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This paper exploits the dynamical modeling, behavior analysis, and synchronization of
a network of four different FitzHugh–Nagumo (FHN) neurons with unknown parameters
linked in a ring configuration under direction-dependent coupling. The main purpose
is to investigate a robust adaptive control law for the synchronization of uncertain and
perturbed neurons, communicating in a medium of bidirectional coupling. The neurons
are assumed to be different and interconnected in a ring structure. The strength of the
gap junctions is taken to be different for each link in the network, owing to the inter-
neuronal coupling medium properties. Robust adaptive control mechanism based on
Lyapunov stability analysis is employed and theoretical criteria are derived to realize the
synchronization of the network of four FHN neurons in a ring form with unknown param-
eters under direction-dependent coupling and disturbances. The proposed scheme for
synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring
communication topology, having all parameters unknown, and subject to directional
coupling medium and perturbations, is addressed for the first time as per our knowledge.
To demonstrate the efficacy of the proposed strategy, simulation results are provided.

Keywords: FitzHugh–Nagumo neuron, neuronal networks, ring configuration, coupling strengths, robust adaptive
synchronization control

INTRODUCTION

The spurred efforts to get an insight of the complex and opaque interactions among the levels of
various neuronal networks is a major aspiration in neuroscience, because it would be an incredible
abet to explore the foundation of normal and pathological brain functioning (Buzsaki, 2006;
Alvarellos-Gonzalez et al., 2012; Aqil et al., 2012b). For example, one would be able to unveil how
a steering signal is generated for muscles from the brain or how neurons diminish during brain
disorders like Parkinson’s, Huntington’s, and epilepsy (Deak et al., 2007; Di Garbo et al., 2007;
Mejias and Torres, 2007; Limousin and Martinez-Torres, 2008; Jobst, 2010; and Ostrem and Starr,
2008). The brain’s mechanisms of operations have their own realism in interconnection and signal
transmission, which has enthused many researchers to investigate brain activity at multiple levels
(Naseer andHong, 2013; Hong andNguyen, 2014; Santosa et al., 2014; Hong andNaseer, 2016; Hong
and Santosa, 2016; Nguyen andHong, 2016; Zafar andHong, 2017), ranging from a single neuron to
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a network of neurons. Brain has a number of complex functions
and activities in relation to cognitive purposes (Santosa et al.,
2013; Hong et al., 2015, 2017; Naseer et al., 2016; Nguyen et al.,
2016). These brain activities can be somehow measured using
various modalities and sensors in order to identify the intension
of a subject (Turnip et al., 2011; Khan et al., 2014; Hong and Khan,
2017). Therefore, in-depth research has been done on modeling,
analysis, instrumentation, and control of external devices in the
area of brain-computer interfaces (Khan and Hong, 2015, 2017;
Kocaturk et al., 2015; Naseer andHong, 2015; Ghafoor et al., 2017;
Liu and Hong, 2017).

Neuronal networks have been a thought-provoking and imper-
ative subject owing to the various potential real-world processes,
estimation, control and robotic applications [see Ellacott et al.
(1997) and references therein]. In a neuronal network, a large
number of neurons are inter-connected in various fashions under
multifarious coupling phenomena. Recently, the studies on the
dynamical behavior of a single neuron, a collective behavior of
coupled neurons, and synchronization among the neurons have
been extensively investigated (Thompson et al., 1999; Hua and
Smith, 2004; Zhang et al., 2006;Wu andChen, 2008; Yu et al., 2013;
Wang et al., 2015). Synchronization of neurons plays a key role in
the transmission process of neuronal signals, and enables effective
communications in the brain or to the muscles (Knoblauch and
Palm, 2005; Wang et al., 2008a,b; Nguyen and Hong, 2011, 2013).
The FitzHugh–Nagumo (FHN) system, a simplified model of the
coupling effect of neurons, has been considered largely owing to
the fact that it mimics the dynamical behavior of neurons and
intricates neuronal networks under external electrical stimulation
(Thompson et al., 1999).

Neuroscience enriched by numerous reports in the context
of coupled FHN neurons has opened a new avenue of research
during the past few years. The simplest model to mimic the
dynamical properties of neuronal interactions (such as synchro-
nization) consists of two coupled neurons (Wang et al., 2009;
Zhen and Xu, 2010; Aqil et al., 2012a; Iqbal et al., 2015, 2017). A
control and synchronization methodology was designed to inves-
tigate the coupled reaction–diffusion FHN systems in Ambrosio
and Aziz-Alaoui (2012). Synchronization of two coupled neurons
was carried out by employing an adaptive backstepping sliding
mode control in Yu et al. (2012). A theoretical criterion was
presented for the synchronization of uncertain chaotic coupled
systems for a neural network via the sliding mode technique by
Chen et al. (2009). Synchronization of two identical coupled FHN
systems with known or unknown parameters has been studied
via a nonlinear adaptive control based on the fuzzy logic scheme,
neural networks, the uncertainty estimator, and the feedback lin-
earization control (Wang et al., 2007, 2008a,b; Zhang et al., 2007;
Che et al., 2009), respectively. Later, a robust adaptive control
for synchronization of two coupled FHN neurons of unknown
parameters has been developed.Moreover, some important results
for the synchronization of three-coupled FHN neurons having
slightly different unknown parameters and disturbances with
respect to multiple communication pathways have been explored
(Rehan and Hong, 2011; Rehan et al., 2011). For more related
investigations, synchronization of two coupled FHNneurons with

unknown and different parameters under direction-dependent
coupling has been discussed in Iqbal et al. (2014).

