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In the practice of motor skills in general, errors in the execution of movements may go

unnoticed when a human instructor is not available. In this case, a computer system or

robotic device able to detect movement errors and propose corrections would be of great

help. This paper addresses the problem of how to detect such execution errors and how

to provide feedback to the human to correct his/her motor skill using a general, principled

methodology based on imitation learning. The core idea is to compare the observed

skill with a probabilistic model learned from expert demonstrations. The intensity of the

feedback is regulated by the likelihood of the model given the observed skill. Based on

demonstrations, our system can, for example, detect errors in the writing of characters

with multiple strokes. Moreover, by using a haptic device, the Haption Virtuose 6D,

we demonstrate a method to generate haptic feedback based on a distribution over

trajectories, which could be used as an auxiliary means of communication between an

instructor and an apprentice. Additionally, given a performance measurement, the haptic

device can help the human discover and perform better movements to solve a given task.

In this case, the human first tries a few times to solve the task without assistance. Our

framework, in turn, uses a reinforcement learning algorithm to compute haptic feedback,

which guides the human toward better solutions.

Keywords: shared autonomy, HRI, movement primitives, reinforcement learning, policy search, cooperation,

robotics, interaction

1. INTRODUCTION

In the absence of an instructor, errors in the execution of movements by a person trying to
learn a new motor skill, such as calligraphy, for example, may go unnoticed. To counter this
problem, we propose recording demonstrations of a motor skill provided by an instructor and
processing them such that someone practicing that motor skill in the absence of the instructor
can have the correctness of his/her trials automatically assessed and receive feedback based on the
demonstrations.

More precisely, our system aligns demonstrated trajectories in space and time and computes
a probability distribution over them. Often, demonstrations may have been executed at different
speeds. In order to extract the underlying shape of the movement from multiple trajectories,
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it is thus necessary to time-align these trajectories. In some cases,
such as writing characters, the scale and the absolute position
of the movements are not as relevant as their shape, justifying
the necessity of addressing space-alignment in our framework as
well.

When a new trajectory is executed, our system aligns
the observations in space and time with the post-processed
demonstrations and computes the probability of each of the
positions of this new trajectory under the distribution over the
demonstrations. The computed probabilities provide a way of
assessing the correctness of each position of the new trajectory.

Based on this assessment, our system can generate visual
or haptic feedback. We demonstrate the generation of visual
feedback with the task of assisting the practice of writing Japanese
characters on a monitor with a computer mouse. The generation
of haptic feedback is demonstrated in an experiment with a haptic
device, the Haption Virtuose 6D (see Figure 1). Our system gives
haptic feedback to the user in the form of forces that constrain
his/her movements when manipulating the haptic device, which
can be seen as a form of guiding virtual fixtures (Rosenberg,
1992). The produced force is perpendicular to themean trajectory
of the distribution and its intensity is inversely proportional
to the standard deviation along the distribution, as detailed in
section 4.

There are situations where the provided demonstrations do
not contain truly expert skills, and thus cannot successfully
be used to build the probabilistic model. Nevertheless, it may
be possible to define performance measurements accounting
for certain objectives. Examples of such a situation could be
found in a teleoperation task where the user perception and
motor capabilities do not enable him/her to succeed. Such a task
could be for instance telemanipulating a robot arm to move an
object from a start position to an end position while avoiding
obstacles. In such a task, a user can easily hit obstacles or fail to
reach objects of interest. However, it may be possible to define
performance measurements based on the positions of objects
in the environment of the teleoperated robot. These positions

FIGURE 1 | Human manipulating a haptic device, the Haption Virtuose 6D. In

our experiments, the haptic device assists the movements of the human by

providing force feedback which is inversely proportional to the standard

deviation of a distribution over trajectories (example is shown on the computer

screen).

could be computed from information provided by sensors in that
environment. The framework presented in this paper deals with
these situations by applying reinforcement learning to adapt the
original distribution over trajectories. The adapted distribution is
then used to guide the user toward a better solution to the task.

