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Humans divide perceived continuous information into segments to facilitate recognition.

For example, humans can segment speech waves into recognizable morphemes.

Analogously, continuous motions are segmented into recognizable unit actions. People

can divide continuous information into segments without using explicit segment points.

This capacity for unsupervised segmentation is also useful for robots, because it enables

them to flexibly learn languages, gestures, and actions. In this paper, we propose a

Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous

time series data into segments in an unsupervised manner. Our proposed method

consists of a generative model based on the hidden semi-Markov model (HSMM),

the emission distributions of which are Gaussian processes (GPs). Continuous time

series data is generated by connecting segments generated by the GP. Segmentation

can be achieved by using forward filtering-backward sampling to estimate the model’s

parameters, including the lengths and classes of the segments. In an experiment using

the CMU motion capture dataset, we tested GP-HSMM with motion capture data

containing simple exercise motions; the results of this experiment showed that the

proposed GP-HSMM was comparable with other methods. We also conducted an

experiment using karate motion capture data, which is more complex than exercise

motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was

0.92, which outperformed other methods.

Keywords: motion segmentation, Gaussian process, hidden semi-Markov model, motion capture data

1. INTRODUCTION

Human beings typically divide perceived continuous information into segments to enable
recognition. For example, humans can segment speech waves into recognizable morphemes.
Similarly, continuous motions are segmented into recognizable unit actions. In particular, motions
are divided into smaller components called motion primitives, which are used for imitation
learning and motion generation (Argall et al., 2009; Lin et al., 2016). It is possible for us to divide
continuous information into segments without using explicit segment points. This capacity for
unsupervised segmentation is also useful for robots, because it enables them to flexibly learn
languages, gestures, and actions.
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However, segmentation of time series data is a difficult
task. When time series data is segmented, the data points
in the sequence must be classified, and each segment’s start
and end points must be determined. Moreover, each segment
affects other segments because of the nature of time series
data. Hence, segmentation of time series data requires the
exploration of all possible segment lengths and classes. However,
this exploration process is difficult; in many studies, the lengths
are not estimated explicitly or heuristics are used to reduce
computational complexity. Furthermore, in the case of motions,
the sequences vary because of dynamic characteristics, even
though the same movements are performed. For segmentation
of actual human motions, we must address such variations.

In this paper, we propose GP-HSMM (Gaussian process–
hidden semi-Markov model), a novel method to divide time
series motion data into unit actions by using a stochastic model
to estimate their lengths and classes. The proposed method
involves a hidden semi-Markov model (HSMM) with a Gaussian
process (GP) emission distribution, where each state represents
a unit action. Figure 1 shows an overview of the proposed GP-
HSMM. The observed time series data is generated by connecting
segments generated by each class. The segment points and
segment classes are estimated by learning the parameters of the
model in an unsupervised manner. Forward filtering-backward
sampling (Uchiumi et al., 2015) is used for the learning process;
the segment lengths and segment classes are determined by
sampling them simultaneously.

2. RELATED WORK

Various studies have focused on learning motion primitives
from manually segmented motions (Gräve and Behnke, 2012;
Manschitz et al., 2015). Manschitz et al. proposed a method
to generate sequential skills by using motion primitives that
are learned in a supervised manner. Gräve et al. proposed
segmenting motions using motion primitives that are learned by
a supervised hiddenMarkov model. In these studies, the motions

FIGURE 1 | Overview of the proposed GP-HSMM.

are segmented and labeled in advance. However, we consider that
it is difficult to segment and label all possible motion primitives.