To a certain extent, efforts have been dedicated to the study of
the dynamics of the neuronal networks coupled in a ring fashion,
specifically by exploiting the impact of time delays (Campbell
et al., 2005; Xu, 2008; Song and Xu, 2012; Zhang, 2014; Wang
et al., 2015; Mao and Wang, 2016; Yuan et al., 2016; Mao, 2017).
A recent work by Zhou et al. (2009) extended the synchronization
problem to a network of coupled FHN neurons and explored the
impact of the gap junctions on the network. It was investigated
that the influence of the gap junctions on the dynamical behavior
of neurobiological networks is stronger than the coupled systems.
In addition, interestingly, a network of the FHN neurons exhibits
a more fascinating dynamically complicated behavior than two or
three coupled FHN neurons.

Some interesting works on synchronization of neurons have
been accomplished in the recent years by employing various com-
plexities. For instance, the work of Lai et al. (2008) employed
an adaptive control approach, which provided synchronization of
FHN neurons under a sinusoidal electrical field. The approach,
however, may not ensure asymptotic convergence of the syn-
chronization error and additional parameters are required for
achieving the adaptation. To attain the robust synchronization
of FHN neurons, Wei et al. (2009) introduced an internal model
control strategy for output synchronization between the neu-
rons using a semi-global Lyapunov approach. For dealing with
perturbations, sliding surface-based control schemes were devel-
oped by Che et al. (2011) and Yu et al. (2012) in the pres-
ence of resistive coupling between the neurons. A step further,
model complexity along with the behavioral analyses and con-
trol approach for phase synchronization between neurons were
studied in the recent study by Ma et al. (2017). Despite of these
studies, several open problems and challenges include synchro-
nization in multiple coupled neurons and coupling model com-
plexities.

In the earlier works, the research was limited to the simple
scenarios of two or three coupled FHN neuronal models, since
such simple scenarios were easily addressable. But, the operational
mechanisms in the brain cannot be described with simple systems
owing to the complex interactions (coupling) existing among the
large number of neurons. Consequently, in order to explore the
dynamical behavior of real complex systems, it is indispensable
and challenging to work on larger coupled networks instead of
a simple model of coupled systems (or reduced networks). In
addition, the coupling models between the neurons should also
be addressed as much as possibly closer to the actual complex
medium strengths. Moreover, controlling of behaviors of neurons
can be accomplished via adaptive control approaches in order
to develop intelligent methods of adaptation according to the
dynamical circumstances (Oyama et al., 2016; Stewart et al., 2016;
Aoi et al., 2017). In conclusion, considering a neuronal network
with unknown parameters in which a large number of neurons
are communicating under complex couplings, namely, direction-
dependent coupling, can lead to enhance the theoretical and
numerical analysis of neuronal systems’ complexity, which is a
pretty challenging research task.
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Motivated by the aforementioned rationale, the aim of this
paper is to investigate the dynamical behavior and synchroniza-
tion of a network of different FHNneuronswith unknown param-
eters, linked in a ring configuration, under direction-dependent
coupling mediums. The direction-dependent coupling has been
employed due to direction-dependent behavior of the gap junc-
tions. The gap junctions between neurons can either allow current
in one or in both (but with different strengths) directions, giv-
ing rise to the so-called direction-dependent coupling between
neurons, see Iqbal et al. (2014). A model of four different FHN
neurons, coupled in a ring topology, under external disturbances
is presented. The different strength of the gap junctions for
each link in the network owing to the inter-neuronal coupling
medium properties is considered. A robust adaptive control is
designed to address the intricate problem of the synchronization
in a network of neurons. Based on Lyapunov stability theory,
conditions are derived analytically for the synchronization in a
network of four different FHN neurons with unknown parame-
ters in a ring configuration under direction-dependent coupling
and disturbances. The developed robust adaptive control algo-
rithm encounters the problem of dealing with different recovery
variables. Unlike the synchronization approach, partial synchro-
nization of neurons by Iqbal et al. (2014), the proposed scheme
ensures the complete synchronization of neurons. To the best
of our knowledge, the robust adaptive control mechanism for
synchronization of different neurons with unknown parameters
in the ring configuration under direction-dependent coupling
and disturbances is addressed for the first time. Essentially, the
outcome of this study can edify new ideas for understanding
of the neuronal networks in context of multifaceted coupling
phenomena. Compared with the existing works on synchroniza-
tion of two or three neurons, our study considers a complex
scenario for synchronizing four neurons in a ring configuration
under direction-dependent coupling, parametric uncertainties,
and perturbations. This study shows the possibility of a robust
and adaptive control strategy for attaining the coherent behavior
among neurons forming a complicated network under an external
electrical stimulation. To end with, extensive numerical simula-
tion results are drawn to elucidate the efficacy of the proposed
method.

There are several differences in this study compared to the
existing works. For instance, this study considers a ring configu-
ration of multiple neurons rather than an interconnection of two
neurons as in Wang et al. (2007), Zhang et al. (2007), Wang et al.
(2008a,b), Che et al. (2009), Rehan and Hong (2011), Lai et al.
(2008),Wei et al. (2009), Che et al. (2011), Yu et al. (2012), andMa
et al. (2017). In addition, the current flow between two neurons
is considered as direction-dependent, compared to these models,
for regarding bidirectional coupling formed by the gap junctions.
Moreover, the models of neurons in our study have different
parameters to examine synchronization of dissimilar neurons.
Compared to synchronization study in Rehan et al. (2011) for
three FHN neurons, we develop a control approach for robust
adaptive synchronization and all the parameters are considered to
be unknown and different. Moreover, we employ a more complex
scenario of four neurons, bidirectional coupling, and ring config-
uration. In comparison to the recent neuronal synchronization

study of Iqbal et al. (2015), there are three contributions in this
work. First, we consider multiple neurons for developing a syn-
chronization control approach owing to the presence of multiple
coupled neuronal interactions in the brain; second, synchroniza-
tion of both activation potentials and recovery variables has been
achieved in the proposed study; third, the idea of bidirectional
coupling between two neurons has been extended to a ring con-
figuration of neurons.