In general, the problem of finding a distribution over
trajectories that avoid obstacles and pass through positions of
interest involves multiple optimization subproblems. Tuning
the hyperparameters of the reward function to satisfy all the
objectives may be time-consuming and may not produce the
desired results. For this reason, our proposed framework includes
a novel reinforcement learning algorithm that makes use of
a parametric representation of trajectories and identifies how
relevant each policy parameter is to each of the objectives of
the task. By identifying how relevant each policy parameter is
to each objective, it is possible to achieve effective policies with
simpler reward functions, one for each objective, instead of a
single reward function with different user-defined weights for
each objective. Moreover, it is possible to optimize each objective
sequentially, exploring different values of the parameters that
matter for that objective and preserving the uncertainty about the
other parameters.

In summary, this paper presents a new framework to assist
humans in training and executing movements by providing
visual and haptic feedback to the user. This feedback can be given
based on a probability distribution over expert demonstrations
or based on an optimized distribution learned from a few non-
expert demonstrations and performance criteria. By including
methods for time and space-alignment of trajectories, this
framework can potentially be applied to a large range of
motor skills as long as the shape of the movement is
critical, not its speed. In this work, our framework has
been applied to the learning of Japanese characters and to
teleoperation. As a secondary contribution, this paper presents
a novel reinforcement learning algorithm for problems involving
multiple objectives, which are often encountered in teleoperation
scenarios.

2. RELATED WORK

This section primarily describes related work on techniques to
assess the correctness of human motion and provide feedback
to the user. It briefly introduces related work on the required
components used for modeling the human demonstrations.

2.1. Human Motion Assessment and
Feedback to the User
With similar goals as in our work, Solis et al. (2002) presented
a method to teach users how to write characters using a haptic
interface. In their method, characters are modeled with Hidden
MarkovModels (HMMs) with discrete hidden states and discrete
observations. The system recognizes online what character the
user intends to write and applies a proportional derivative (PD)
controller with fixed gains to restrict the user to move along
the trajectory that corresponds to the recognized character.
Differently, in our work, the gains of the haptic device are adapted
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as a function of the user’s deviation with respect to the model
learned from expert demonstrations or through reinforcement
learning. Adaptive gains allow for practicing motor skills with
multiple correct possibilities of execution, in case there is not a
single correct trajectory. Also, it allows for regulating the stiffness
of the robot to impose different levels of precision at different
parts of the movement.

Parisi et al. (2016) proposed a “multilayer learning
architecture with incremental self-organizing networks” to
give the user real-time visual feedback during the execution of
movements, e.g., powerlifting exercises. In our work, we have
not addressed real-time visual feedback so far, although we
do address real-time haptic feedback. On the other hand, our
framework can deal with movements with different absolute
positions and scales when producing visual feedback. By
disabling this preprocessing, it would be possible to generate
real-time visual feedback as well.

Kowsar et al. (2016) presented a workflow to detect anomalies
in weight training exercises. In their work, movement repetitions
are segmented based on the acceleration along an axis in
space. A probability distribution over a number of time-aligned
repetitions is built. Then, based on this distribution, movement
segments can be deemed correct or incorrect. Our approach
focuses rather on correcting movements with respect to their
shape or position in space, not on correcting acceleration
patterns.

A variable impedance controller based on an estimation of
the stiffness of the human arm was proposed by Tsumugiwa
et al. (2002). This controller enabled a robot to assist humans in
calligraphic tasks. In the cited work, the tracked trajectories were
not learned from demonstrations.

Our work is in line with approaches that aim to assist
learning with demonstrations. Raiola et al. (2015), for instance,
used probabilistic virtual guides learned from demonstrations to
help humans manipulate a robot arm. In another related work,
Soh and Demiris (2015) presented a system that learns from
demonstrations how to assist humans using a smart wheelchair.

Visual, auditory and haptic feedback modalities have been
successfully used for motor learning in the fields of sport and
rehabilitation (Sigrist et al., 2013). Our method to provide visual
feedback to the user, detailed in section 3.4, is, for instance,
similar in principle to bandwidth feedback. This sort of feedback
means that the user only receives feedback when the movement
error exceeds a certain threshold and it has been shown to be
effective in rehabilitation (Timmermans et al., 2009). The work
here presented relates and can potentially complement previous
research on bandwidth feedback in the sense that our threshold
is not constant, but depends on a probability distribution over
trajectories. Our approach may find applications in tasks where it
is desirable to give the user more freedom of movement around
a certain position and less freedom around a different position or
where multiple variations of movements are considered correct.

