

3 or,
alternatively, via rotation vectors (Campolo et al., 2010, 2011).
as shown in Figure 2.

The forward kinematics (Equation 1) for a 3DOF wrist at
distance d = 1 m and initially pointing in the [1 0 0]T direction
can be written as

[
x1
x2

]
=

[
0 −d 0
0 0 d

]

︸ ︷︷ ︸
screen projection

·R(q) ·



1
0
0


 (6)

where R(q) represents the 3D hand orientation, computed
as R(q) = exp(−̂exq

PS) exp(̂ezq
FE) exp(̂eyq

RUD) where the
exponential notation exp(̂e θ) represents the rotation about an
axis e by and angle θ (Murray et al., 1994). Further details are
given in Campolo et al. (2011) and references therein. Once
the forward kinematics is given, the Jacobian can be analytically
computed based on its definition given in Equation (2).

Subject-Specific Intrinsic Stiffness KJ and Rest

Posture q∗ from Experimental Data
For the 3DOF wrist, the intrinsic stiffness (as well as the
damping) is represented by a 3 × 3 symmetric matrix. The
rest posture q∗ represents the posture (three joint angles) of
minimum elastic energy. Using nonlinear inverse optimization
(NIO) techniques (Tommasino and Campolo, 2016), a subject-
specific matrix KJ and rest posture q∗ can be directly derived
from experimental data. As detailed in Tommasino and Campolo
(2016), experimental data consisting of thousands of data points
are fitted to a quadratic surface, typically used in literature to
encode Donders’ law. This can be seen as an extreme down-
sampling of experimental data and the resultant quadratic surface
can be seen as an average Donders’ surface. The reader is referred

to Tommasino and Campolo (2016) for the detailed procedure
based on nonlinear inverse optimization. One thing to highlight
is that it is the relative ratio between eigenvalues of KJ which
determines a specific Donders’ law, not the absolute values. For
this reason, the trace of the matrix can be set to any arbitrary
(positive) number. To be in line with biomechanical (passive)
stiffness values found in literature (Peaden and Charles, 2014),
we set this value to be trace(KJ) = 4 Nm/rad.

Damping W and Intrinsic Time Constant
While the intrinsic stiffness matrix is derived directly from a
fitting process of experimental data, for the intrinsic damping
matrix W, rather than trying to use the coefficients of the
matrixW as “extra degrees of freedom” to better fit experimental
data, we assume that damping is proportional to stiffness, in line
with experimental evidence (Tsuji et al., 1995; Perreault et al.,
2004; Tee et al., 2004; Peaden and Charles, 2014). In other
words, we hypothesize that the same biomechanical factors which
determine the “shape” (in terms of eigenvectors and eigenvalues)
of KJ will determine a similar “shape” for W. For this reason we
set the damping to be proportional to the intrinsic stiffness

W = τ0K
J (7)

where τ0 is a scalar (positive) value with the units of time, and
can be therefore thought of as an intrinsic time constant. The
reason is that, for a simple scalar, linear spring-damper system,
the ratio between damping and stiffness determines exactly the
time constant of the system.

Extrinsic Stiffness K and Task-Space Dynamics
The extrinsic stiffness K is responsible for the task-space
dynamics together with the task-space damping B(q), as
highlighted in Equation (5). However, B(q) is determined once
J and W are given, as in Equation (3). In this work, we are
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considering very simple center-out tasks, as described below.
As there is no a priory preferential direction in the task-space,
we shall consider an isotropic extrinsic stiffness K, although
other choices of task planners are possible (Tommasino and
Campolo, 2017) and will be the focus of future works. When the
extrinsic stiffness is constant, our computational model predicts
trajectories that evolve in time according to a first order dynamic
typical of a visco-elastic system with constant parameters. In
other words, the desired target is reached with an exponential
velocity profiles that decays to zero only after an infinite amount
of time. This feature is clearly not bio-inspired as biological
movements are characterized by bell-shaped velocity profiles. In
the PMP, Morasso and colleagues have overcome this issue with
the introduction of a time base generator, i.e., a time-dependent
gain matrix that rescales end-effector velocities according to
a minimum-jerk profiles (Morasso et al., 2010). However, in
this work we pursue the approach proposed by Arimoto et al.
(2005), as it could reproduce velocity profiles more similar to our
experiments. More specifically, a time-varying extrinsic stiffness
matrix:

K(t) = k ·

(
1− e−

t
τ −

t

τ
e−

t
τ

)
·

[
1 0
0 1

]
(8)

with the property of increasing its stiffness value from zero to k
with an extrinsic time constant τ (notice that when pointing to a
new target the time t is reset to zero), is used to avoid first order
dynamics typical of visco-elastic systems with constant stiffness
and damping parameters.