The rest of the manuscript are organized as follows: Section
“Results and Discussion” discusses the main results, contain-
ing the modeling of a network of different FHN neurons
with unknown parameters linked in a ring configuration under
direction-dependent coupling, the design of a robust adaptive
control mechanism, synchronization in the network without dis-
turbance, synchronization in the network with disturbance, and
numerical simulation results. Section “Methods” includes the
employed methods, namely, FHNmodel, Lyapunov stability anal-
ysis, and proof of the main results without and with disturbances.
Section “Conclusion”, finally, includes the study conclusions.

RESULTS AND DISCUSSION

Ring Configured FHN Neurons under
Direction-Dependent Coupling
The ring configuration of four neurons coupled in a bidirectional
medium is shown in Figure 1. Let N1 be the master neuron, and
N2, N3, and N4 be the slave neurons. We employ control signals
for the synchronization of the slave neurons with the master neu-
ron. The purpose of this study is to model the neuronal behavior
and to provide a synchronization control remedy for attaining the
coherent behavior of the neurons. The proposed network model
of ring configured four FHN neurons under direction-dependent
coupling [by accounting the results of Iqbal et al. (2014) and Yuan
et al. (2016)] is given by

ẋ1 = x1(x1 − 1)(1 − r1x1) − y1 − g1 [(x1 − x2) + (x1 − x4)]
+ Iext,1 + dext,1, (1)

ẏ1 = b1x1,
ẋ2 = x2(x2 − 1)(1 − r2x2) − y2 − g2 [(x2 − x1) + (x2 − x3)]

+ Iext,2 + dext,2, (2)
ẏ2 = b2x2,
ẋ3 = x3(x3 − 1)(1 − r3x3) − y3 − g3 [(x3 − x2) + (x3 − x4)]

+ Iext,3 + dext,3, (3)
ẏ3 = b3x3,
ẋ4 = x4(x4 − 1)(1 − r4x4) − y4 − g4 [(x4 − x3) + (x4 − x1)]

+ Iext,4 + dext,4, (4)
ẏ4 = b4x4,

where x1 and y1 are the model states of the master FHN neu-
ron, namely, the activation potential and the recovery variable,
respectively. The x2 and y2 represent the states of the first slave
neuron, x3 and y3 correspond to the second slave neuron states,
and x4 and y4 are the states for the fourth neuron. The parameters
(r1, r2, r3, r4) and (b1, b2, b3, b4) are related with the neurons’
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FIGURE 1 | Four neurons in a ring configuration: the neurons are interconnected through bidirectional couplings; control inputs are used for synchronization of the
slave neurons to the master neuron.

nonlinear parts and recovery variable dynamics, respectively. The
terms Iext,1, Iext,2, Iext,3, and Iext,4 represent the external stimulation
currents, where Iext,i = (A/ω) cos(ωt) for i = 1, 2, 3, 4, ω = 2πf.
Here, f denotes the frequency and A denotes the amplitude of
stimulation current. The gap junctions’ strengths for communi-
cation between neurons are represented by g1, g2, g3, and g4. Dis-
turbances at neurons are denoted by dext,1, dext,2, dext,3, and dext,4.

Various models of coupled neurons were considered in the
studies (Wang et al., 2007, 2008a,b; Zhang et al., 2007; Che
et al., 2009; Chen et al., 2009; Rehan and Hong, 2011; Rehan
et al., 2011; Ambrosio and Aziz-Alaoui, 2012; Aqil et al., 2012a;
Yu et al., 2012). However, these studies considered simple neu-
ronal models with direction-independent coupling. The work
of Iqbal et al. (2014) introduced the direction-dependent cou-
pling. However, the ring configuration of neurons and coupling
between several neurons were lacking. It should be noted that
the model parameters associated with the proposed network of
FHN neurons in Eqs (1)–(4) are totally uncertain and differ-
ent. In addition, the proposed systematic approach considering
direction-dependent coupling, different parameters, disturbances
to the network model, and ring topology, in contrast to the simple
models offered inWang et al. (2007, 2008a,b), Zhang et al. (2007),
Che et al. (2009), Chen et al. (2009), Rehan and Hong (2011),
Rehan et al. (2011), Ambrosio and Aziz-Alaoui (2012), Aqil et al.
(2012a), Yu et al. (2012), and Iqbal et al. (2014), which empowers
a more realistic and generalized model.

In order to explore the complex behavior of the network
model of the ring configured with different four FHN neu-
rons under direction-dependent coupling, we first set the model

parameters as r1 = 10, r2 = 10.2, r3 = 10.4, r4 = 10.6, b1 = 1,
b2 = 1.01, b3 = 1.02, b4 = 1.03, g1 = 0.001, g2 = 0.002, g3 = 0.003,
g4 = 0.004, and f = 0.127. The disturbances are accounted as
dext,1 = 0.1 sin 12t, dext,2 = 0.1 sin 20t, dext,3 = 0.1 sin 25t,
and dext,4 = 0.1 sin 23t. The stimulation amplitude is selected
as A= 0.01. Figure 2 depicts the results for the network of dif-
ferent FHN neurons under direction-dependent coupling. The
phase portraits of four FHN chaotic neurons are shown in
Figures 2A–D. These phase portraits show that the neurons have
oscillatory behaviors. Figures 3 and 4 exhibit the nonsynchronous
behavior of the network of four FHN neurons for activation
potentials and recovery variables (to be explained later). The
phase portrait in Figure 2A displays the chaotic behavior of first
neuron. The second neuron’s chaotic behavior can be observed in
Figure 2B. The chaotic behaviors for third and fourth neurons can
be deduced from Figures 2C,D, respectively. The Lyapunov expo-
nent has been computed for all the four neurons in Figures 2A–D
using the approach provided in Iqbal et al. (2014), which come out
to be 0.120, 0.058, 0.371, and 0.097. In conclusion, Figures 2–4
along with positive values of the Lyapunov exponent show that
all of neurons in the network possess the chaotic behavior, as
provided in Figures 2A–D, and are not synchronous, as indicated
in Figures 3 and 4.