Additionally, some studies have proposed unsupervised
motion segmentation. However, these studies rely on heuristics.
For instance, Wächter et al. have proposed a method to segment
human manipulation motions based on contact relations
between the end-effectors and objects in a scene (Wachter
and Asfour, 2015); in their method, the points at which the
end-effectors make contact with an object are determined as
boundaries of motions. We believe this method works well
in limited scenes; however, there are many motions, such as
gestures and dances, in which objects are not manipulated.
Lioutikov et al. proposed unsupervised segmentation; however,
to reduce computational costs, this technique requires the
possible boundary candidates between motion primitives to
be specified in advance (Lioutikov et al., 2015). Therefore,
the segmentation depends on those candidates, and motions
cannot be segmented correctly if the correct candidates are not
selected. In contrast, our proposed method does not require
such candidates; all possible cutting points are considered by
use of forward filtering-backward sampling, which uses the
principles of dynamic programming. In some methods (Fod
et al., 2002; Shiratori et al., 2004; Lin and Kulić, 2012),
motion features (such as the zero velocity of joint angles)
are used for motion segmentation. However, these features
cannot be applied to all motions. Takano et al. use the error
between actual movements and predicted movements as the
criteria for specifying boundaries (Takano and Nakamura, 2016).
However, the threshold must be manually tuned according to
the motions to be segmented. Moreover, they used an HMM
that is a stochastic model. We consider such an assumption
to be unnatural from the viewpoint of stochastic models, and
boundaries should be determined based on a stochastic model.
In our proposed method, we do not use such heuristics and
assumptions, and instead formulate the segmentation based on
a stochastic model.

Fox et al. have proposed unsupervised segmentation for the
discovery of a set of latent, shared dynamical behaviors in
multiple time series data (Fox et al., 2011). They introduce a
beta process, which represents a share of motion primitives in
multiple motions, into autoregressive HMM. They formulate the
segmentation using a stochastic model, and no heuristics are used
in their proposed model. However, in their proposed method,
continuous data points that are classified into the same states
are extracted as segments, and the lengths of the segments are
not estimated. The states can be changed in the short term, and
therefore shorter segments are estimated. They reported that
some true segments were split into two or more categories, and
that those shorter segments were bridged in their experiment. On
the other hand, our proposed method classifies data points into
states, and uses HSMM to estimate segment lengths. Hence, our
proposed method can prevent states from being changed in the
short term.

Matsubara et al. proposed an unsupervised segmentation
method called AutoPlait (Matsubara et al., 2014). This method
uses multiple HMMs, each of which represents a fixed pattern;
moreover, transitions between the HMMs are allowed. Therefore,
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time series data is segmented at points at which the state is
changed to another HMM’s state. However, we believe that
HMMs are too simple to represent complicated sequences such
as motions. Figure 2 illustrates an example of representation of
time series data by HMM. The graph on the right in Figure 2

represents the mean and standard deviation learned by HMM
from data points shown in the graph on the left. HMM represents
time series data using only the mean and standard deviation;
therefore, details of time series data can be lost. Therefore, we
use Gaussian processes, which are non-parametric methods that
can represent complex time series data.

The field of natural language processing has also produced
literature related to sequence data segmentation. For example,
unsupervised morphological analysis has been proposed for
segmenting sequence data (Goldwater, 2006; Mochihashi et al.,
2009; Uchiumi et al., 2015). Goldwater et al. proposed a method
to divide sentences into words by estimating the parameters of a
2-gram language model based on a hierarchical Dirichlet process.
The parameters are estimated in an unsupervised manner by
Gibbs sampling (Goldwater, 2006). Mochihashi et al. proposed a
nested Pitman-Yor language model (NPYLM) (Mochihashi et al.,
2009). In this method, parameters of an n-gram language model
based on the hierarchical Pitman-Yor process are estimated via
the forward filtering-backward sampling algorithm. NPYLM can
thus divide sentences into words more quickly and accurately
than the method proposed in (Goldwater, 2006). Moreover,
Uchiumi et al. extended the NPYLM to a Pitman-Yor hidden
semi-Markov model (PY-HSMM) (Uchiumi et al., 2015) that can
divide sentences into words and estimate the parts of speech
(POS) of the words by sampling not only words, but also
POS in the sampling phase of the forward filtering-backward
sampling algorithm. However, these relevant studies aimed to
divide symbolized sequences (such as sentences) into segments,
and did not consider analogous divisions in continuous sequence
data, such as that obtained by analyzing human motion.

Taniguchi et al. proposed a method to divide continuous
sequences into segments by utilizing NPYLM (Taniguchi and
Nagasaka, 2011). In their method, continuous sequences are
discretized and converted into discrete-valued sequences using
the infinite hidden Markov model (Fox et al., 2007). The
discrete-valued sequences are then divided into segments by

using NPYLM. In this method, motions can be recognized by the
learned model, but cannot be generated naively because they are
discretized. Moreover, segmentation based on NPYLM does not
work well if errors occur in the discretization step.