Example: Anisotropic Damping and Curved
Task-Space Trajectories
As an example, Figure 3 shows the trajectories predicted
via the λ0-PMP with an anisotropic intrinsic damping W.
More specifically, every outbound and inbound movement was
simulated for a duration T = 0.4 [s] , and with time-constants
τ = τ0 = 0.08 [s], i.e., one-fifth of T. The anisotropic damping
W was set according to Equation (7) as:

W = τ0K
J = 0.08



0.5 0 0
0 1.5 0
0 0 2


 Nms

rad
(9)

hence proportional to an anisotropic intrinsic stiffness KJ . The
rest posture was set as q∗ = [5 0 0]T [deg] and the scalar stiffness
k = 22.5[Nm

rad
].

As shown in Figure 3A the anisotropic damping results
into paths of different degree of curvature depending on the
specific movement direction. Moreover, outbound and inbound
movements follow different paths, especially along the (NW-
SE) and (SW-NE) directions. Figure 3B shows the joint space
trajectories predicted by the model and Figure 3C shows that
task-space tangential velocity profiles are bell-shaped thanks to
the time-varying stiffness K(t) (Arimoto et al., 2005).

3. COMPARATIVE ANALYSIS OF
TASK-DYNAMICS: EXPERIMENTAL
POINTING TASKS VS. DONDERS-FITTED
λ0-PMP MODEL PREDICTIONS

In this section, we will compare the average experimental task-
space trajectories, as previously measured in Campolo et al.
(2011) from human subjects during wrist pointing tasks, with
those predicted via a Donders-fitted λ0-PMP model, i.e., a λ0-
PMP model for which the only postural parameters are fitted
to capture the Donders’ law for a specific subject. The major
limitation of our previous model (Campolo et al., 2011) is that
it was limited to static postures, while our current λ0-PMPmodel
can also generate movements.

The main hypothesis is that a Donders-fitted model λ0-PMP,
i.e., fitted to only capture postural strategies, is also able to
display path dynamics such as curved task-space trajectories as
experimentally found by Charles and Hogan (2010). A major
difference with their experimental paradigm is that their subjects
only used FE and RUD movements, as PS movements were
restrained, so it was not a redundant task. In our case, subjects
are free to rotate the forearm about the PS axis, adding a degree
of redundancy.

Donders-Fitted λ0-PMP Model for
Wrist-Pointing Tasks
Our λ0-PMP model in Figure 1B requires specification of a
Jacobian [J(q)], a task-planner (K) as well as intrinsic damping
(W) and intrinsic postural parameters (KJ and q∗). Once
specialized to wrist-pointing tasks and ideally assuming a
similar wrist structure for all subjects, the forward kinematics
(Equation 6), and therefore the Jacobian J(q), will be the same
for all subjects. On the other hand, we shall fit subject-specific
postural parameters KJ and q∗. Note that these parameters alone
only capture Donders’ law, i.e., they can identify optimal postures
for giving pointing directions (Campolo et al., 2011; Tommasino
and Campolo, 2016) but cannot tell where to point. The actual
motion, in particular the geometry of task-space trajectories, will
be shaped by the task dynamics (Equation 5). Here, rather than
fitting every single movement a posterioriwith a specific damping
W, we make the a priori hypothesis that intrinsic damping is
proportional to intrinsic stiffness, via an intrinsic time constant
as in Equation (7).

As shown in Equation (5), task-space dynamics depend on K
and on B(q) which, in turn, depends on the intrinsic damping
W via Equation (3). For the task-planner, we shall assume an
extrinsic K(t) as in Equation (8) hence isotropic and therefore
not directly responsible for path curvatures. Both the intrinsic
and extrinsic time constant, in Equations (7), (8) respectively,
affect the speed of the simulated trajectory, in particular, the time
required for the simulated wrist, to reach the target in “steady-
state” (i.e., an equilibrium posture compatible with Donders’
law) after the beginning of the movement. In general, movement
speed can be target and subject specific, hence we set both time
constants to be proportional to the average movement duration
Tsj that subject s needs to point to the target j. More specifically,
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FIGURE 3 | Task space paths (A), joint trajectories (B) and task-space tangential velocity profiles (C) predicted via the λ0-PMP with the anisotropic damping W of