Ernst and Banks (2002) have demonstrated that maximum-
likelihood estimation describes the way humans combine visual
and haptic perception. The estimation of a certain environmental
property that results from the combination of visual and haptic
stimuli presents lower variance than estimations based only on
visual or haptic stimuli. When the visual stimulus is noise-free,

users tend to rely more on vision to perform their estimation.
On the other hand, when the visual stimulus is noisy, users
tend to rely more on haptics. Therefore, users may profit
from multimodal feedback to learn a new motor skill. In our
experimental section, we provide haptic feedback to users to help
them perform a teleoperation task in a virtual environment. The
findings in Ernst and Banks (2002) indicate that haptic feedback
also helps users perceive some aspects of the task that they could
not perceive only from visual stimuli, which could help them
learn how to better solve the task without assistance next time.
The usefulness of haptic feedback to learn motor skills is also
demonstrated in Kümmel et al. (2014), where robotic haptic
guidance has been shown to induce long-lasting changes in golf
swingmovements. The work here presented offers an algorithmic
solution to the acquisition of policies and control of a robotic
device that could be applied to help humans learn and retain
motor skills.

In contrast to most of the work on haptic feedback for human
motor learning, our method modulates the stiffness of the haptic
device according to demonstrations and uses reinforcement
learning to improve upon the demonstrated movements. Those
features may be interesting as a means of communication
between an expert and an apprentice or patient and to enable
improvement of initial demonstrations.

2.2. Learning and Adapting Models From
Demonstrations
An essential component of this work is to construct a model
from expert demonstrations, which is then queried at runtime
to evaluate the performance of the user. One recurrent issue
when building models from demonstration is the problem of
handling the variability of phases (i.e., the speed of the execution)
of different movements. Listgarten et al. (2004) proposed the
Continuous Profile Model (CPM), which can align multiple
continuous time series. It assumes that each continuous time
series is a non-uniformly subsampled, noisy and locally rescaled
version of a single latent trace. The model is similar to a
Hidden Markov Model (HMM). The hidden states encode the
corresponding time step of the latent trace and a rescaling factor.
The CPM has been successfully applied to align speech data and
data sets from an experimental biology laboratory.

Coates et al. (2008) augmented the model of Listgarten et al.
(2004) by additionally learning the dynamics of the controlled
system in the vicinity of the intended trajectory. With this
modification, their model generates an ideal trajectory that
not only is similar to the demonstrations but also obeys the
system’s dynamics. Moreover, differently from Listgarten et al.
(2004), their algorithm to time-align the demonstrations and to
determine an ideal trajectory relies both on an EM algorithm
and on Dynamic Time Warping (Sakoe and Chiba, 1978).
With this approach, they were able to achieve autonomous
helicopter aerobatics after training with suboptimal human
expert demonstrations.

The same method was used by Van Den Berg et al. (2010)
to extract an ideal trajectory from multiple demonstrations. The
demonstrations were, in this case, movements of a surgical robot
operated by a human expert.
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Similarly to Coates et al. (2008) and Van Den Berg et al.
(2010), our system uses Dynamic TimeWarping (DTW) to time-
align trajectories. While DTW usually aligns pairs of temporal
sequences, in section 3.2 we present a solution for aligning
multiple trajectories. An alternative solution was presented by
Sanguansat (2012), however, it suffers from scalability issues
because distances need to be computed between every point of
every temporal sequence.

Differences in the scale and shape of movements must
also be addressed to account for the variability in human
demonstrations. In practice, for tasks such as writing, we want
our system to be invariant to the scale of the movements of
different demonstrations. The analysis of the difference between
shapes is usually addressed by Procrustes Analysis (Goodall,
1991). The output of this analysis is the affine transformation
that maps one of the inputs to best match the other input, while
the residual is quantified as the effective distance (deformation)
between the shapes. As the analysis consists of computing
such transformations in relation to the centroid, Procrustes
Analysis provides a global, average assessment and has found
applications in tasks of trajectory and transfer learning (Bocsi
et al., 2013; Makondo et al., 2015; Holladay and Srinivasa, 2016)
and manipulation (Collet et al., 2009). While this seems the
most natural solution to our problem of aligning shapes, we
noticed that it is not suitable for detecting anomalies. In fact, in
the writing task, we are interested in finding the “outliers” that
can be indicated to the human as erroneous strokes. However,
Procrustes Analysis aligns the shapes globally such that the
positions of the centroids are inappropriately biased toward
such outliers. In sections 3.1.1 and 3.1.2 we describe our own
alignment method that is suited for detecting particular errors
with the introduction of a few heuristics.

