
ORIGINAL RESEARCH
published: 19 February 2018

doi: 10.3389/fnbot.2018.00004

Edited by:
Mehdi Khamassi,

UMR7222 Institut des Systèmes
Intelligents et Robotiques (ISIR),

France

Reviewed by:
Xavier Clady,

UMR7210 Institut de la Vision, France
Franck Ruffier,

CNRS/Aix-Marseille Univ, France

*Correspondence:
Lukas Everding

lukas.everding@tum.de

Received: 31 July 2017
Accepted: 25 January 2018

Published: 19 February 2018

Citation:
Everding L and Conradt J (2018)
Low-Latency Line Tracking Using

Event-Based Dynamic Vision Sensors.
Front. Neurorobot. 12:4.

doi: 10.3389/fnbot.2018.00004

Low-Latency Line Tracking Using
Event-Based Dynamic Vision Sensors
Lukas Everding* and Jörg Conradt

Department of Electrical and Computer Engineering, Neuroscientific Systemtheory, Technical University of Munich, Munich,
Germany

In order to safely navigate and orient in their local surroundings autonomous systems
need to rapidly extract and persistently track visual features from the environment. While
there are many algorithms tackling those tasks for traditional frame-based cameras, these
have to deal with the fact that conventional cameras sample their environment with a
fixed frequency. Most prominently, the same features have to be found in consecutive
frames and corresponding features then need to be matched using elaborate techniques
as any information between the two frames is lost. We introduce a novel method to detect
and track line structures in data streams of event-based silicon retinae [also known as
dynamic vision sensors (DVS)]. In contrast to conventional cameras, these biologically
inspired sensors generate a quasicontinuous stream of vision information analogous to
the information stream created by the ganglion cells in mammal retinae. All pixels of
DVS operate asynchronously without a periodic sampling rate and emit a so-called DVS
address event as soon as they perceive a luminance change exceeding an adjustable
threshold. We use the high temporal resolution achieved by the DVS to track features
continuously through time instead of only at fixed points in time. The focus of this work
lies on tracking lines in a mostly static environment which is observed by a moving
camera, a typical setting in mobile robotics. Since DVS events are mostly generated at
object boundaries and edges which in man-made environments often form lines they
were chosen as feature to track. Our method is based on detecting planes of DVS
address events in x-y-t-space and tracing these planes through time. It is robust against
noise and runs in real time on a standard computer, hence it is suitable for low latency
robotics. The efficacy and performance are evaluated on real-world data sets which show
artificial structures in an office-building using event data for tracking and frame data for
ground-truth estimation from a DAVIS240C sensor.

Keywords: robotic vision, silicon retina, neuromorphic sensors, event-based vision, low-level feature extraction,
line detection, line tracking

1. INTRODUCTION

This article introduces an algorithm that is aimed at detecting and tracking visual line fea-
tures with low latency and without requiring much prior knowledge about the environment.
We envision this algorithm to be useful toward enabling high-speed autonomous machines to
orient in and interact with their environments, e.g., via line-based SLAM (Smith et al., 2006). To
tackle these tasks the development of low-latency algorithms is required that find a compressed
representation of the observed surroundings based on which we can let the autonomous systems

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 41

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
https://doi.org/10.3389/fnbot.2018.00004
https://creativecommons.org/licenses/by/4.0/
mailto:lukas.everding@tum.de
https://doi.org/10.3389/fnbot.2018.00004
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00004&domain=pdf&date_stamp=2018-02-19
http://www.frontiersin.org/Journal/10.3389/fnbot.2018.00004/full
http://www.frontiersin.org/Journal/10.3389/fnbot.2018.00004/full
http://loop.frontiersin.org/people/456965
http://loop.frontiersin.org/people/21060
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

move and let make decisions. Feature detectors and trackers can
serve as the first step toward this representation. They allow, e.g.,
an understanding of which parts of a scene move coherently and,
therefore, likely belong to the samephysical object andwhich parts
belong to distinct entities.

1.1. Dynamic Vision Sensors
We use dynamic vision sensors (DVS, see Lichtsteiner et al., 2008;
Posch et al., 2011; Brändli et al., 2014) to gather visual data. In
contrast to conventional cameras, DVS do not rely on frames, but
generate a quasi continuous flow of vision information. Whereas
frame-based cameras read out all pixels periodically, pixels of an
event-based sensor operate asynchronously and a pixel will gen-
erate an event as soon as it undergoes a change in brightness (ON
event for increase, OFF event for decrease, respectively). Their
response time typically lies in the order of tens of microseconds.
Furthermore, frame-based cameras read out all pixels regardless of
what is happening in their field of view. This results in creation of
redundant information in parts of the image without change, but
will lose all information between two consecutive frames in the
areas where changes occur; so there is redundancy and informa-
tion loss at the same time. A lot of computing power is required
to separate the useful parts from the scene from the redundant
ones. This separation step is not necessary when usingDVS. These
sensors emit events only when they perceive a brightness change.
This mitigates both the redundancy, since there will be no events,
as long as no change is perceived, and the information loss because
there is no fixed sampling time. These advantages make DVS
especially suited for low-latency and high-speed applications as
was already demonstrated by, e.g., Delbruck and Lang (2013) and
Conradt et al. (2009).

To illustrate the difference between conventional cameras and
DVS further, imagine a wall in front of which a box is moved
through a camera’s field of view as an example (cf. Figure 1). A
frame-based camera will capture a collection of (likely blurred)
snapshots of different positions of the box along its trajectory.
They each contain the information about the background and the
momentary position of the box, but the information about the
position of the box between the frames is lost. In contrast, pixels
of a dynamic vision sensor will send events as soon as the box
enters and leaves their respective field of view and remain silent at
all other times. The event stream contains the position of the box
with a time-resolution on themicrosecond scale but no redundant
information about the static parts of the scene.

The event stream is however still a raw data source from which
no useful higher-level information can be trivially gained. In order
to arrive at a meaningful interpretation and make the benefits
of the DVS accessible it is necessary to cluster the events and
assign them to physical origins. This article proposes a step toward
this goal and introduces an algorithm for the fast extraction and
persistent tracking of lines using dynamic vision sensors.