Equation (9).

we heuristically found that, by setting τ = τ0 = Tsj/5 the
model predicts both task-space and joint space dynamics that
are compatible with the experimental ones (see results below).
Similar to Equation (7), we used the time-constant τ0 to tune the
scalar stiffness k in Equation (8) as:

k = bmax/τ0 (10)

where bmax is the maximum eigenvalue of the matrix B(q0) and
q0 is the initial wrist configuration prior to the starting of the
movement. Therefore, k was set on a subject-specific (because
of B(q)) and movement-specific basis (because τ depends on the
average time T that the subject needs to perform the movement).

We know that our model predicts curvatures in task-space, as
shown in Figure 3. We shall now compare the average curvature
displayed by a specific human subject with the curvature
predicted by our λ0-PMPmodel, onceDonders-fitted to a specific
subject.

Experimental Protocol
We asked six subjects to perform center-out pointing tasks
toward nine targets on a computer screen. As shown in Figure 2,
the nine targets consist of a central target and eight peripheral
ones arranged over a circle (with a radius of 15◦) and oriented
along the eight cardinal directions, i.e., North (N), NorthEast
(NE), etc., which also define the naming convention).

Each subject performs 10 trials at self-paced speed. Each trial
consists of eight outbound movements (from the center to a
peripheral target) and 8 inbound movements (from a peripheral
target to the center). In a trial, each peripheral target is visited
only once and an outbound movement is always followed by
an inbound movement. The order in which targets are visited

is computed prior to the start of the trial as a pseudo-random
permutation.

Throughout the experiment, subjects grasp a light-weight 3D
printed handle mounting an inertial measurement unit (IMU)
that records hand orientations R(q), with respect to the fixed
reference frame, at 120Hz. A computermonitor is used to display
the center-out task to the subject. The visual feedback consists of
the desired target position (a red circle) and the current location
pointed at by the subject (a yellow circle). The current location is
displayed at coordinates x = [x1 x2]

T computed as in Equation
(1), is updated realtime via Equation (6), where R(q) is sensed by
the IMU.

Data Analysis
In this work, we are mainly interested in task-space dynamics, in
particular the fact that trajectories during pointing tasks with the
wrist appear more curved than in similar tasks performed with
the arm (Charles and Hogan, 2010).

Movement Start and End Times
To this end, we follow the same data analysis method proposed in
Charles and Hogan (2010). Specifically, the recorded kinematic
data is first filtered with smoothing splines (Dohrmann et al.,
1988; Charles and Hogan, 2010) to ease numerical differentiation
in estimating task-space velocity profiles. The starting and ending
times of a movement are identified from the task-space tangential
velocity profiles: the start of movement is set to occur at the time
of the first data sample before the velocity peak with a value below
20% peak velocity. Similarly, the end of a movement is set to
occur at the time of the first data sample after the velocity peak
with a value below 20% the peak velocity. Movements featuring
a path length and/or a duration beyond two interquartile from
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the (subject-specific) median were excluded from the analysis.
To compute the average trajectory of a movement, the data was
normalized with respect to the movement time and then linearly
interpolated at 20 equally temporally spaced samples.

Path Curvature and Hysteresis
To assess path curvature in task-space, we follow the method
proposed in Charles and Hogan (2010) to test whether task-space
paths are on average curved and if so, whether outbound and
inbound movements had different direction of curvatures. More
specifically, since each movement occurs between two targets, we
consider the straight-line connecting the two targets and directed
from the initial target to the final one. This direction is used to
determine whether the actual movement is on the left or on the
right of the straight line, as depicted in Figure 4. In particular,
we shall consider the whole area enclosed between the actual
movement and the straight line and split this area into “right”
area (AR), i.e., the enclosed area to the right of the straight line
and “left” area (AL) as the enclosed area to the left of the straight
line. Both left and right areas are defined non-negative and are
normalized with respect to the square of the nominal target-to-
target distance (( π

12 )
2 [m2]). For each movement, either inbound

or outbound, we compute the following measures:

– total area Asum : = AR + AL (non-negative by definition),
indicating deviations of the actual movement from the
straight-line.

– net area Anet := AR − AL, indicating tendency of a path to
deviate more on the right (Anet > 0) or to the left (Anet < 0).