Adaptive Control Mechanism and Error
Dynamics
This section provides compact equations for the error dynamics,
controller, and adaptation laws. This work offers an adaptive

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 64

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Iqbal et al. Synchronization of Ring Configured Neurons

A B

C D

FIGURE 2 | Chaotic behavior of four FitzHugh–Nagumo neurons without control: (A) first neuron, (B) second neuron, (C) third neuron, and (D) fourth neuron.

control mechanism for the synchronization of ring configured
four FHN neurons under direction-dependent coupling. Thus,
model in Eqs (1)–(4) becomes

ẋ1 = x1(x1 − 1)(1 − r1x1) − y1 − g1 [(x1 − x2) + (x1 − x4)]
+ Iext,1 + dext,1, (5)

ẏ1 = b1x1,
ẋ2 = x2(x2 − 1)(1 − r2x2) − y2 − g2 [(x2 − x1) + (x2 − x3)]

+ Iext,2 + dext,2 + ux1, (6)
ẏ2 = b2x2 + uy1,
ẋ3 = x3(x3 − 1)(1 − r3x3) − y3 − g3 [(x3 − x2) + (x3 − x4)]

+ Iext,3 + dext,3 + ux2, (7)
ẏ3 = b3x3 + uy2,
ẋ4 = x4(x4 − 1)(1 − r4x4) − y4 − g4 [(x4 − x3) + (x4 − x1)]

+ Iext,4 + dext,4 + ux3, (8)
ẏ4 = b4x4 + uy3,

where ux1, ux2, and ux3 and uy1, uy2, and uy3 are the control inputs.
We address a complete synchronization problem for the network
model of ring configured FHNneurons in the context of their acti-
vation potentials and recovery variables, in contrast to the study
of Iqbal et al. (2014), which has demonstrated the synchronization
of two FHN neurons for their activation potentials only. To derive

the control laws, the synchronization errors can be written as

ex1 = x1 − x2, ex2 = x1 − x3, ex3 = x1 − x4, (9)
ey1 = y1 − y2, ey2 = y1 − y3, ey3 = y1 − y4. (10)

It is worth mentioning that all six synchronization errors in
Eqs (9) and (10) are introduced for attaining the complete syn-
chronization, compared to the existing method of Iqbal et al.
(2014). Figure 3A demonstrates the nonsynchronous behavior
of neurons in terms of activation potentials. The spikes in the
activation potential errors for the neurons can be observed in the
plots of Figure 3B. On the same basis, demonstration of non-
identical responses of the FHN neurons in the recovery variable
states is provided in Figure 4A. The spikes in individual behaviors
of synchronization errors in the recovery variables are provided
in Figure 4B. These spikes in synchronization errors of activa-
tion potentials and recovery variables depict that the firing in
neurons are not coherent at all. By employing Eqs (5)–(10), the
synchronization error dynamics after lengthy algebra take the
form

ėx1 = Φ1
TΓ1(x1, x2) + F1(x1, x2) − ex1 + dx1 − ux1,

ėy1 = Ψ1
TΥ1(x1, x2) − uy1,

(11)

ėx2 = Φ2
TΓ2(x1, x3) + F2(x1, x3) − ex2 + dx2 − ux2,

ėy2 = Ψ2
TΥ2(x1, x3) − uy2,

(12)
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A

B

FIGURE 3 | Activation potential errors in the absence of a control signal: (A) plots of activation potential errors, (B) spikes in activation potential errors ex1, ex2, and
ex3. It shows that all the activation potential errors have oscillating behaviors. Therefore, activation potentials of neurons are not synchronous.
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A

B

FIGURE 4 | Recovery variable errors in the absence of a control signal: (A) plots of recovery variable errors, (B) spikes in recovery variable errors ey1, ey2, and ey3. It
shows that all the recovery variable errors have oscillatory behaviors. It can be concluded that recovery variables of FitzHugh–Nagumo neurons are not coherent.
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ėx3 = Φ3
TΓ3(x1, x4) + F3(x1, x4) − ex3 + dx3 − ux3,

ėy3 = Ψ3
TΥ3(x1, x4) − uy3.

(13)

The whole derivation of the error dynamics and the relevant
matrices can be seen in the Section “Methods”. The proposed
controllers for the ring configured FHN neurons are selected as

ux1 = Φ̂T
1 Γ1(x1, x2) + F1(x1, x2) + K1ex1,

uy1 = Ψ̂
T
1 Υ1(x1, x2),

(14)

ux2 = Φ̂T
2 Γ2(x1, x3) + F2(x1, x3) + K2ex2,

uy2 = Ψ̂
T
2 Υ2(x1, x3),

(15)

ux3 = Φ̂T
3 Γ3(x1, x4) + F3(x1, x4) + K3ex3,

uy3 = Ψ̂
T
3 Υ3(x1, x4).

(16)

The selected adaptation laws are

˙̂Φ1 = p1ex1Γ1(x1, x2)1/q1,
˙̂Ψ1 = l1ey1Υ1(x1, x2)1/m1,

(17)

˙̂Φ2 = p2ex2Γ2(x1, x3)1/q2,
˙̂Ψ2 = l2ey2Υ2(x1, x3)1/m2,

(18)

˙̂Φ3 = p3ex3Γ3(x1, x4)1/q3,
˙̂Ψ3 = l3ey3Υ3(x1, x4)1/m3,

(19)

where the scalars sets (p1, p2, p3), (q1, q2, q3), (l1, l2, l3), and (m1,m2,
m3) enclose positive scalars. In the next subsection, adaptive and
robust adaptive synchronization control conditions are provided
in the network of ring configured neurons.