1.2. Line Detection and Tracking
We operate on the assumption that a major part of DVS events
belonging to a scene originate from object boundaries because
that is where sharp transitions in brightness often occur. While
not all boundaries are straight, many are (at least approximately),

especially in man-made environments, e.g., for robots moving
in indoor scenarios. This makes lines a good feature to track.
The goal of our method is to parametrize these lines using the
parameters line midpoint p⃗, line vector l⃗, and line length a. The
detection and tracking algorithm leverages the DVS properties in
the following way: events are processed independently as soon as
they are generated, so we can keep a low latency. The constant
influx of events permits to incrementally update our belief about
the current state of the environment. Once a line is detected, we
can hold onto it as long as it is visible, instead of having to match
corresponding lines between subsequent frames. That way we
save the computational complexity that an additional interframe
matching and tracking step would introduce.

The algorithm requires little prior knowledge about the scene.
It is, however, designed for environments which contain many
straight edges, but which may also contain arbitrary other objects
and non-straight distractors. The lines are assumed to move in a
translatory fashion, themethod is not designed to detect and track
fast spinning lines like the ones produced by fans or rotation of the
sensor around the optical axis as may occur when airborne drones
perform rolling maneuvers.

ON and OFF events are processed separately. y separating
polarities, we gain the benefit of sparser populated x-y-t spaces
(one for each polarity). This simplifies line identification as it
allows for more generous thresholds, since on average half of
the noise and objects have been removed. The lines themselves
contain only one polarity and the number of events forming them
will therefore not be reduced. Such separate processing of ON
and OFF contrast was found to occur in nature and has been
studied, e.g., in insect andmammal eyes (Franceschini et al., 1989;
Borst and Helmstaedter, 2015) where ON and OFF pathways split
in the early processing stages. This concept has been used in
multiple bio-inspired robotic experiments for almost thirty years.
Franceschini et al. (1992) successfully constructed a robot which
autonomouslymoved while avoiding obstacles based on the visual
system of the blow fly. Subsequent robotic experiments extended
functionality, while making use of ON/OFF contrast separation.
Franceschini (2014) presents an overview, Roubieu et al. (2013)
give details on the ON/OFF detection sensor principle. Bagheri
et al. (2017) adapted the dragonfly’s motion detector principles
to develop a target tracker using frame-based data; Clady et al.
(2015) and Vasco et al. (2016) used polarity separation for corner
detection in the event-based domain.

The rest of this work is structured as follows: the remainder of
Section 1 gives an overview over which line detecting and tracking
algorithms have already been developed for classical cameras as
well as for event-based sensors, Section 2 will explain the event-
based data and the core novelty of this work in depth—the algo-
rithm for line detection and tracking. Experiments and results
follow in Section 3. Section 4 concludes the article by indicating
how this work can be used and be further developed.

1.3. Related Work
There is a variety of algorithms to extract lines from frames, most
notably the Hough transform (Duda and Hart, 1972; Matas et al.,
2000). In Grompone vonGioi et al. (2012), a line segment detector
(called LSD) is proposed that works stably without parameter

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 42

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

FIGURE 1 | Event traces for a box moved from bottom to top through the field of view of a DVS. Visible are dense manifolds of events corresponding to the two edges
of the box. Events originating from the movement of the person holding the box are excluded for the sake of clearer visualization. The frames put in the event stream
show snapshots of the situation at the time they were triggered. Box edges are indicated by blue bars for better visibility. Note that one axis corresponds to time!

tuning (see also Section 3 for comparisons). In Section 3, we
compare the results of these algorithms with our method. Dif-
ferent methods that use line segments for interframe tracking are
described in Neubert et al. (2008), Hirose and Saito (2012), and
Zhang and Koch (2013).

In recent years, several trackers for different shapes have been
developed for event-based systems. An early example of this can
be found in Litzenberger et al. (2006). Based on this, Delbruck
and Lang (2013) shows how to construct a robotic goalie with
fast reaction time of only 3ms. Conradt et al. (2009) focuses
explicitly on detecting lines from events and describes a pencil
balancer. Estimates about the pencil position are performed in
Hough space.

In a more recent work, Brändli et al. (2016) describe a line seg-
ment detector to detectmultiple lines in arbitrary scenes. They use
Sobel operators to find the local orientation of events and cluster
events with similar angles to form line segments. Events are stored
in a circular buffer of fixed size, so that old events are overwritten
when new ones arrive and the position and orientation of lines
is updated through this process, but do not put their focus on
tracking (see Section 3 for a comparison with the here proposed
method).

There are also increasing efforts to track other basic geomet-
ric shapes in event-based systems: corners have been a focus in
multiple works as they generate distinct features that do not suffer
from the aperture problem, can be tracked fast and find usage
in robotic navigation. Clady et al. (2015) use a corner matching
algorithm based on a combination of geometric constraints to
detect events caused by corners and reduce the event stream
to a corner event stream. Vasco et al. (2016) transfer the well-
known Harris corner detector (Harris and Stephens, 1988) to the
event domain, while Mueggler et al. (2017) present a rapid corner
detection method inspired by FAST (Rosten and Drummond,

2006), which is capable of processingmore than onemillion events
per second.

Lagorce et al. (2015) introduces a method to track visual fea-
tures using different kernels like Gaussians, Gabors, or other hand
designed kernels. Tedaldi et al. (2016) uses a hybrid approach
combining frames and event stream. It does not require features
to be specified beforehand but extracts them using the grayscale
frames. The extracted features are subsequently tracked asyn-
chronously using the stream of events. This permits a smooth
tracking through time between two frames.

2. MATERIALS AND METHODS

2.1. Event-Based Vision Data
Dynamic vision sensors are a novel type of optical sensor whose
working principle has been inspired by mammal retinas. The
pixels of DVS operate asynchronously and independently from
each other. A pixel generates a so called address event as soon as it
senses a change in log luminance above a certain threshold rather
than measuring actual intensity. An event contains the position
on the retina x⃗ = (x, y), the time t at which it was generated and
the polarity p, that encodes whether the luminance became higher
(ON-event) or lower (OFF-event). The entirety of pixels gener-
ates a quasicontinuous stream of events which conveys visual
information about the scene. Because these streams carry only
information over changes in the environment and no redundant
information about static features, DVS generate relatively low data
rates. The streams can be represented as point clouds in a three
dimensional space with the pixel positions x and y as well as time t
as coordinates. We will refer to this space as x-y-t-space. There is
no notion of frames in DVS data; all event stream images in this
work were created by accumulating events for a certain amount of
time.