Therefore, we propose a method to divide a continuous
sequence into segments without using discretization. This
method divides continuous motions into unit actions. Our
proposed method is based on HSMM, the emission distribution
of which is GP, which represents continuous unit actions.
To learn the model parameters, we use forward filtering-
backward sampling, and segment points and classes are
sampled simultaneously. However, our proposed method also
has limitations. One limitation is that the method requires the
number of motion classes to be specified in advance. It is
estimated automatically in methods such as (Fox et al., 2011) and
(Matsubara et al., 2014). Another limitation is that computational
costs are very high, owing to the numerous recursive calculations.
We discuss these limitations in the experiments.

3. GAUSSIAN PROCESS-HIDDEN
SEMI-MARKOV MODEL

Figure 3 shows a graphical representation of the proposed
GP-HSMM. In this figure, cj(j = 1, 2, · · · , J) denotes classes

FIGURE 3 | Graphical representation of the proposed GP-HSMM.

FIGURE 2 | Example of representation of time series data by HMM. Left: Data points for learning HMM. Right: Mean and standard deviation learned by HMM.
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of segments, and each segment xj is generated by a Gaussian
process, with parameters denoted by Xc and given by the
following generative process:

cj ∼ P(c|cj−1), (1)

xj ∼ GP(x|Xcj ), (2)

where Xc represents a set of segments classified into class c.
Segments are generated by this generative process, and the
observed time-series data s is generated by connecting the
segments.

3.1. Gaussian Process
In this study, we utilize Gaussian process regression, which
learns emission xi of time step i in a segment. This makes it
possible to represent each unit action as part of a continuous
trajectory. If we obtain pairs (i,Xc) of emissions xi of time step i of
segments belonging to the same class c, a predictive distribution
whereby the emission of time step i becomes x follows a Gaussian
distribution.

p(x|i,Xc, i) ∝ N (kTC−1
i, c− k

T
C
−1

k), (3)

where k(·, ·) represents the kernel function and C is a matrix
whose elements are

C(ip, iq) = k(ip, iq)+ β−1δpq. (4)

β is a hyperparameter that represents noise in the observation. In
Equation (3), k is a vector containing the elements k(ip, i), and c
is a scalar value k(i, i). Using the kernel function, GP can learn a
time-series sequence that contains complex changes. We use the
following Gaussian kernel, which is generally used for Gaussian
process regression:

k(ip, iq) = θ0 exp(−
1

2
||ip − iq||

2 + θ2 + θ3ipiq), (5)

where θ∗ represents parameters of the kernel. Figure 4 shows
examples of Gaussian processes. The left graph in each pair of
graphs represents learning data points (i,Xc), and the right graph
shows the learned probabilistic distribution p(x|i,Xc, i). One can
see that the standard deviation decreases with an increase in the
number of learning data points. If the emission of time step i
is multidimensional vector x = (x0, x1, · · · ), we assume that
each dimension is generated independently, and a predictive
distribution GP(x|Xc) is computed as follows:

GP(x|Xc) = p(x0|i,Xc,0, ic)

× p(x1|i,Xc,1, ic)

× p(x2|i,Xc,2, ic) · · · . (6)

Based on this probability, similar segments can be classified into
the same class.

3.2. Learning of GP-HSMM
3.2.1. Blocked Gibbs Sampler
Segments and classes of segments in the observed sequences
are estimated based on dynamic programming and sampling.
For efficient sampling, we use the blocked Gibbs sampler, which
samples segments and their classes in an observed sequence. In
the initialization phase, all observed sequences are first randomly
divided into segments. Segments xnj(j = 1, 2, · · · , Jn) in observed
sequence sn are then removed from the learning data, and
parameter Xc of the Gaussian process and transition probability
P(c|c′) of HSMM are updated. Segments xnj(j = 1, 2, · · · , Jn) and
their classes cnj(j = 1, 2, · · · , Jn) are then estimated as follows:

(xn1, · · · , xnJn ), (cn1, · · · , cnJn ) ∼ P(X, c|sn), (7)

where X is a set of segments into which sn is divided, and
c denotes classes of the segments. To carry out this sampling
efficiently, the probability of all possible segments X and

FIGURE 4 | Examples of Gaussian processes. Left graph in each pair of graphs represents learning data points (i,Xc). Right graph shows the learned probabilistic

distribution p(x|i,Xc, i); the solid line represents the mean, and the blue region represents the range of standard deviation.
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Algorithm 1 Blocked Gibbs Sampler

1: // Iterate the following procedure until convergence

2: for n = 1 to N do

3: for j = 1 to Jn do

4: Ncnj− = 1

5: Ncnj ,cn,j+1− = 1

6: if j 6= 0 then

7: Delete segments xnj from Xcnj
8: end if

9: end for

10:

11: // Sample segments and their classes

12: (xn1, · · · , xnJn ), (cn1, · · · , cnJn ) ∼ P(X, c|sn)

13:

14: for j = 1 to Jn do

15: Ncnj ++

16: Ncnj ,cn,j+1 ++

17: if j 6= then

18: Add segments xnj into Xcnj
19: end if

20: end for

21: end for

Algorithm 2 Forward filtering-backward sampling

1: // Forward filtering

2: for t = 1 to T do

3: for k = 1 to K do

4: for c = 1 to C do

5: Compute α[t][k][c]

6: end for

7: end for

8: end for

9:

10: // Backward sampling

11: t = T, j = 1

12: while t > 0 do

13: k, c ∼ α[t][k][c]

14: xj = st−k : t
15: cj = c

16: t = t − k

17: j = j+ 1

18: end while

19: return (xJn , xJn−1, · · · , x1), (cJn , cJn−1, · · · , c1)

classes c must be computed; however, these probabilities are
difficult to compute simply because the number of potential
combinations is very large. Thus, we utilize forward filtering-
backward sampling, which we presently explain. After sampling
xnj and cnj, parameter Xc of the Gaussian process and transition
probability P(c|c′) of HSMM are updated by adding them to
the learning data. The segments and parameters of Gaussian
processes are optimized alternately by iteratively performing the
above procedure. Algorithm 1 shows the pseudocode of the
blocked Gibbs sampler. Ncnj and Ncnj , cn, j+1 represent parameters
for computing the transition probability in Equation (10).

3.2.2. Forward Filtering-Backward Sampling
In this study, we regard segments and their classes as
latent variables that are sampled by forward filtering-backward
sampling (Algorithm 2). In forward filtering, as shown in

FIGURE 5 | A segment whose probability is computed during forward filtering.

FIGURE 6 | Recursive computation in forward filtering.

Figure 5, the probability that k samples st−k : t prior to time step
t in observed sequence s form a segment, and that the resulting
segment belongs to class c, is computed as follows:

α[t][k][c] = P(st−k : t|Xc)

×

K∑

k′=1

C∑

c′=1

p(c|c′)α[t − k][k′][c′], (8)

where C and K denote the number of classes and the maximum
length of segments, respectively. P(st−k : t|Xc) represents the
probability that st−k : t is generated from a class c; this is computed
as follows:

P(st−k : t|Xc) = GP(st−k : t|Xc)Plen(k|λ). (9)

where Plen(k|λ) represents a Poisson distribution with a mean
parameter λ; this corresponds to the distribution of the segment
lengths. p(c|c′) in Equation (8) represents a transition probability
computed as follows:

p(c|c′) =
Nc′c + α

Nc′ + Cα
, (10)
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where Nc′ and Nc′c denote the number of segments whose
classes are c′ and the number of transitions from c′ to c,
respectively, and k′ and c′ respectively denote the length and
class of the segment preceding st−k : t ; these are marginalized
out in Equation (8). Moreover, α[t][k][∗] = 0 if t − k < 0,
and α[0][0][∗] = 1.0. All elements of α[∗][∗][∗] in Equation
(8) can be recursively computed from α[1][1][∗] by dynamic
programming. Figure 6 depicts the computation of a three-
dimensional array α[t][k][c]. In this example, the probability
that two samples before time step t become a segment is
computed; the resulting segment would be assigned to class two.
Hence, samples at t − 1 and t become a segment, and all the
segments whose end point is t − 2 can potentially transit to this
segment. α[t][2][2] can be computed by marginalizing out these
possibilities.