Finally, since an outbound movement is always followed by an
inbound movement, we also consider the path hysteresis defined
as Ahyst : = AOUT

net + AIN
net , i.e., the area enclosed in between

outbound and inbound paths.
To assess the statistical significance of each measure, we use a

t-test (with α = 0.05) to test the following hypotheses: (1) paths
are curved (Asum 6= 0); (2) outbound paths have a preferred
curvature direction (AOUT

net 6= 0); (3) inbound paths have a
preferred curvature direction (AIN

net 6= 0); and (4) an outbound-
inbound sequence presents hysteresis (AOUT

net 6= −AIN
net).

Results
For all subjects and for all movements we found Asum to be
statistically different from zero suggesting that task-space paths
executed with the wrist are not straight also in presence of
redundancy (this was not the case in Charles and Hogan, 2010,
where PS was locked) .

Figure 5 shows the average outbound and inbound paths
of the six subjects together with their standard deviations
(shaded areas). Thick lines mark movements for which Anet

was statistically different from zero (i.e., a preferred curvature
direction) while stars mark segments with statistically significant
hysteresis (i.e., outbound and inbound follow different paths).
Superimposed with experimental trajectories, Figure 5 also
shows the task-space trajectories predicted via a Donders-fitted
λ0-PMP model (dashed lines). The subject-specific postural
parameters KJ and q∗ (estimated with method proposed in

FIGURE 4 | Movement curvature is assessed by calculating the area enclosed

to the left (AL) and to the right (AR) of the straight-line connecting the starting

and ending of a movement. The total area Asum = AL + AR indicates whether

movements are curved and the net area Anet whether there is a tendency to

veer more on the right (Anet > 0) or to the left Anet < 0.

Tommasino and Campolo (2016)), used to simulate the model
for each subject, are shown in Tables 1–2.

Figure 6 compares the experimental Anet (average and
standard deviation) with the model predicted Anet . This
comparison indicates whether the simulated paths have the same
curvature direction and magnitude as the experimental ones. A
t-test (p < 0.05) was used for each movement to assess if the
average Anet was statistically different from the model predicted
Anet (stars).

With reference to Figure 5A, subject 1 shows path hysteresis
only for the (SW) target, while, the only statistically different Anet

where found for inboundmovements from the (W) and the (SW)
target (red thick lines) that both veer to the right. With reference
to Figure 6A, there is no statistical difference between the model
and the experimental curvatures when pointing to and from the
(N) and the (W), from (NW) and to (S) targets. The model is
particularly accurate in capturing the average curvature of the (N)
inbound, the (S) inbound and the (W) outbound and inbound.
Overall, for this subject the model can only capture the curvature
of 6 out of 16 movement direction (37%).

With reference to Figure 5B, subject 2 presents hysteresis for
most of the targets, except for the (E), (SW) and (SE). This subject
presents preferred curvature direction when pointing to and
from the (W) target, with outbound and inbound both veering to
the right. There is also a preference to veer to the right and to the
left when performing outboundmovements toward the (SW) and
(S) targets, respectively. Figure 6B shows that, for all movements,
the model predicts curvatures that are not statistically different
from the experimental ones.

Similar analysis can be conducted for the remaining subjects.
Here we limit ourselves to observe that for subject 3 there
were no differences in terms of curvatures in 11 out of
16 movements (about 70% of movements). For subject 4
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FIGURE 5 | Average task-space trajectories. Shaded areas show the standard deviations for both outbound and inbound movements. Thick lines are relative to paths

with Anet statistically different from zero (i.e., a preferred curvature direction). The stars mark movement for which AINnet was statistically different from AOUTnet , i.e., those

movement that present hysteresis.

there were no differences between model and experimental
curvatures in 10 out of 16 movements (62% of movements).
For subject 5 there were no differences between model and

experimental curvatures in 8 out of 16 movements (50% of
movements) and for subject 6 in 9 out of 16 movements
(56%).
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TABLE 1 | Subject-specific intrinsic stiffness (KJ ) parameters estimated via NIO

from the average postural strategy.

[Nm
rad

] KJ11 KJ
12 KJ13 KJ22 KJ23 KJ33

Subj 1 1.22 0.07 0.08 1.68 0.03 1.09

Subj 2 1.20 0.04 −0.12 1.47 0.26 1.33

Subj 3 1.25 −0.08 0.00 1.63 0.11 1.12

Subj 4 1.21 0.10 −0.15 1.24 0.29 1.54

Subj 5 1.26 0.00 −0.08 1.21 0.16 1.52

Subj 6 1.30 −0.01 −0.04 1.42 −0.05 1.27

Stiffness subscript correspond to: 1 = PS, 2 = FE, 3 = RUD, so that the stiffness K12

corresponds to the stiffness along the PS-FE direction.