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 43

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

FIGURE 2 | Davis recorded scene: gray scale frame (left), events (right; events
have been accumulated for 50ms; ON events are depicted white, OFF events
black, gray areas did not emit any events in the previous 50ms; camera was
rotated clockwise.).

The fact that the sensor uses log luminance gives it a very high
dynamic range of about 120 dB (Brändli et al., 2014) and allows it
to work reliably in environments with strongly varying illumina-
tions where conventional cameras would experience either over-
or underexposure in parts of the image. Figure 2 shows a frame
captured with a conventional system and an accumulation of an
event stream of the same scene for comparison.

In this work, we use a Davis240C (Brändli et al., 2014) as it
is capable of capturing events as well as global shutter gray scale
images with the same chip. It has a resolution of 240× 180 pixels.
The algorithm proposed in this article only makes use of the
address events, the gray scale images were used to obtain ground
truth values to evaluate the performance.

2.2. Algorithm
The main idea behind the algorithm is to identify planes of events
in x-y-t space. On short time scales, straight physical edges move
with near constant velocity through the field of view, i.e., accel-
eration due to physical acceleration or projective transformation
can be neglected if the observed time interval is sufficiently small.
Therefore, straight edges leave traces of events in x-y-t space that
are approximately planar on short time scales. Figure 1 shows
event traces of a box that was moved upwards. Note that the dura-
tion of this recording would not be considered a short timescale
and that the manifolds are slightly curved. Our algorithm aims to
identify these manifolds by piecewise approximation with a chain
of planes. Each plane is used to infer the movement of a line in the
field of view. Note that this approach does not work with spinning
lines and will fail to track these as they do not form planes in
x-y-t-space. The detection approach is split into two steps: first,
we cluster events that were generated within a small time and
space window. These clusters are grown by adding events that are
close in x-y-t-space. Second, we periodically check if the clusters
form planes in x-y-t-space. If they do, we promote the cluster to a
line, otherwise we keep them as clusters. Tracking of lines follows
by assigning newly incoming events to planes and tracing these
planes through time. To avoid that the number of events taken into
account in ourmethod is strongly dependent on sensor velocitywe
use an event buffer with a fixed amount of events at all times and
discard old events. Figure 3 shows an overview over the complete
processing flow that each incoming event will be subject to. Every
event is run through a noise filter, then we check if it belongs to
a line and, if so, assign it to this line. Else, we check if a cluster is
nearby and if that is the case add the event to the cluster. If there

is no cluster, nearby events are collected to form a cluster; if we
do not find more events than a threshold ν, we leave the event
unassigned (ν typically lies in the order of 20–30 events). We will
explain every step in detail now.

2.2.1. Event Preprocessing
First, events are separated by polarity. After separating events, we
apply different noise filters: first, we introduce a refractory period
per pixel. After a pixel emitted an event, we will suppress further
events from this pixel within a certain time interval, because pixels
sometimes generate additional spurious same-polarity events if
they have been triggered before and pixels may emit multiple
events of the same polarity if the change in brightness was very
strong. Experimentally, we identified 1ms for opposite polarity
events and 50ms for same polarity events to work well. All events
that are received during this period with respect to their polarity
are discarded. Afterward, an additional filtering step checks for
every incoming event if at least 3 same polarity events in a 5× 5
pixel window around it have been registered. If not, the event is
labeled as noise and not processed further.

In the following, we will continue to explain the algorithm from
the end of the processing chain, because it is easier for the reader to
follow the whole process starting with the way clusters are initially
formed, then promoted to lines, and how these lines are finally
transferred through time.

2.2.2. Cluster Creation
When an event arrives (and could not be assigned to an existing
line or a cluster), we use it as seed to search for a chain of
adjoining pixels that recently generated events. First, we search for
the youngest event in the ring of the 8 adjacent pixels. If we find no
event, we search in the next ring of 16 pixels around the adjacent
pixels. If we still find no events, we abort the search. Otherwise, we
add the youngest event to our chain and repeat the procedure from
the pixel position of the found event. This step is iterated until
the chain length crosses a threshold or we do not find any new
events.

If we are able to create a chain of events, we cluster the events of
the chain, add all events that have been generated by adjacent pix-
els and store these events as cluster, thereby creating a candidate
for a plane.

2.2.3. Cluster Growth
Moving one step to the left in the process flow (Figure 3): when
an event could not be assigned to a line, we look for a cluster to
attach it to. To that end, we check if there is an event that belongs
to an adjacent cluster. If there is, we assign the event to the cluster.
If there is more than one cluster found, we merge these clusters
and add the event to the new larger cluster.

2.2.4. Cluster Promotion
When a cluster has collected enough events (in the order of 20–40
events), we check if its events form a plane in x-y-t-space. As stated
above, the underlying assumption is that the velocity of lines on
the retina can be approximated as constant on short time scales.
Then, non-spinning straight edges in the real world generate
flat planes of events. To check if the candidate cluster’s events

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 44

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

FIGURE 3 | Overview over the algorithm. Top: stream part and bottom: batch part running in background.

form a line, we compute the principal components of the event
coordinates (x, y, t) where we scale the time coordinate with a
constant factor. A value of 1000µs

px was experimentally determined
to work well for the robotic platform as well as for handheld
movements (in high speed environments this factor may have to
adapted):

X =

 x1 y1 t1
x2 y2 t2
. . .

 , (1)

be the matrix, that contains the coordinates of events belonging to
the cluster. Assume, that all coordinates (x, y, t) are centered (i.e.,
x =

∑
i xi = 0, etc.). It then holds that,

1
NXTX =

1
N

 Σi x2i Σi xiyi Σi xiti
Σi xiyi Σi y2i Σi yiti
Σi xiti Σi yiti Σi t2i

 = U∆ UT, (2)

where i runs over all events andN is the total number of events. For
the last step the eigen decomposition was applied. ∆ is a diagonal
matrix containing the eigenvalues of XTX, which are guaranteed
to be positive real numbers sinceXTX is real symmetric and posi-
tive semidefinite. U is a orthogonal matrix containing the respec-
tive eigenvectors. As a perfect plane forms a linear 2D subspace
in the 3D space, one principal value (eigenvalue) vanishes, when
we compute the principal component analysis (PCA) on points
lying in the same plane. The corresponding eigenvector stands
orthogonally on the plane. Event planes in a real world recording,
however, will never be perfect since these planes contain noise
through various sources like finite size pixels, electronic jitter,
delay during event generation, not perfectly constant velocity of
observed objects, events stemming from other sources, etc. For a
planar structure one eigenvalue will nevertheless be very small,
proportional to the “thickness” of the plane. So, assuming that the
eigenvalues in∆ are ordered in ascending order, we examine∆11:
if it is greater than a threshold θ, we conclude that the cluster does
not form a plane and, therefore, was not caused by an observed
line. We keep on collecting events and trying to promote it until n
promotion attempts failed. Then, we drop it (for our experiments,
we chose θ = 1px2 and n= 3).