Adaptive Synchronization
Now, a theoretical condition is developed for the synchronization
of ring configured neurons under direction-dependent coupling
Eqs (5)–(8) by application of adaptive control mechanism in
Eqs (14)–(16) with adaptation law in Eqs (17)–(19). The following
assumption is taken to obtain the main results.

Assumption 1. The parameters in the network of four
FHN neurons in Eqs (5)–(8) and couplings, given by
(r1, r2, r3, r4, b1, b2, b3, b4, g1, g2, g3, g4), are unknown constants.

Theorem 1. Consider a network model of ring configured four
FHN neurons in Eqs (5)–(8) having synchronization error dynam-
ics Eqs (11)–(13) satisfying Assumption 1 with zero disturbances.
Adaptive control mechanism Eqs (14)–(16) and the adaptation law
given by Eqs (17)–(19) selected through p(K1+1) > 0, p(K2+1) >
0, and p(K3 + 1) > 0 will ensure synchronization of the network
model of ring configured neurons in terms of activation potentials
by guaranteeing the convergence of synchronization errors to zero.
In addition, if the steady-state is attained in a finite amount of
time, the convergence of Φ̂i to Φ̂∗

i and Ψ̂i to Ψ̂
∗
i for all i= 1, 2, 3,

are ensured for constant steady-state vector values Φ̂∗
i and Ψ̂

∗
i ,

validating (Φi − Φ̂∗
i )

T
Γi = 0 and (Ψi − Ψ̂

∗
i )

T
Υi = 0.

The proof of the main result of Theorem 1 can be viewed
in the next section. The result is important from the synchro-
nization of a network of neurons point of view. In contrast to
Iqbal et al. (2014), the proposed strategy in Theorem 1 can
be used for complete synchronization of a network of different
FHN neurons with unknown parameters. In addition, we con-
sidered multiple neurons linked in a ring configuration under
direction-dependent coupling. In contrast to the conventional
results like Wang et al. (2007, 2008a,b), Zhang et al. (2007),
Che et al. (2009), Chen et al. (2009), Rehan and Hong (2011),
Rehan et al. (2011), Ambrosio and Aziz-Alaoui (2012), Aqil et al.
(2012a), and Yu et al. (2012), several aspects like uncertainties,
ring configuration, different neurons, several number of neurons,
and direction-dependent coupling are incorporated to design a
matter-of-fact control approach of Theorem 1. Adaptations are
employed for the synchronization of four neurons for dealing with
a large number of unknown parameters. Additionally, a realistic
approach has been followed for the adaptive control by consid-
ering all four neurons of different dynamics. The conventional
studies assume that the FHN neurons have the same dynamical
aspects.

In comparison to the works in Wang et al. (2007), Zhang
et al. (2007), Wang et al. (2008a,b), Che et al. (2009), Rehan
and Hong (2011), Lai et al. (2008), Wei et al. (2009), Che et al.
(2011), Yu et al. (2012), and Ma et al. (2017), the proposed
synchronization approach in Theorem 1 considers multiple neu-
rons, directional coupling, and ring configuration to develop an
adaptive mechanism for synchronization. The work of Rehan
et al. (2011) considered synchronization in three neurons with
known parameters. Here in this study, we consider adaptation
of the parameters, and adaptation laws are introduced to achieve
coherent behaviors in neurons with unknown and dissimilar
parameters of neurons. In addition, a different configuration
and direction-dependent couplings are employed in the proposed
method of Theorem 1. The approach of Iqbal et al. (2015) devel-
oped a strategy to achieve synchronization in activation potentials
and proposed a method to deal with two neurons only. In this
case, we also provide a mechanism for synchronization recov-
ery variables as well and provide an extension to a ring of four
neurons.

Robust Adaptive Synchronization with
Disturbance
In this subsection, amethodology for the synchronization in a net-
work of different FHN neurons with unknown parameters linked
in a ring configuration under direction-dependent coupling and
disturbances is presented. In addition to Assumption 1, we take
the following supposition.

Assumption 2. Assume that the inequalities, given by ∥dx1∥ ≤
dm1, ∥dx2∥ ≤ dm2, ∥dx3∥ ≤ dm3, and ∥Φi∥ ≤ Φmi, ∀i = 1, 2, 3,
hold.

Theorem 2. Consider a network model of ring configured
four FHN neurons in Eqs (5)–(8), having synchronization error
dynamics in Eqs (11)–(13) satisfying Assumptions 1–2. Suppose
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the proposed adaptive control mechanism in Eqs (14)–(16) and the
modified adaptation laws given by

˙̂Φ1 =
(
pex1Γ1 − kc ∥ex1∥ Φ̂1

)
/q ,

˙̂Ψ1 = ley1Υ1/m,

(20)

˙̂Φ2 =
(
pex2Γ2 − kc ∥ex2∥ Φ̂2

)
/q ,

˙̂Ψ2 = ley2Υ2/m,

(21)

˙̂Φ3 =
(
pex3Γ3 − kc ∥ex3∥ Φ̂3

)
/q ,

˙̂Ψ3 = ley3Υ3/m,

(22)

where kc is a scalar constant. If we take p(K1+1) > 0, p(K2 + 1) >
0, and p(K3 + 1) > 0, it ensures synchronization of the network
model of the ring configured FHN neurons by guaranteeing the
convergence of errors to the compact sets. The proposed robust
adaptive control scheme will ensure uniformly ultimately bounded
errors and parameter estimation errors Φi − Φ̂i.