Finally, segment xj and its class are determined by backward
sampling length k and class c of the segment, based on forward

FIGURE 7 | Coordinate system used in the experiments.

probabilities in α. From t = T, length k1 and class c1 are
determined according to k1, c1 ∼ α[T][k][c], and sT−k1 :T

becomes a segment whose class is c1. Then, length k2 and class
c2 of the next segment are determined according to k2, c2 ∼

α[T − k1][k][c]. By iterating this procedure until t = 0, the
observed sequence can be divided into segments and their classes
can be determined.

4. EXPERIMENTS

We conducted experiments to confirm the validity of the
proposed method. We used two types of motion capture data: (1)
data from the CMU motion capture dataset (CMU, 2009), and
(2) data containing karate motions.

4.1. Segmentation of Exercise Motions
We first applied our proposed method to CMU motion capture
data containing several exercise routines. The CMU motion
capture data was captured using a Vicon motion capture system,
and positions and angles of 31 body parts are available. The
dataset contains 2605 trials in six categories and 23 subcategories,
and motions in each subcategory were performed by one
or a few subjects. In this experiment, three sequences from
subject 14 in the general exercise and stretching category
were used, and include running, jumping, squats, knee raises,
reach out stretches, side stretches, body twists, up and down
movements, and toe touches. To reduce computational cost,
we downsampled from 120 frames per second to 4 frames
per second. Figure 7 shows the coordinate system of motion
capture data used in this experiment; two-dimensional frontal
views of the left hand (xlh, ylh), right hand (xrh, yrh), left
foot(xlf , ylf ), and right foot (xrf , yrf ) were used. Therefore,
each frame was represented by eight dimensional vectors:

TABLE 1 | Segmentation accuracy of CMU motion capture data.

Hamming distance Precision Recall F-measure

0.33 0.81 0.81 0.81

FIGURE 8 | Segmentation results of CMU motion capture data.
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FIGURE 9 | Example of segmentation evaluation. Estimated boundaries are evaluated as true positive (TP), true negative (TN), false positive (FP), or false negative (FN).

FIGURE 10 | Motion capture data of karate motions.

FIGURE 11 | Basic motions in Kata: (A) Left punch. (B) Left lower guard.

(C) Right upper guard.

(xlh, ylh, xrh, yrh, xlf , ylf , xrf , yrf ). Because GP-HSMM requires the
number of classes to be specified in advance, we set it to
eight.

Figure 8 shows the results of the segmentation. The
horizontal axis represents the frame number, and the colors
represent motion classes into which each segment was
classified. The segments were classified into seven classes
out of eight. Table 1 shows the accuracy of the segmentation.
We computed the following normalized Hamming distance
between the unsupervised segmentation and the ground
truth:

ND(c, c̄) =
D(c, c̄)

|c̄|
, (11)

where c and c̄ represent sequences of estimated motion classes
and true motion classes, D(c, c̄) is the Hamming distance
between two sequences, and |c̄| represents the length of the
sequence. Therefore, the normalized Hamming distance ranges
from 0 to 1; lower Hamming distances indicate more accurate
segmentation. In this experiment, the Hamming distance was
0.33, which is comparable with the BP-HMM reported in (Fox
et al., 2011). However, they also reported that some segments
were split into two or more categories, and that those shorter
segments were bridged. In contrast, we performed no such
modifications, and Figure 8 shows that there are no shorter
segments. We also computed the precision, recall, and F-
measure of the segmentation. To compute them, estimated
boundaries of segments are evaluated as true positive (TP),
true negative (TN), false positive (FP), or false negative (FN).
Figure 9 shows an example of segmentation evaluation. We
considered the estimated boundary to be TP if it was within
true boundary ± four frames, as shown in Figure 9(2). If
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FIGURE 12 | Results of segmentation and classification for each method.

TABLE 2 | Segmentation accuracy of karate motions.