If the smallest eigenvalue is below the threshold we promote
the candidate to a real line (or 3D-plane, respectively). The posi-
tion and orientation of the line at time tpresent is now inferred

by intersecting the approximated event plane with the plane
t= tpresent, further called the present plane. The parameters to
be determined are a vector l⃗ pointing along the line, a point p⃗
which is contained in the line and a the length of the line. We
start finding l⃗ by using the principal component vector belong-
ing to the smallest eigenvalue as normal vector n⃗ ∈ R3. The
calculation is straightforward and can be done analytically: we
use the fact that a vector l⃗ pointing along the intersection of two
planes must lie within both planes and therefore be orthogonal to
both plain normals. A possible choice that fulfills this condition
is the cross product of event plane normal n⃗ and present plane
normal et:

l⃗ = n⃗ × e⃗t = (n1, n2, n3)T × (0, 0, 1)T = (n2, −n1, 0)T. (3)

Having found a vector pointing along the line, the next step is
to find a point p⃗ that is contained by the line. We pick p⃗, such
that it is closest to the events’ center of gravity c⃗ = (x, y, t). p⃗
can then be found using these two observations: first, the vector
m⃗ pointing from c⃗ to p⃗ must be contained in the event plane as p⃗
and c⃗ are both contained in this plane, i.e., m⃗ is perpendicular to
the plane normal n⃗. Second, m⃗ points along the path of shortest
distance from c⃗ to the line, therefore it has to be perpendicular to
l⃗ as well. This makes m⃗ = n⃗ × l⃗ a natural choice. We then find p⃗
as intersection of the line c⃗+α m⃗ with the plane t= tpresent where
we determine α using the fact that p⃗3 = tpresent and (⃗n × l⃗)3 =
−n21 − n22:

p⃗ =

x
y
t

 − tpresent − t
n21 + n22

m⃗. (4)

Finally, to find the length a of the line we assume that the events
are evenly distributed along the whole extension of the line. The
length a is then proportional to the SD along the line which we
already gained from the principal component analysis. We pick
the center of the line as origin and use ξ as a one dimensional
coordinate along the line and a constant distribution function p(ξ)
over the length of the line a:

p(ξ) =

{
1
a , if − a/2 ≤ ξ ≤ a/2
0, otherwise

. (5)

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 45

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

Then ⟨ξ⟩= 0 and

⟨(ξ − ⟨ξ⟩)2⟩ = ⟨ξ2⟩ =
∫ ∞

−∞
p(ξ) ξ2 dξ

=
∫ a/2

−a/2

1
aξ2 dξ =

1
12

a2, (6)

from which follows that a =
√
12 ⟨ξ2⟩.

We arrived at a line parametrization with midpoint p⃗, direction
l⃗ and length a. Note thatwe chose t= tpresent arbitrarily!We canuse
any other time to predict the line parameters in the (near) future
without requiring any new input. The corresponding calculations
are as outlined only a few three dimensional vector operations and
very fast to perform.

Whenever a cluster is promoted to a line we check if the new
line’s position and slope match the ones of a line that was previ-
ously deleted.We require the polarities to be identical, the angular
distance to be less than 5° and the midpoints distance to the other
line to be less than 2px (although this threshold should be adapted
depending on the sensor resolution). If there is a deleted line that
matches, we assume that we lost track of it and recovered it now.
In this case we will assign the new line the ID of the deleted line.

2.2.5. Line Growth
When a new event is received, we check for lines close to the
pixel of event generation. We assign the event to the line if it is
closer than

√
θ, with θ the threshold for cluster promotion, to the

line inferred at the time of event generation. The threshold could
however be fixed independently to make the line collect more or
less events generated in its surroundings.

2.2.6. Persistent tracking
For larger time spans, the assumption of planarity is violated.
This means the principal component analysis breaks down, if
events that are too old are used. Therefore, we need to update
the inferred planes either periodically or on request, as soon as
an accurate estimate is required, by removing events that are older
than a certain time or if a line contains many events per length
simply by removing the oldest events. After removing these events,
orientation of the event plane (and thereby also of the inferred
line) will be re-estimated by re-applying PCA and going through
all the additional steps described above. Note, furthermore, that
this is not an expensive update, since we can store the sum of
coordinates for the PCA, and just modify it when adding or
removing events from the line. If after an update there remain
less than 10 events or the smallest eigenvalue exceeds θ, the line
will be deleted. We keep deleted lines’ position and orientation in
memory in case they are recovered. The following global checks
run additionally in the background:

• clusters are also periodically cleaned by removing old events.
• lines are checked for coherence: if lines display gaps in the event

distribution, they are split into two lines. Gaps are detected
by projecting every event position onto the parametrized line,
partitioning the line in bins of stepwidth 2px. If two adjacent
bins are empty the line is split at this gap.

FIGURE 4 | Event stream with current position of detected lines (events
accumulated for 50ms). Camera rotates clockwise, so lines move to the left
and older events trailing to the right of lines are still visible.

• merging of lines: if lines have an angular difference of less than
5° and same polarity, as well as the midpoints’ distances to
the respective other line are less than 2px (same values as for
recovering deleted lines) and the midpoints’ distances to each
other are less than the half sum of the lengths, i.e., the lines are
adjacent to each other, they are merged to form just one line.

3. EXPERIMENTAL RESULTS

Weperformed experiments to evaluate the quality of thematching
and tracking, as well as quantifying the latency and computational
costs and investigated the robustness. For all experiments we used
an Intel i7 Core 4,770K running at 3.5GHz. The algorithm was
implemented without parallelization in C++.