A brief proof of the statement in Theorem 2 is presented in
Section “Methods”. It is notable that the result of Theorem 2
refines the strategy developed in Theorem 1 by considering the
disturbances to modify the design approach and adaptation laws.
In contrast to the method demonstrated in Iqbal et al. (2014), the
approach adopted in Theorem 2 provides a complete synchro-
nization in a network of different FHN neurons with disturbance
under unknown parameters linked in a ring configuration under
direction-dependent coupling. There are various differences in
this work with Iqbal et al. (2014). For instance, the four main
differences are as follows: (a) we investigate a ring configuration
of neurons, (b) this study is based on a more complex scenario
of four neurons than the simple case of two neurons, (c) the
coupling is also complex in this work, and (d) the achievement
of complete synchronization rather than partial one is empha-
sized. It should also be noted that the work on synchroniza-
tion of neurons under direction-dependent coupling is lacking in
the literature. It is worth mentioning that such robust adaptive
synchronization of the perturbed ring configured neurons with
different parameters and direction-dependent coupling is lacking
in the existing literature, like Wang et al. (2007, 2008a,b), Zhang
et al. (2007), Che et al. (2009), Chen et al. (2009), Rehan and
Hong (2011), Rehan et al. (2011), Ambrosio and Aziz-Alaoui
(2012), Aqil et al. (2012a), and Yu et al. (2012). The presented
approach considered a large number of parameters unknown in
the four neurons. In addition, a perturbation in each neuron
has been incorporated to provide an advanced synchronization
solution. To deal with these perturbations and uncertainties, both
adaptation and robustness of control signals for the slow and fast
variations, respectively, are addressed in addition to the direction-
dependent strength of the signals for any connection between
neurons.

Simulation Results
To validate the efficacy of the proposed adaptive control
mechanism for synchronization in the network model of the

ring configured different four FHN neurons under direction-
dependent coupling, we first select the model parameters as
r1 = 10, r2 = 10.2, r3 = 10.4, r4 = 10.6, b1 = 1, b2 = 1.01, b3 = 1.02,
b4 = 1.03, g1 = 0.001, g2 = 0.002, g3 = 0.003, g4 = 0.004, and
f = 0.127. The disturbances are taken as dext,1 = 0.1 sin 12t,
dext,2 = 0.1 sin 20t, dext,3 = 0.1 sin 25t, and dext,4 = 0.1 sin 23t.
The stimulation amplitude is chosen as A= 0.01.

By application of Theorem 2, the parameters of controller
and the adaptation law are obtained as p= q= l=m= 1. The
control parameters are taken to be kc = 5, K1 = 20, K1 = 20.001,
and K3 = 20.002. It has been observed in Figures 2–4 that the
behaviors of the original FHN neurons without any control signal
are not coherent. As discussed earlier, the activation potential
errors and recovery variable errors in Figures 3 and 4 do not
have converging attributes. Rather, spikes are observed in the
synchronization errors, leading to non-synchronous firings of the
neurons.

Now we simulate the behavior of same neurons without and
with the proposed robust adaptive control scheme of Theorem 2.
The proposed control signal is applied at t= 400. Before this
time, the behaviors of the neurons are not coherent and the
synchronization errors have oscillatory responses. Bymeans of the
proposed robust adaptive control scheme, it is observed that the
FHN neurons are synchronized under unknown parameters and
external perturbations.Figures 5 and 6 depict the synchronization
errors for the different FHN neurons under direction-dependent
coupling by using the proposed methodology. Before t= 400, the
behaviors of the activation potential errors inFigure 5 have spikes,
showing non-synchronous firing in neurons. The same trend is
also observed in the recovery variable synchronization errors in
Figure 6. We activated the proposed robust adaptive controller
of Theorem 2 at t= 400. By application of the controller, the
synchronization errors for activation potentials and recovery vari-
ables converge to a region near zero, as shown in Figures 5 and 6.
The convergence of synchronization errors is fast, showing the
effectiveness of the proposed robust adaptive control scheme. Due
to convergence of the synchronization errors in Figures 5 and 6,
the spikes due to firing of the four neurons under bidirectional
coupling become identical, validating the synchronization in both
activation potentials and recovery variables. It is concluded that
the results in Figure 5 authenticate the efficacy of the proposed
robust adaptive control mechanism in the context of synchro-
nization of activation potentials. Moreover, Figure 6 validates
the effectiveness of the proposed mechanism for synchronization
of recovery variables. As the synchronization errors converge in
the neighborhood of zero, it is evident that synchronization of
activation and recovery potentials is achieved via the proposed
robust adaptive control scheme.

The adopted modeling and control methodologies are general-
ized in certain extent and simulation results presented herein rep-
resent a broader scenario of a network of FHNneurons. Themeth-
ods presented in Theorems 1–2 are valid to a general form of FHN
neurons. In addition, robustness against bounded disturbances
has been guaranteed through Theorem 2. The results of Theorems
1 and 2 may not be limited to FHN systems of only four neurons.
All in all, the proposed modeling and control methodology can
be used for a more general form, synchronization in a network of
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A B

C

FIGURE 5 | Activation potential errors of four FitzHugh–Nagumo neurons with the robust adaptive control in Eqs (14)–(16) and (20)–(22). The controller is applied at
time t=400. As controller is applied, synchronization of activation potentials is achieved: (A) error plot x1 − x2, (B) error plot x1 − x3, and (C) error plot x1 − x4.

different FHN neurons of unknown parameters, coupled in ring
configuration, and subject to direction-dependent coupling and
disturbances.