3. PROCESSING DEMONSTRATIONS AND
ASSESSING THE CORRECTNESS OF
OBSERVED TRAJECTORIES

Assuming the availability of expert demonstrations, the workflow
of our proposed method is the following: First, the expert
demonstrations are aligned in space and time and a probability
distribution over these demonstrations is computed. Afterward,
a user tries to perform the motor task. The movements of the
user are also aligned in space and time with the demonstrations.
Based on the probability distribution over the demonstrations,
our system highlights which parts of the user’s movements
need improvement. A way of translating a distribution over
trajectories into haptic feedback is presented later in section 4.
A novel reinforcement learning algorithm is presented in section
5. The algorithm attempts to improve the movements of the
user according to certain performance criteria, even when the
initial demonstrations are considered suboptimal under the same
criteria.

3.1. Rescaling and Repositioning
In assessing the correctness of individual executions of a motor
skill, it is often not important what the absolute position of the

sequence of movements is, e.g., in weightlifting or gymnastics.
In some situations, it is also not of crucial importance what the
scale of the movements is as long as they keep their relative
proportions, e.g., in drawing or calligraphy. Therefore, our
system rescales all trajectories, both the ones demonstrated by
a human expert and the ones performed by a user practicing a
motor skill. Moreover, all trajectories are repositioned in such a
way that the first position of the reference stroke is at the origin
of the coordinate system. In practice, each stroke composing
a motor skill is used once as the reference for rescaling and
repositioning. For each reference stroke, a different score and
visual feedback are computed. The best score and the respective
feedback are presented to the user. This procedure enables our
algorithm to present meaningful feedback to the user regardless
the location of his/her errors. In this section, our method for
rescaling and repositioning is explained for two dimensions
(x and y) and exemplified with the task of writing Japanese
characters. This method can nevertheless be extended in a
straightforward manner for more than two dimensions.

3.1.1. Rescaling

First, the system computes

1xref = max
t

xref (t)−min
t

xref (t) , (1)

1yref = max
t

yref (t)−min
t

yref (t) , (2)

where t indexes each time step, max
t

xref (t) is the maximum x

coordinate of the reference stroke, min
t

xref (t) is the minimum x

coordinate of the reference stroke, and similarly for max
t

yref (t)

and min
t

yref (t).

Subsequently, a rescaling factor α is given by

α =

{

1
1xref

if1xref ≥ 1yref,
1

1yref
otherwise.

(3)

The characters are written on a square window with side equal to
1. The rescaling factor α expresses the ratio between the constant
1 and the width 1xref or height 1yref of the reference stroke.
If 1xref ≥ 1yref, the width is used to compute α. Otherwise,
the height is used. Some strokes are much larger in width than
in height or vice versa. Therefore, this way of computing the
rescaling factor selects the width or the height of the reference
stroke according to which one will lead to the smallest amount of
rescaling. For example, the characters depicted in Figure 2A will
be rescaled according to the width of the first stroke of each of
them respectively, resulting in characters whose first stroke has
width equal to 1.