3.1. Quality of Matching and Tracking
To evaluate the quality, we recorded data sets with the
DAVIS240C, capturing both events and frames (cf. Supplemental
Material, frames captured with a rate between 15 and 20Hz). To
our knowledge, there exists no data set with ground truth values
for event-based line tracking. So, we obtained ground truth values
for lines by applying the well-knownCanny edge detector (Canny,
1986) to every frame. Since there is no definite standard to define
and extract line from images, we took the Canny filter output and
manually removed bent edges based on human judgment, such
that only straight edges (i.e., lines) remained. We then applied
linear regression to the coordinates of pixels that belong to lines
and arrived at line parametrizations which were used as ground
truth. Additionally, we manually labeled the lines of all frames so
that corresponding lines got the same ID in every frame to allow
to check persistence of tracking of our algorithm.

Our method is able to successfully extract lines from event-
based vision streams.Figure 4 displays a snapshot of detected lines
in an event stream. Figure 5 compares our results to other meth-
ods for line detection on two frames with a 200ms time interval
between them using a scene with a staircase which contains many

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 46

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

FIGURE 5 | Comparison between different approaches. Top row left-to-right: frame taken from a DAVIS240C recording, frame 200ms later, ground truth lines for the
first frame, ground truth lines for the second frame. Second row left-to-right: (a) Hough transform, (b) LSD, (c) ELiSeD, and (d) our method. Third row: same
algorithms as above applied to the second frame. In the images of our method lines were additionally assigned an ID to demonstrate the tracking capabilities (cf. text).

lines. The first row shows the two frames and the corresponding
ground truth. The second (resp. third row) show different line
detection algorithms applied to the first (resp. second) frame
or event stream, depending on algorithm. The leftmost pictures
depict the results of the probabilistic Hough transform (Matas
et al., 2000) as implemented in OpenCV1; the images next to
them contain the results of the Line Segment Detection (LSD)
(Grompone von Gioi et al., 2012) as provided on the IPOL web-
page2; followed by ELiSed (Brändli et al., 2016) as implemented
in jAER3 and finally our method (to arrive at the plot for ELiSeD
we took all lines that were created from the time the frame was
taken up until 10ms earlier). The probabilistic Hough transform
(a) is able to detect well contrasted lines, but it runs into problems
when estimating the right lengths. The detection images look
fairly different from the ground truth. Furthermore, the extracted
lines look quite different between the frames what would make
interframe matching a hard task. In contrast, the line segment
detection method (b) yields high-quality results. The extracted
line segments reflect the ground truth very well. However, longer
lines tend to be broken up into segments and would need to be
merge before they can be used for tracking in a next step. ELiSeD
(c) tends to yield very small segments and to break up longer
lines into smaller pieces. That produces lots of very short-lived
segments. Meanwhile, the method proposed here (d) is able to
successfully extract longer lines and keep track of them. The num-
bers on the rightmost panels denote IDs we assigned lines after
creation.Most of the IDs of corresponding lines in both panels are
identical, i.e., they have been successfully tracked. This tracking
did not require an additional step but is gained automatically by
applying our algorithm.

1https://github.com/itseez/opencv.
2http://www.ipol.im/pub/art/2012/gjmr-lsd/.
3https://sourceforge.net/projects/jaer/.

To measure the quality, we compared the estimated lines with
the labeled ground-truth lines, where we assumed that an esti-
mated linematches a ground-truth line if their difference of angles
was less than 5° and the perpendicular distance from themidpoint
of the estimated line to the ground-truth line was smaller than
1.5 px. We then obtained difference of angles and lengths for the
matched lines: angles of lines are known to be a robust feature
to estimate when detecting lines. This holds also for our method
where the average absolute angular error over all matched lines
was approximately 0.6°, themedian absolute angular error approx-
imately 0.4° (on the same data set Hough hadmean/median angu-
lar error 0.7°/0.4°, LSD had mean/median angular error 0.9°/0.4°
and ELiSeD had mean/median angular error of 1.5°/1.1°). In
contrast, line length is a rather unstable feature to extract. Using
our algorithm, we are able to extract lines with a high precision of
length. Figure 6 shows a distribution of the relative lengths of the
estimated lines to the ground truth lines on 52 labeled frames of
the staircase data set. For every match of an estimated line with
a ground truth line, we calculated the ratio length(estimated line)

length(ground truth line)
and created a histogram over all matched lines. The distribution
for our method peaks comparatively sharply around 100% which
means, that themajority of our line estimates are correct in length.
LSD also exhibits a peak around 100% but has a tail toward zero,
which is caused by estimated lines broken up in segments. ELiSeD
produces many small segments leading to a distribution where
most matches only cover a small part of the ground truth line and
the Hough transformation has big problems estimating lengths,
over- and underestimating very often.

3.2. Persistence of Tracking
The other aspect we aimed toward besides lines detection was
tracking, i.e., we should be able to identify every line over the
entire time that it is visible with the same ID. In Figure 5, we

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 47

https://github.com/itseez/opencv
http://www.ipol.im/pub/art/2012/gjmr-lsd/
https://sourceforge.net/projects/jaer/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

A B

C D

FIGURE 6 | Distributions of length ratios between estimated lines and matching ground truth lines for (A) Hough transformation, (B) LSD, (C) ELiSeD, and (D) our
method in percentage.

attached ID numbers to the lines detected with our algorithm.
Most lines that correspond to the same physical lines have the
same ID in both images (and at every point in time between the
two frames as well (not visible)). To get a better impression on
how persistent the tracking is we recommend having a look at
the Supplemental Videos. In those you can see that most detected
lines keep the same ID over the whole length of the recordings.
To evaluate the persistence quantitatively, we took the difference
of the first time a ground-truth line was matched by a specific ID
with the last it was matched by this ID and compared it with the
duration the ground-truth line was in the field of view. Figure 7
shows the distribution of relative lifetimes. More than half of the
lines in our experiments are tracked throughout their whole life
time; that means they are found very fast after they enter the
field of view and subsequently tracked until they leave it. For a
smaller fraction of lines it took longer to identify and track them,
so that they are not tracked over their whole visibility, while an
even smaller fraction of lines was not found quickly or lost during
tracking.