TABLE 2 | Subject-specific equilibrium postures (q∗) estimated via NIO from the

average postural strategy.

[rad] Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6

q∗
PS

0.26 0.51 0.06 0.36 0.35 0.23

q∗
FE

−0.08 0.11 0.04 0.25 0.12 0.03

q∗
RUD

0.13 −0.11 −0.19 −0.09 −0.07 −0.04

In summary, task-space curvature and hysteresis appear to
be subject- and movement-specific and the model can capture
most of this features for the majority of movements and
subjects.

The experimental and simulated joint space trajectories are
shown in Figure 7 (only outbound and inbound movements
from the (E) the (W) target are shown). All subjects show high
variability when coordinating the PS rotation (red area), most
likely because this is the joint that adds redundancy to the
pointing task. The model can accurately reproduce the average
FE (magenta color) and RUD (green) trajectories for most of
the subjects and movements, while for PS rotations, there are
larger errors between the average experimental trajectory and the
model.

At the starting and ending times of each movement, i.e.,
when the wrist is stationary, the model predicted postures only
depends on the estimated parameters KJ and q∗. So, the larger
the error between the model and the experimental posture, the
less accurate is the estimate of KJ and q∗. Because we are setting
W proportional to KJ , part of the errors between the model and
the experimental trajectories may be due to the error between
the real intrinsic subject stiffness and the one estimated from the
data. In addition, the model does not take into account inertial
and gravitational contributions. While the former has very little
effect on wrist and forearm rotations (Peaden and Charles, 2014),
gravity torques have been found to be non-negligible (Peaden and
Charles, 2014).

Figure 8 compares the experimental task-space tangential
velocity profile and those predicted by the model for a
representative subject. The time-varying extrinsic spring
(Equation 8) reproduces bell-shaped velocity profiles similar to
the experimental ones, although, task-space velocities predicted
by the model tend to be larger than the experimental ones.

4. CONCLUSION

Motion planning and postural control in the presence of
kinematic redundancy continue to be central topics in both
neuroscience and robotics. For example, it is still debated
why hand movements follows roughly straight-line paths in
some experimental conditions while they are curved in others
experimental settings. For decades, minimum principles (such as
minimum-jerk, minimum variance, and so forth) and optimal
control have been used as a tool to model and capture human-
like trajectories. Although successful in capturing some features
of human movements, when formulated in joint space, these
approaches are not only computational demanding but also fail
to capture postural control mechanisms such as Donders’ law.
While it is still unclear how the brain solves redundancy (Mussa-
Ivaldi et al., 2011), in robotics kinematic redundancy has been
tackled with the task-space control framework that combines
local optimization andW-weighted generalized pseudo-inverses.
However, as robots start to look more anthropomorphic and
to interact with humans, they also need to display natural
and intuitive movements and posture. Hence, roboticists are
looking at bio-inspired approaches to plan and control task-
space trajectories, null-space movements and equilibrium robot
postures. We recently addressed the problem of postural control
and trajectory planning by combining classical robotic motion
planning (velocity resolution control) with neuroscientific
evidence and theories of human motor control. We proposed
a general and unifying force-field based posture and movement
planner that was primarily tested in terms of human-like
postural control (equilibrium postural strategies) (Tommasino
and Campolo, 2017). In this work we extend our previous results
by investigating the trajectory (both in task and joint space)
predicted by a specific instance of our general computational
framework: the λ0-PMP.More specifically, we focused on human
motor strategies during redundant pointing tasks performedwith
wrist (and forearm) rotations. In a previous work, Charles and
Hogan (2010) showed that when pointing with the wrist, task-
space paths are curved and in general, inbound and outbound
movements follow different paths. In a successive work, they
posited that such features of wrist rotations are due to an
anisotropic joint stiffness matrix.

Here, we put forward the hypothesis that anisotropic intrinsic

damping, rather than stiffness, is primarily responsible for curved
task-space paths. The novel aspect of our approach is that our
model was fitted to capture postural strategies and, with the
sole hypothesis that intrinsic damping is proportional to stiffness
(Equation 7), the model also exhibited curvatures and hysteresis
in task-space performance remarkably similar to subject-specific
average motions. More specifically, we found that (i) task-space
paths are curved also in presence of kinematic redundancy,
extending thus the work of Charles and Hogan (2010) where
the PS axis was locked; (ii) curvature and hysteresis found in
experimental trajectories, on a subject-specific and target-specific
basis, are a possible consequence of postural constraints.