The rescaling factor can also be written as

α =

xi,rescaled (t)−min
{j,k}

xj
(

k
)

xi (t)−min
{j,k}

xj
(

k
) =

yi,rescaled (t)−min
{j,k}

yj
(

k
)

yi (t)−min
{j,k}

yj
(

k
) , (4)

where both t and k are time step indexes, while the indexes i
and j represent the strokes of a character. Here, xi,rescaled (t) −
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FIGURE 2 | Rescaling and repositioning different executions of a motor skill. In this example, the motor skill is writing a Japanese character. (A) Two demonstrations

of a Japanese character. (B) After rescaling both characters. (C) After repositioning the characters such that the first position of the first stroke is (x = 0, y = 0). The

first stroke is the reference stroke in this case.

min
{j,k}

xj
(

k
)

is the difference between the x coordinate at time

step t of stroke i after rescaling and the minimum x coordinate
of the character. The term xi (t) − min

{j,k}
xj

(

k
)

represents the

corresponding difference before rescaling. Equation (4) also
includes similar terms for the y coordinates. Therefore, after
rescaling, the difference between the x coordinate of the position
at time step t and the minimum x coordinate is α times this
difference before rescaling, and similarly for the y coordinate.
Thus this rescaling keeps the proportion between the width and
the height of the character.

Rearranging the terms of Equation (4) leads to

xi,rescaled (t) = min
{j,k}

xj
(

k
)

+

(

xi (t)−min
{j,k}

xj
(

k
)

)

α, (5)

yi,rescaled (t) = min
{j,k}

yj
(

k
)

+

(

yi (t)−min
{j,k}

yj
(

k
)

)

α, (6)

which is how the coordinates of the rescaled version of a character
are computed. Figure 2A shows two demonstrations of the same
character and Figure 2B shows the result of rescaling these
characters.

3.1.2. Repositioning

In order to reposition a character such that the first position of the
reference stroke is

(

x = 0, y = 0
)

, our system simply computes

xi,repositioned (t) = xi (t)− xref (t = 1) , (7)

yi,repositioned (t) = yi (t)− yref (t = 1) , (8)

where xi (t) and yi (t) are the original coordinates of stroke
i at time step t, xi,repositioned (t) and yi,repositioned (t) are the
coordinates of stroke i at time step t of the character after
repositioning, xref (t = 1) and yref (t = 1) are the coordinates
of the reference stroke at the first time step. Figure 2C shows
two demonstrations of the same character after rescaling and
repositioning.

3.2. Time Alignment
The time alignment of all the demonstrations and of the user’s
movements is achieved in our system by using Dynamic Time

Warping (Sakoe and Chiba, 1978). Each stroke of an execution
of a motor skill is time-aligned with respect to the corresponding
stroke of other executions of that same motor skill.

Suppose two corresponding strokes need to be time-aligned.
Let us represent these strokes by τ 1 and τ 2, which are sequences
of Cartesian coordinates from time step t = 1 until time step
t = T1 and t = T2, respectively. Here, T1 and T2 represent the
last time step of τ 1 and τ 2, respectively.

First, the Euclidean distance D
(

i, j
)

between position at t = i
of τ1 and position at t = j of τ2 is computed for all time steps of
both strokes, i.e.,

D
(

i, j
)

= ‖τ 1 (i)− τ 2

(

j
)

‖, (9)

∀i ∈ {1, 2, · · · ,T1} ,∀j ∈ {1, 2, · · · ,T2} .

Subsequently, assuming that the first position of τ 1 corresponds
to the first position of τ 2, the accumulated cost A

(

i, j
)

of

associating τ 1 (i) with τ 2

(

j
)

is computed according to

A (1, 1) = D (1, 1) , (10)

A (i, 1) = D (i, 1)+ A (i− 1, 1) , (11)

A
(

1, j
)

= D
(

1, j
)

+ A
(

1, j− 1
)

, (12)

A
(

i, j
)

= D
(

i, j
)

+min
{

A
(

i− 1, j
)

,A
(

i− 1, j− 1
)

,A
(

i, j− 1
)}

.

(13)

Once the matrix of accumulated costs A has been determined,
a path p can be computed that indicates how each trajectory
should progress in time such that the minimum total cost is
achieved. This path is computed backward in time in a dynamic
programming fashion, as detailed in Algorithm 1.

The time warped versions of trajectories τ 1 and τ 2, denoted
by τ ′1 and τ ′2, are computed with Algorithm 2.