There are certain limitations when working with the DVS. The
amount of events that lines generate depends on their angle to the
movement direction of the camera. Lines perfectly aligned with
the sensor movement direction are invisible to the DVS because
only the leading edge presents a luminance change. Therefore,
these lines cannot be tracked. If a line is being tracked but becomes

FIGURE 7 | Histogram over ratios of lifetimes of estimated lines to life time of
ground truth lines in percentage.

aligned with the movement after a movement direction change
of the sensor it will become invisible, too, and track will be lost.
To overcome this, one could include an inertial measurement unit
(IMU) and estimate the invisible line’s position using acceleration

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 48

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

A B

C

D

FIGURE 8 | Dependence of line tracking on line orientation. Top row: (A) stimulus used: lines with increasing degree versus the camera movement in steps of 2° and
(B) camera setup on robotic platform, robot was moving to the right during recording. Second/third row: (C) tracking results at the beginning of the recording for
ON/Off events. (D) Tracking results toward the end of the recording. Comparing the IDs, that the lines were signed in the images, it can be seen that they were
successfully tracked despite being close to parallel to the movement direction of the sensor (lines become visible due to microvibrations of the robot).

information. However, it turns out that the problem of invisible
lines is in practice not severe. Vibrations of the sensor, which can
stem for example from a robot’s motors or natural tremor in case
of handheld DVS, cause the sensor to perform movements in the
orthogonal direction of the line which makes them visible to the
sensor. We performed an experiment to examine the dependence
of the line detection on the angle for which we printed lines with
known inclination from 0° to 10° in steps of 2° and recorded
the scene using a self-built robotic platform with a mounted DVS
that drove in parallel to the stimulus. Figure 8 shows the stimulus
and the robot we used. Furthermore, it shows the detected lines at
the beginning of recording as well as roughly 4 s later at the end

of the recording. All lines could be detected, even the line with
0° was tracked because the microvibrations of the robot caused
small perpendicular movements which rendered it visible. In fact,
these movements generate ON as well as OFF events, leading to a
redundant double tracking of the lines due to the fact that we split
handling of ON and OFF events. This redundancy can potentially
be used to recover from the loss of tracking in one polarity domain.
The feasibility of this was not evaluated and will be subject to
further investigation.

In the second experiment, we drove with the robot over the
seams of a tiled floor. These irregularities in the surface caused
small abrupt movements of the sensor. Figure 9 shows tracked

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 49

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

FIGURE 9 | Line tracking results for a robot driving over small irregularities caused by a tiled floor. Comparing line IDs shows that lines were tracked even when
crossing seams (only ON events).

FIGURE 10 | Snapshots from a sensor mounted on an RC car driving over even floor through a door (time increases from left to right, also see Supplementary
Material for the recording).

lines in such a setting. It contains two snapshots made by a robot
driving toward a tiled wall and crossing seams in the floor on its
way. Our method is capable of dealing with small irregularities
and small amplitude shaking as can be caused by crossing seams.
Sudden changes in movements (like large sudden displacements
caused by stronger shaking) can, however, not be dealt with and
result in the loss of track of lines. The underlying reason for this
is that sudden changes will cause a kink in the event trace in
x-y-t-space. These kinks can not be modeled well with the chain
of planes and our method will fail. As soon as the lines’ movement
is smooth again, they will typically be regained fast, but with a
new ID.

As third experiment, we attached a sensor to a radio con-
trolled model car to evaluate behavior at high velocity (~12 km/s).
We recorded two different settings and evaluated the results by
visual inspection; the recordings are provided as Supplementary
Material.

In the first experiment, the car started on a checkerboard
pattern floor and drove through a door toward another door.
Because the floor was smooth, we observed no major distur-
bances (especially no abrupt changes inmotion) anddetection and
tracking yielded good results. Figure 10 presents snapshots from
this experiment.

In the second scene, the car drove over uneven floor in a
narrow hallway with a comparatively high noise level due to
irregular illumination patterns and textures on wall and floor. In
this recording detection of lines again yielded good results; track-
ing, however, was more challenging. While some lines (especially
those perpendicular to the car vibrations) could be tracked well,
others were often lost. This can be explained by the same reason
for which we lost track of lines while driving over seams: the
car experienced abrupt changes of motion, which lead to kinks
in the event plane causing our tracking method to fail. Due to
the dynamic nature of the recordings we recommend viewing the
video of the experiments provided in Supplementary Material.

3.3. Latency and Computing Costs
This section presents an experiment to evaluate the latency. The
independent operation of DVS pixels generates a quasicontinuous
stream of events. Due to this sensor property the events have
already a lowdelay from illumination change in the scene to recep-
tion of the event in a processing device. Each event can be handled
individually and is used to update our belief about the current state
of the world immediately after arrival. We measured the time it
takes to process an incoming event and call the update function
that reestimates the line position using a scene with a swinging

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 410

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

FIGURE 11 | Left: detail from method of ground truth estimation. Right: true line position (red line) and position estimates (blue crosses) at time of availability. Inlay
zooms to region between 1.6 and 1.8 s. Position estimate overestimates true position by a small margin.

pendulum. This gives us a single line traversing the display with
predictable translatory speed. To measure the error we obtained
ground truth values for the line position in the followingway: first,
we discarded the OFF events and binned the ON events in slices
of 50ms. We then found the leading edge by picking for every
pixel row of the sensor the event that was furthest in movement
direction. We used robust linear fitting as built-in in MATLAB to
fit a line and reject outliers and inspected each fitted line visually.
Figure 11 (left) shows one fitted line graphically.

We compared the position atwhich our algorithm estimated the
line with two different approaches: (1) retrieving the position of
the line by interpolating the line movement linearly from the last
calculated position of the line until the time of position request
and (2) calling the update routine and refitting the line before
returning the position estimate. For the case of event processing
without line update the average required time was approximately
0.7µs with an estimation error of 0.50 pixels. When we do an
explicit line position re-estimation using PCA and vector recalcu-
lation as described in Section 2.2, the average time required was
approximately 7µs and the average estimation error was 0.48 pix-
els. So, the latency between arrival of new information (incoming
event) and new belief (updated line state) lies in the order of a few
microseconds. Note that we normally do not upgrade after each
event! The reason why explicit updating does not reduce the error
significantly for the pendulum lies in the fact that the line is very
well visible and moves very smoothly, so the interpolation of its
movement is already quite accurate. Figure 11 (right) shows the
estimated line position at certain arbitrarily chosen checkpoints
versus the true line position for the casewith line update for a fixed
value of y. The red line shows the position of the line, while the
blue crosses indicates the position estimated by our algorithm at
the time after the computation (i.e., at the time of the event+ the
time required to estimate the position). The computing time is
sufficiently low to make the estimation error introduced by the
delay negligible.