Hamming distance Precision Recall F-measure

GP-HSMM 0.21 0.92 0.92 0.92

HDP-HMM 0.47 0.12 0.54 0.19

HDP-HMM + NPYLM 0.61 0.00 0.00 0.00

BP-HMM 0.49 0.13 0.23 0.16

AutoPlait 0.76 0.00 0.00 0.00

the ground truth boundary has no corresponding estimated
boundary as shown in Figure 9(6), it was considered as FN.
Conversely, if the estimated boundary has no corresponding
ground truth boundary as shown in Figure 9(11), it was
considered as FP. From these evaluations, the precision,
recall, and F-measure of the segmentation are computed as
follows:

P =
NTP

NTP + NFP
, (12)

R =
NTP

NTP + NFN
, (13)

F =
2PR

P + R
, (14)

where NTP, NFP, and NTN represent the number of points
assessed as TP, FP, and FN. The F-measure of the segmentation
was 0.81, and this fact indicates that GP-HSMM can
estimate boundaries reasonably. This is because GP-HSMM
estimates the length of segments as well as the classes of
segments.

Moreover, Figure 8 shows that most false segmentations are
in sequence 3. This is because “up and down” and “toe touch”
motions are included only in sequence 3, and GP-HSMM was
not able to extract patterns that occur infrequently. However, this
problem is not limited to GP-HSMM, and it is generally difficult
for any learning method to extract infrequent patterns. The
Hamming distance, which was computed only from sequence
1 and sequence 2, was 0.15. This result shows that GP-HSMM

can accurately estimate segments that appear multiple times in a
sequence.

4.2. Segmentation of Karate Motion
We then applied our proposed method to more complex motion
capture data, which consisted of the basic motions of karate
(called kata in Japanese)1 as shown in Figure 10 from the motion
capture libraryMocapdata.com2. There are fixedmotion patterns
(punches or guards) in kata, and it is easy to form a ground
truth for the segmentation. However, there might be shorter
motion patterns, and GP-HSMM might be able to find those
motion patterns if the number of classes is set to a larger number.
Moreover, it is possible for GP-HSMM to discover patterns that
cannot be labeled by humans, and GP-HSMMhas the potential to
analyze unlabeled time series data. However, in this experiment,
we must evaluate the proposed method quantitatively, and fixed
motion patterns (punches or guards) labeled by a human expert
are used as ground truth. The type of kata we used was called
heian 1, which is the most basic form of kata consisting of
punches, lower guard, and upper guard (Tsuki, Gedanbarai, and
Joudanuke in Japanese). Figure 11 shows the basic movements
used in heian 1. We divided this motion sequence into four
parts, for use as four motion sequences to apply the blocked
Gibbs sampler. Each motion sequence consisted of the following
actions:

1. Left lower guard, right punch, right lower guard, and left
punch.

2. Left lower guard, right upper guard, left upper guard, and right
upper guard.

3. Left lower guard, right punch, right lower guard, and left
punch.

4. Left lower guard, right punch, left punch, and right punch

By way of its preprocessing, as shown in Figure 7, the motion
capture data was converted into motions with the body facing
forward with a center of (0,0,0). To reduce computational cost,
we downsampled the motion capture data from 30 frames per

1https://mocapdata.blob.core.windows.net/freemotions/karate.zip
2http://www.mocapdata.com/
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second to 15 frames per second, and used two-dimensional left-
hand positions (xlh, ylh) and right-hand positions (xrh, yrh) in the
frontal view, as shown in Figure 7. To compare our method
with others, we used segmentation based on HDP-HMM (Beal
et al., 2001) and segmentation based on NPYLM andHDP-HMM
(Taniguchi and Nagasaka, 2011), where NPYLM (Mochihashi
et al., 2009) divides sequences discretized by HDP-HMM. In
addition, we compared our method with BP-HMM (Fox et al.,
2011) and AutoPlait (Matsubara et al., 2014).