It should be noted that our computational framework is
capable of generating human-like task-space trajectories from
the only knowledge of the terminal target position. Hence, for
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FIGURE 6 | Experimental vs. Model predicted Anet. Error bars represent the standard deviation of the experimental ANET. Stars mark a model-predicted Anet that is

statistically different (p < 0.05) from the average experimental Anet.
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FIGURE 7 | Joint space trajectories (PS in red, FE in magenta and RUD in green), predicted by the model (dashed lines) and measured experimentally: mean

(continuous line) and standard deviations (color areas). The letters indicate the target sequence. For instance, the first movement is an outbound movement toward

the target (E), the second movement is an inbound movement from target (E) to target (C) and so forth.
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FIGURE 8 | Task space velocity profiles of a representative subject [mean (continuous line) and standard deviation] and those predicted by the λ0-PMP (dashed line).

robotic applications, task-space trajectories must not be pre-
programmed as in the classical task-space control approach, but
are a direct consequence of the intrinsic and extrinsic impedance
parameters (damping and stiffness) used in the model. For the
pointing task implemented in this work there is no preferred
task-space direction as subjects only receive the final target
position as desired target. Therefore, in the model, for the task-
space planner we used an isotropic elastic attractor to push the
simulated cursor on the desired target. This solution is not only
simple but, when combined with suitable intrinsic impedance
parameters also results in human-like wrist trajectories. However,
as also discussed in Tommasino and Campolo (2017) any task-
space force field can in principle be used as task-planner, and
therefore, for more complex robotic applications future works
will explore the possibility of integrating dynamic movement
primitives in our framework for the generation of adaptive and
compliant skills (Calinon et al., 2013). In summary, in addition
to the desired target location, our extended passive motion
paradigm requires only the knowledge of: (i) an intrinsic stiffness
matrix KJ and an equilibrium posture q0 that, combined with the
λ0 force field, allow the prediction of equilibrium (steady-state)
wrist postures compatible with experimental (subject-specific)
Donders’ laws: (ii) the movement duration T, from which both
the intrinsic and extrinsic time constants, of the joint-space
damping and task-space stiffness respectively, can be set to reach
the desired target in T seconds and with an equilibrium posture
compatible with Donders’ law.

There are of course many approximations and assumptions
in our model which, as mentioned, is not meant to predict exact
trajectories but rather capturing some basic features of human-
like motion. A major limitation is that the intrinsic stiffness KJ is
only a very simplified attempt to approximate the real, nonlinear,
time-variant mechanical stiffness typically of human arm. This
in turn affects not only the predicted postural strategies (i.e.,
wrist configuration at the beginning and ending of a movement)
but also the predicted trajectories as the relationship between
damping and stiffness is certainly more complex than the simple
proportionality assumed in Equation (7). Furthermore, we only
considered an isotropic task planner to investigate the effect
of joint damping on path curvatures. However, future works

need to compare how different and possibly anisotropic task
planners (Tommasino and Campolo, 2017), when combined
with anisotropic joint damping, predict subject-specific path’s
curvature.

A second limitation is that the λ0-PMP totally neglects
feedback, as it is meant to address motion planning rather than
execution. Our model is however useful at a planning stage, while
feedback should be incorporated for movement execution.

As a third limitation, our model is to be considered as a first
order postural and motor planner, in the sense that it does not
take into account the inertial properties of human or robotic
arms. This is a specific choice (in some cases an inertia might
not even be available, e.g., in motor imagery scenarios) and
the model could be extended to include inertial properties. In
fact, the role that the manipulator intrinsic inertia would have
is the same that the intrinsic damping has in our model. Such
an approach would lead to models along the lines proposed
by Khatib et al. (2009). Our approach however, is similar to
Dietrich et al. (2015) where the manipulator joint stiffness (see
Equation 7), compared to manipulator inertia, has been shown
to be a more reliable weighting matrix for the calculation of
W-weighted pseudoinverse and null-space projector operator.

In conclusion this work presents an extended version of the
PMP that can deal with kinematic redundancy in compliance
with Donders’ law and solve the posture/movement problem.
Just like the PMP, our model can find extensive use in planning
human-like motions for humanoid robots and, at the same time,
be able to capture natural postures in compliance with Donders’
Law.
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