In addition to latency, the overall computation load is another
important quantity for judging the usefulness of an algorithm.

Figure 12 shows the dependence between number of events and
required computing time for a number of different recordings for
a variety of scenes. The red line gives an estimate for the worst case
performance, suggesting that the algorithm can handle at least
400k events per second in the current implementation. On the
right hand side, the computing load during one recording with a
large number of lines (the staircase scene) is shown. The recording
was partitioned in slices of 100ms; the computation time and
number of events in every slice was then measured and plotted
in the figure. The graph shows an approximately linear relation
between number of events and time required to process them.

4. DISCUSSION

We have introduced an algorithm for the fast detection and per-
sistent tracking of translating lines for a biologically inspired class
of optical sensors, dynamic vision sensors (DVS). The nature of
DVS data allows to solve both tasks, detection and tracking, in
a combined approach in which we first cluster events and check
for linearity and then continuously grow detected lines by adding
events. Additional benefits we can derive from the use of DVS
are on the one hand low-latency responses, because DVS pixels
emit address events asynchronously as soon as they perceive an
illumination change. We made use of this property by processing
each event individually and showed in experiment 3.3 that it is
possible to determine a line’s position within a few microseconds
at arbitrarily chosen points in time with a subpixel accuracy.

On the other hand, our method can potentially be applied
in environments with vastly varying lighting conditions, because
DVS are insensitive to absolute illumination. Thismakes it suitable
to be employed on robots that work in environments where light-
ing conditions are not well predictable or unknown beforehand.
The efficacy of our method was demonstrated and the results
compared to other methods for line detection in frames and in
address event streams. Our method performed as well as clas-
sical algorithms applied to frames; note however, that classical
algorithms are fundamentally constrained to frames and therefore

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 411

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

FIGURE 12 | Left: dependence between computing time and number of events for a number of different recordings. Right: processed events per second and
required computing time for line tracking in the staircase scene.

cannot make use of the advantages of the neuronal sensor of
low-latency and robustness to lighting variations.

The algorithm is resilient against small displacements and
vibrations; vibrations are actually helpful by making more visual
features of a scene accessible and allow for their detection and
tracking as shown in Section 2. The vibrations make features
appear in the OFF and ON stream which enables us to do redun-
dant tracking and potential recovery from lost track in one of
the streams which would improve the overall robustness. Sudden
larger movements will, however, lead to failing of the tracking
as observed lines will no longer form planes in x-y-t space, but
exhibit kinks which violates our assumptions. For the same reason
of non-planarity, the algorithm is not suited for detecting spin-
ning lines. Other methods need to be developed to handle these.
Finally, we will note that the algorithm relies on some parame-
ters which have to fixed beforehand. Some are chip and optics
dependent and have to be adapted to the hardware used (like the
threshold for line creation and event-to-line assignment and the
event number thresholds, e.g., for creating/deleting clusters/lines).
Others are environment related, e.g., the number of simultane-
ously considered events is largely environment dependent, and
need to be adapted to the nature of the expected observed scenes;
the same holds for the conversion factor from time to pixel for the
PCA. The fixed value we used yielded good results for the velocity
ranges of our robotic platforms (up to 12 km/s) and handheld
cameras. If changing to a high speed environment this factor will
likely have to be revisited.

There are a couple of different directions in which to continue.
By linking lines that move coherently, reconstructing outlines of
objects with straight edges like doors and boxes (or objects whose
outlines can be piecewise linearly approximated) can become pos-
sible and the algorithm can be developed toward object tracking.
Furthermore, matching lines across streams from different DVS
could allow for depth estimates. A different direction of advance-
ment would be to extend the promotion mechanism of cluster by

introducing PCA kernels for different shapes, e.g., circles. This
would allow active systems to not only orient themselves on lines
but provide them with more and more distinct features to allow a
more robust position estimate and safer navigation. Objects that
are not straight, however, behave more complicated under projec-
tive transformations, and requiremore complex parametrizations.
There is a variety of options to use our algorithm as a basis for
methods that can be used in robotics.

AUTHOR CONTRIBUTIONS

LE: designed and implemented algorithm, evaluated performance,
and wrote manuscript JC: guided method development and con-
tributed to manuscript and figures.

FUNDING

This work was supported by the German Research Foundation
(DFG) and the Technical University of Munich (TUM) in the
framework of the Open Access Publishing Program.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at http://www.frontiersin.org/articles/10.3389/fnbot.2018.00004/
full#supplementary-material.

VIDEO S1 | Staircase.mp4.

VIDEO S2 | Corridor.mp4.

VIDEO S3 | Office.mp4.

VIDEO S4 | RCcar_even_surface.mp4.

VIDEO S5 | RCcar_uneven_surface.mp4.

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 412

http://www.frontiersin.org/articles/10.3389/fnbot.2018.00004/full#supplementary-material
http://www.frontiersin.org/articles/10.3389/fnbot.2018.00004/full#supplementary-material
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Everding and Conradt Low-Latency Line Tracking Using DVS

REFERENCES
Bagheri, Z. M., Cazzolato, B. S., Grainger, S., O’Carroll, D. C., and Wiederman,

S. D. (2017). An autonomous robot inspired by insect neurophysiology pursues
moving features in natural environments. J. Neural Eng. 14, 046030. doi:10.1088/
1741-2552/aa776c

Borst, A., and Helmstaedter, M. (2015). Common circuit design in fly and mam-
malian motion vision. Nat. Neurosci. 18, 1067. doi:10.1038/nn.4050

Brändli, C., Berner, R., Yang,M., Liu, S. C., andDelbruck, T. (2014). A 240 x 180 130
db 3 us latency global shutter spatiotemporal vision sensor. IEEE J. Solid State
Circ. Krakow, 49, 2333–2341. doi:10.1109/JSSC.2014.2342715

Brändli, C., Strubel, J., Keller, S., Scaramuzza, D., and Delbruck, T. (2016). “Elised –
an event-based line segment detector,” in Second International Conference on
Event-based Control, Communication, and Signal Processing (EBCCSP), 1–7.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell. 8, 679–698. doi:10.1109/TPAMI.1986.4767851

Clady, X., Ieng, S.-H., and Benosman, R. (2015). Asynchronous event-based corner
detection andmatching.Neural Netw. 66, 91–106. doi:10.1016/j.neunet.2015.02.
013

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R. J., and Delbruck, T.
(2009). “A pencil balancing robot using a pair of aer dynamic vision sensors,” in
IEEE International Symposium on Circuits and Systems, Taipei, 781–784.