Figure 12 shows the segmentation results. The horizontal
axis represents the frame number, and the colors represent
motion classes into which each segment was classified. The
figure shows that HDP-HMM estimated shorter segments
than the ground truth. This occurred because the emission
distribution of HDP-HMM is a Gaussian distribution, which
cannot represent continuous trajectories. Moreover, the result
produced by segmentation, in which NPYLM divided sequences
discretized by HDP-HMM, yielded longer segments. Moreover,
NPYLM cannot extract fixed patterns of sequences. This is
because the sequences discretized by HDP-HMM included noise
and, therefore, NPYLM was unable to find a pattern in them.

It was also difficult for BP-HMM to estimate correct segments,
and some shorter segments were present. Further, AutoPlait
could not find any segments in the karate motion sequences. We
believe this occurred because HMMs are too simple to model
complex motions. On the contrary, we use Gaussian processes
that make it possible to model complex sequences. Table 2 shows
the segmentation accuracy of each method. We considered the
estimated boundary to be correct if it was within true boundary
± five frames. The F-measure of the proposed method was
0.92, which indicates that GP-HSMM can estimate boundaries

TABLE 3 | Computational time of each method.

Time (s)

GP-HSMM 248

HDP-HMM 1.99

HDP-HMM + NPYLM 18.2

BP-HMM 3.37

AutoPlait 0.31

FIGURE 13 | Learned Gaussian processes for left lower guard, left upper guard, and right upper guard.
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accurately. The results show that GP-HSMM outperforms the
other methods. Figure 13 shows the learned Gaussian process.
yrh in Figure 13A, which represents the height of the left hand,
is decreased, which indicates the motion where the left hand
is dropped for the lower guard. In contrast, yrh in Figure 13B

is increased, which indicates the motion where the left hand
is raised for the upper guard. Conversely, ylh in Figure 13C is
increased for the right upper guard. From this result, we can
see that characteristics of motions can be learned by Gaussian
processes.

Moreover, the motions were classified into seven classes,
although we set the number of classes to eight. This result
indicates that the number of classes can be estimated to a
certain extent, if a number closer to the correct number is
given. However, a smaller number leads to under-segmentation
and misclassification, and a much larger number leads to over-
segmentation. This is a limitation of the current GP-HSMM,
and we believe it can be solved by introducing a non-parametric
Bayesian model.

Computational cost is another limitation of GP-HSMM.
Table 3 shows the computational time required to segment karate
motion. HMM-based methods such as HDP-HMM, BP-HMM,
and AutoPlait are relatively faster. In particular, AutoPlait is
the fastest because it uses a single scan algorithm proposed in
(Matsubara et al., 2014) to find boundaries, and it has been
demonstrated that AutoPlait can detect meaningful patterns
from large datasets. In contrast, our proposed GP-HSMM is
much slower than other methods, and cannot process such large
datasets. This is another limitation of the proposed method.

5. CONCLUSION

In this paper, we proposed a method for motion segmentation
based on a hidden semi-Markov model (HSMM) with a Gaussian
process (GP) emission distribution. By employing HSMM,
segment classes and their lengths can be estimated. Moreover,

a forward filtering-backward sampling algorithm is used to
estimate the parameters of GP-HSMM; this makes it possible
to efficiently search for all possible segment lengths and classes.
The experimental results showed that the proposed method can
accurately segment motion capture data. Although motions that
occurred in the sequences a single time were difficult to segment
correctly, motions that occurred a few times could be segmented
with higher accuracy.

However, some issues remain in the current GP-HSMM.
The most significant problem is that GP-HSMM requires the
number of classes to be specified in advance. We believe this
value can be estimated by utilizing a non-parametric Bayesian
model. We are planning to introduce a stick-breaking process
as a prior distribution of the transition matrix, and beam
sampling for parameter estimation; these techniques are utilized
in Beal et al. (2001). Another problem is computational cost. The
computational cost to learn a Gaussian process is O(n3), where
n denotes the number of data points classified in the GP. To
overcome this problem, efficient computationmethods have been

proposed (Nguyen-Tuong et al., 2009; Okadome et al., 2014), and
we will consider introducing these methods into GP-HSMM.
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Lin, J. F.-S., Karg, M., and Kulić, D. (2016). Movement primitive segmentation for

human motion modeling: A framework for analysis. IEEE Trans. Hum. Mach.

Sys. 46, 325–339. doi: 10.1109/THMS.2015.2493536
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