MATERIALS AND METHODS

FHN Model
Neuron is the chief functional element in the brain. Its dynam-
ical examination is important for the treatment of brain dis-
eases. There aremany neuronal models, such as Hindmarsh-Rose,
Hodgkin and Huxley, and FitzHugh–Nagumo, etc. These models
offer investigation of the dynamical behavior of a neuron and
even synchronization in a network of neurons. FHN model is a
famous one in terms of representing various neuronal behaviors,
owing to its simple representation. Consider the FHN model for
representing dynamical aspects of a neuron subjected to external
electrical stimulation as in Thompson et al. (1999), given by

dx
dt = x(x − 1)(1 − rx) − y + I,

dy
dt = bx + vy,

(23)

where x and y represent the activation potential and the recovery
variable, respectively, r is a nonlinearity parameter in the model,
parameters b and v are related to the recovery variable, and
I = (a/ω) cos ωt shows the stimulation current. We employ
this important neuronal model to study the synchronization in
a network of different FHN neurons of unknown parameters
coupled in ring configuration subject to direction-dependent cou-
pling and disturbances. In this paper, coupled FHN models were
simulated using the S-function inMatlab for nonlinear differential
equations.

Lyapunov Stability Analysis
The Lyapunov stability criterion is widely utilized to understand
the stability and control of dynamical systems. In order to elabo-
rate the Lyapunov stability method, consider a dynamical system,
for example, ẋ = f(t, x), where x ∈ Rn denotes the state vector
for the dynamical system. Suppose there exists a positive definite
Lyapunov function V(x) for all the values of vector x ∈ Rn. If the
derivative of the energy function V(x) along the dynamics of the
system x= f (t, x) is negative definite, the state x will approach to
zero, conferring to the Lyapunov stability theory (seeKhalil (1996)
and references therein). V̇(x) < 0means that the factitious energy
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A B

C

FIGURE 6 | Recovery variable errors of four FitzHugh–Nagumo neurons under the robust adaptive control in Eqs (14)–(16) and (20)–(22). The controller is applied at
time t=400. As controller is applied, synchronization of recovery variable is achieved: (A) error plot y1 − y2, (B) error plot y1 − y3, and (C) error plot y1 − y4.

V(x) of the dynamical system is decreasing, leading to stability of
the system.

Derivation of Error Dynamics
By using Eqs (5)–(10), we obtain the error dynamics as follows:

ėx1 = f1(x1) − f2(x2) − y1 + y2 − g1 [(x1 − x2) + (x1 − x4)]
+ g2 [(x2 − x1) + (x2 − x3)] + dx1 − ux1,

ėy1 = b1x1 − b2x2 − uy1, (24)

ėx2 = f1(x1) − f3(x3) − y1 + y3 − g1 [(x1 − x2) + (x1 − x4)]
+ g3 [(x3 − x2) + (x3 − x4)] + dx2 − ux2,

ėy2 = b1x1 − b3x3 − uy2, (25)

ėx3 = f1(x1) − f4(x4) − y1 + y4 − g1 [(x1 − x2) + (x1 − x4)]
+ g4 [(x4 − x3) + (x4 − x1)] + dx3 − ux3,

ėy3 = b1x1 − b4x4 − uy3. (26)

Note that Iext ,1, Iext ,2, Iext ,3, and Iext ,4 are the same in the present sce-
nario, therefore, their effect is canceled out in the error dynamics.

Let us define the functions and signals

f1(x1) = −r1x31 + r1x21 + x21 − x1,

f2(x2) = −r2x32 + r2x22 + x22 − x2,

f3(x3) = −r3x33 + r3x23 + x23 − x3,

f4(x4) = −r4x34 + r4x24 + x24 − x4,
dx1 = dext,1 − dext,2,
dx2 = dext,1 − dext,3,
dx3 = dext,1 − dext,4.

(27)

As the recovery variable dynamics are dependent on the activation
potential, the relations become

y1 = b1
∫ t

0
x1dα + y1(0),

y2 = b2
∫ t

0
x2dα + y2(0),

y3 = b3
∫ t

0
x3dα + y3(0),

y4 = b4
∫ t

0
x4dα + y4(0).

(28)

Frontiers in Neurorobotics | www.frontiersin.org February 2018 | Volume 12 | Article 611

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Iqbal et al. Synchronization of Ring Configured Neurons

Here y1(0), y2(0), y3(0), and y4(0) denote the unknown initial
conditions for the recovery variable of four neurons. The relevant
quantities in the error dynamics formulation are defined by

Φ1
T =

[
r1 r2 b1 b2 y1(0) y2(0) g1 g2

]
Γ1(x1, x2) =

[
−x31 + x21 x32 − x22 −

∫ t
0 x1dα

∫ t
0 x2dα − 1 1,

− [(x1 − x2)+ (x1 − x4)] [(x2 − x1)+ (x2 − x3)]
]T

,

(29)

Ψ1
T =

[
b1 b2

]
, [0, 1],

Υ1(x1, x2) =
[
x1 −x2

]T
,

(30)

Φ2
T =

[
r1 r3 b1 b3 y1(0) y3(0) g1 g3

]
,

Γ2(x1, x3) =
[
−x31 + x21 x33 − x23 −

∫ t
0 x1dα

∫ t
0 x3dα − 1 1,

− [(x1 − x2)+ (x1 − x4)] [(x3 − x2)+ (x3 − x4)]
]T

,

(31)

Ψ2
T =

[
b1 b3

]
,

Υ2(x1, x3) =
[
x1 −x3

]T
,

(32)

Φ3
T =

[
r1 r4 b1 b4 y1(0) y4(0) g1 g4

]
,

Γ3(x1, x4) =
[
−x31 + x21 x34 − x24 −

∫ t
0 x1dα

∫ t
0 x4dα − 1 1,

− [(x1 − x2)+ (x1 − x4)] [(x4 − x3)+ (x4 − x1)]
]T

,

(33)

Ψ3
T =

[
b1 b4

]
,

Υ3(x1, x4) =
[
x1 −x4

]T
,

(34)

and

F1(x1, x2) = x21 − x22,

F2(x1, x3) = x21 − x23,

F3(x1, x4) = x21 − x24.

(35)

Employing Eqs (27)–(35) into Eqs (24)–(26), the error dynam-
ics equations given by Eqs (11)–(13) are obtained in the Section
“Results and Discussion”.