Delbruck, T., and Lang, M. (2013). Robotic goalie with 3 ms reaction time at
4% cpu load using event-based dynamic vision sensor. Front. Neurosci. 7:223.
doi:10.3389/fnins.2013.00223

Duda, R. O., and Hart, P. E. (1972). Use of the Hough transformation to detect lines
and curves in pictures. Commun. ACM 15, 11–15. doi:10.1145/361237.361242

Franceschini, N. (2014). Small brains, smart machines: from fly vision to robot
vision and back again. Proc. IEEE 102, 751–781. doi:10.1109/JPROC.2014.
2312916

Franceschini, N., Pichon, J. M., and Blanes, C. (1992). From insect vision to robot
vision. Philos. Trans. R Soc. Lond. B Biol. Sci. 337, 283–294. doi:10.1098/rstb.
1992.0106

Franceschini, N., Riehle, A., and Le Nestour, A. (1989). Directionally
Selective Motion Detection by Insect Neurons. Berlin Heidelberg: Springer,
360–390.

Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., and Randall, G. (2012). LSD:
a line segment detector. Image Process. Online 2, 35–55. doi:10.5201/ipol.2012.
gjmr-lsd

Harris, C., and Stephens,M. (1988). “A combined corner and edge detector,” in Proc.
of Fourth Alvey Vision Conference, Manchester, UK, 147–151.

Hirose, K., and Saito, H. (2012). “Fast line description for line-based slam,” in
BMVC 2012 – Electronic Proceedings of the British Machine Vision Conference
2012 (Guildford, UK: British Machine Vision Association, BMVA).

Lagorce, X., Meyer, C., Ieng, S. H., Filliat, D., and Benosman, R. (2015). Asyn-
chronous event-based multikernel algorithm for high-speed visual features
tracking. IEEE Trans. Neural. Netw. Learn. Syst. 26, 1710–1720. doi:10.1109/
TNNLS.2014.2352401

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 x 128 120 db 15 us
latency asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ.
43, 566–576. doi:10.1109/JSSC.2007.914337

Litzenberger, M., Posch, C., Bauer, D., Belbachir, A. N., Schon, P., Kohn, B.,
et al. (2006). “Embedded vision system for real-time object tracking using an
asynchronous transient vision sensor,” in IEEE 12th Digital Signal Processing
Workshop 4th IEEE Signal Processing Education Workshop, Teton National Park,
WY, 173–178.

Matas, J., Galambos, C., and Kittler, J. (2000). Robust detection of lines using
the progressive probabilistic Hough transform. Comput. Vis. Image Underst. 78,
119–137. doi:10.1006/cviu.1999.0831

Mueggler, E., Bartolozzi, C., and Scaramuzza, D. (2017). “Fast event-based corner
detection,” in 28th British Machine Vision Conference (BMVC), London, UK.

Neubert, P., Protzel, P., Vidal-Calleja, T., and Lacroix, S. (2008). “A fast visual line
segment tracker,” in IEEE International Conference on Emerging Technologies and
Factory Automation, Hamburg, 353–360.

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A qvga 143 db dynamic range
frame-free pwm image sensor with lossless pixel-level video compression and
time-domain cds. IEEE J. Solid State Circ. 46, 259–275. doi:10.1109/JSSC.2010.
2085952

Rosten, E., and Drummond, T. (2006). Machine Learning for High-Speed Corner
Detection. Berlin Heidelberg: Springer, 430–443.

Roubieu, F. L., Expert, F., Sabiron, G., and Ruffier, F. (2013). Two-directional 1-g
visual motion sensor inspired by the fly’s eye. IEEE Sens. J. 13, 1025–1035.
doi:10.1109/JSEN.2012.2230622

Smith, P., Reid, I., and Davison, A. (2006). “Real-time monocular SLAM with
straight lines,” in Proc. British Machine Vision Conference (Edinburgh), 17–26.

Tedaldi, D., Gallego, G., Mueggler, E., and Scaramuzza, D. (2016). “Feature detec-
tion and tracking with the dynamic and active-pixel vision sensor (davis),” in
Second International Conference on Event-Based Control, Communication, and
Signal Processing (EBCCSP), Krakow, 1–7.

Vasco, V., Glover, A., and Bartolozzi, C. (2016). “Fast event-based harris cor-
ner detection exploiting the advantages of event-driven cameras,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Daejeon,
4144–4149.

Zhang, L., and Koch, R. (2013). An efficient and robust line segment matching
approach based on lbd descriptor and pairwise geometric consistency. J. Vis.
Commun. Image Represent. 24, 794–805.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Everding and Conradt. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 413

https://doi.org/10.1088/1741-2552/aa776c
https://doi.org/10.1088/1741-2552/aa776c
https://doi.org/10.1038/nn.4050
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/j.neunet.2015.02.013
https://doi.org/10.1016/j.neunet.2015.02.013
https://doi.org/10.3389/fnins.2013.00223
https://doi.org/10.1145/361237.361242
https://doi.org/10.1109/JPROC.2014.2312916
https://doi.org/10.1109/JPROC.2014.2312916
https://doi.org/10.1098/rstb.1992.0106
https://doi.org/10.1098/rstb.1992.0106
https://doi.org/10.5201/ipol.2012.gjmr-lsd
https://doi.org/10.5201/ipol.2012.gjmr-lsd
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1006/cviu.1999.0831
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/JSEN.2012.2230622
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Low-Latency Line Tracking Using Event-Based Dynamic Vision Sensors
	1. Introduction
	1.1. Dynamic Vision Sensors
	1.2. Line Detection and Tracking
	1.3. Related Work

	2. Materials and Methods
	2.1. Event-Based Vision Data
	2.2. Algorithm
	2.2.1. Event Preprocessing
	2.2.2. Cluster Creation
	2.2.3. Cluster Growth
	2.2.4. Cluster Promotion
	2.2.5. Line Growth
	2.2.6. Persistent tracking

	3. Experimental Results
	3.1. Quality of Matching and Tracking
	3.2. Persistence of Tracking
	3.3. Latency and Computing Costs

	4. Discussion
	Author Contributions
	Funding
	Supplementary Material
	References