Proof of Theorem 1
The proof of Theorem 1 is provided using the same steps as in
Iqbal et al. (2014). However, our scenario is more complex due to
the ring configuration and multiple neurons. Incorporating Eqs
(14)–(16) into Eqs (11)–(13), for i= 1, 2, 3 leads to the results

ėxi = (Φi − Φ̂i)
TΓi − (Ki + 1)exi + dxi,

ėyi = (Ψi − Ψ̂i)
T

Υi.
(36)

The considered Lyapunov function candidate is given by

V(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

= (1/2)
3∑

i=1

(
pexi2 + q(Φi − Φ̂i)

T
(Φi − Φ̂i)

)
+ (1/2 )

3∑
i=1

(
leyi2 + m(Ψi − Ψ̂i)

T
(Ψi − Ψ̂i)

)
,

(37)

with p> 0, q> 0, l> 0, m> 0. On taking the time-derivative

of Eq (37), using (Φi − Φ̂i)
T ˙̂Φi =

˙̂Φi
T
(Φi − Φ̂i) and

(Ψi − Ψ̂i)
T ˙̂Ψi = ˙̂Ψi(Ψi − Ψ̂i)

T and, further, incorporating the
error systems of Eq (36), we obtain

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

=
3∑

i=1

(
pexi(Φi − Φ̂i)

TΓi − p(Ki + 1)exi2

− q(Φi − Φ̂i)
T ˙̂Φi + pexidxi + leyi(Ψi − Ψ̂i)

T
Υi

−m(Ψi − Ψ̂i)
T ˙̂Ψi

)
.

(38)

Using the adaptation laws in Eqs (17)–(19) under zero distur-
bances, it yields

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i)) = −p
3∑

i=1
(Ki + 1)exi2. (39)

As V̇(exi, eyi, (Φi−Φ̂i), (Ψi−Ψ̂i)) < 0,weneed−p(Ki+1) less
than zero for i = 1, 2, 3. In the steady-state, the synchronization
errors and their derivatives are zero. In addition, the behaviors of
all four neurons will be the same. Therefore, we have ˙̂Φi = 0 and
˙̂Ψi = 0, which implies that Φ̂i = Φ̂∗

i and Ψ̂i = Ψ̂
∗
i are satisfied

in the steady-state, where Φ̂∗
i and Ψ̂

∗
i are constants. As observed

in Rehan and Hong (2011), Rehan et al. (2011), and Iqbal et al.
(2014), we have (Φi − Φ̂∗

i )
T

Γi = 0 and (Ψi − Ψ̂
∗
i )

T
Υi = 0.

Proof of Theorem 2
The proof of Theorem 2 employs similar methods as in the results
(Rehan and Hong, 2011; Rehan et al., 2011; Iqbal et al., 2014) for
the proposed complex scenario. Using Eq (38) and the proposed
adaptation law in Theorem 2, we have

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

=
3∑

i=1

(
−p(Ki + 1)exi2 − (Φ̂i − Φi)

TΦ̂ikc ∥exi∥ + pexidxi
)
.

(40)

It can be confirmed with ∥Φi∥ ≤ Φmi that
∥∥∥Φ̂i − Φi

∥∥∥2
−∥∥∥Φ̂i − Φi

∥∥∥ Φmi ≤ (Φ̂i − Φi)
TΦ̂i from (Iqbal et al., 2014). It

along with Assumption 2 implies

V̇(exi, eyi, (Φi − Φ̂i), (Ψi − Ψ̂i))

≤
3∑

i=1

(
− ∥exi∥

(
p(Ki + 1) ∥exi∥ + kc

(∥∥∥Φ̂i − Φi

∥∥∥ − Φmi/2
)2

−kcΦ2
mi/4 − pdmi

))
.

(41)
Given that p(Ki+1)>0, Eq (41) implies that

V̇(exi, eyi, (Φi−Φ̂i), (Ψi − Ψ̂i)) < 0 if the conditions in
Eq (42) hold.

∥exi∥ >
kcΦ2

mi/4 + pdmi

p(Ki + 1)
,
∥∥∥Φ̂i − Φi

∥∥∥ >
Φmi

2
+

√
Φ2

mi
4

+
pdmi

kc
,

(42)
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for i= 1, 2, 3. Thus, the synchronization errors and estimation
errors are uniformly ultimately bounded as seen in Zhang et al.
(2007), Rehan and Hong (2011), Rehan et al. (2011), and Iqbal
et al. (2014) and references therein. The guidelines provided in
Zhang et al. (2007), Rehan and Hong (2011), Rehan et al. (2011),
and Iqbal et al. (2014) and references therein for the selections of
robust adaptive control parameters can be followed.

This study provides a step to increase complexity by increasing
the number of neurons and considering their complex interac-
tions, and it provides an approach to consider a generalizedmodel
for synchronization aspects. Prohibition of synchronization is
also another research topic. Further works on blockage of the
synchronization using control strategies can also be investigated.

CONCLUSIONS

This paper addressed the controlled synchronization in a net-
work of ring configured four different FHN neurons with
unknown parameters under direction-dependent coupling and
disturbances. The neurons and their interactions (i.e., coupling)
in a ring topology network are considered to be different owing to
the inter-neuronal couplingmediumproperties. Based on the Lya-
punov stability criteria, adaptive control strategies were developed
to deal with the complex problem of synchronization in a network

of four different FHN neurons. In addition, a robust adaptive con-
trol was also developed to ensure robustness against the external
disturbances to attain the uniformly ultimately bounded synchro-
nization errors. In contrast to various existing works, dissimilar
neurons, unknownparameters,multiple neurons, ring topology of
neurons, bidirectional communication in neurons and coherence
in activation potentials, and recovery variables are incorporated in
this study. The numerical simulation results verified the efficacy
of the proposed control approaches.
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