Algorithms 1 and 2 represent a common form of DTW
which aligns pairs of temporal sequences. Algorithm 3 shows our
proposed extension of DTW for time-aligning multiple temporal
sequences. It works as follows: Trajectories τ 1 and τ 2 are time-
aligned with DTW, resulting in τ ′1 and τ ′2. Then τ ′2 and τ 3 are
time-aligned. Subsequently, the same warping applied to τ ′2 is
also applied to τ ′1. The algorithm proceeds like that until τn,
always warping previous trajectories as well. For n trajectories,
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Algorithm 1 Path Search

1: procedure PATH(T1,T2,A)
2: k← 1
3: i← T1

4: j← T2

5: p
(

k
)

←
(

i, j
)

6: while i 6= 1 or j 6= 1 do
7: if i = 1 then
8: j← j− 1
9: else if j = 1 then
10: i← i− 1
11: else

12: if

A
(

i− 1, j
)

= min
{

A
(

i− 1, j
)

,A
(

i− 1, j− 1
)

,A
(

i, j− 1
)}

then

13: i← i− 1
14: else if

A
(

i, j− 1
)

= min
{

A
(

i− 1, j
)

,A
(

i− 1, j− 1
)

,A
(

i, j− 1
)}

then

15: j← j− 1
16: else

17: i← i− 1
18: j← j− 1
19: end if

20: end if

21: k← k+ 1
22: p

(

k
)

←
(

i, j
)

23: end while

24: return p

25: end procedure

Algorithm 2Warping for a Pair of Trajectories

1: procedure PAIRWARP(p, τ 1, τ 2)
2: t← 0
3: for k = p.Length→ 1 do
4: t← t + 1
5:

(

i, j
)

← p
(

k
)

6: τ ′1 (t)← τ 1 (i)
7: τ ′2 (t)← τ 2

(

j
)

8: end for

9: return τ ′1, τ
′
2

10: end procedure

DTW needs to be computed n− 1 times and the computation of
the distance matrix D remains the same as in the original DTW.
Figure 3 exemplifies the time-alignment of multiple trajectories.

3.3. Distribution Over Trajectories
In order to create a distribution over trajectories, we use the
framework of Probabilistic Movement Primitives (Paraschos
et al., 2013). Probabilistic Movement Primitives (ProMPs) allow
for representing each trajectory with a relatively small number
of parameters. A distribution over trajectories can then be
computed by integrating out those parameters.

Algorithm 3Warping for Multiple Trajectories

1: procedureMULTIPLEWARP(τ 1, τ 2, · · · , τn)
2: for l = 1→ n− 1 do
3:

(

p, τ l, τ l+1

)

← DTW
(

τ l, τ l+1

)

4: form = 1→ l− 1 do
5: t← 0
6: for k = p.Length→ 1 do
7: t← t + 1
8:

(

i, j
)

← p
(

k
)

9: τm (t)← τm (i)
10: end for

11: end for

12: end for

13: return τ 1, τ 2, · · · , τn

14: end procedure

FIGURE 3 | x trajectories of corresponding strokes of multiple instances of a

Japanese character. (A) Before time alignment. (B) After time alignment using

DTW and our extension to deal with multiple trajectories.

More precisely, in this framework, each trajectory τ with a
certain duration T is approximated by a weighted sum of N
normalized Gaussian basis functions evenly distributed along the
time axis. This approximation can be represented by

τ = 9w + ǫ, (14)

where w is a weight vector, ǫ is a zero-mean i.i.d. Gaussian noise,
i.e., ǫ ∼ N

(

0, σ 2IT×T
)

, and

9 =











ψ1 (1) ψ2 (1) · · · ψN (1)
ψ1 (2) ψ2 (2) · · · ψN (2)

...
...

. . .
...

ψ1 (T) ψ2 (T) · · · ψN (T)











. (15)

A term ψi (t) in this matrix represents the normalized Gaussian
basis function with index i evaluated at time step t.

Given a trajectory τ , a pre-defined matrix of basis functions9

and a regularizing factor λ, the weight vector w can be computed
with linear ridge regression as follows:

w =
(

9T9 + λIN×N

)−1
9Tτ . (16)

Once the weight vectors w corresponding to a set of trajectories
τ have been computed, a Gaussian distribution N

(

µw,6w

)

over these vectors is determined using maximum likelihood
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estimation. The distribution over trajectories τ can be expressed
as the marginal distribution

p (τ ) =

∫

p (τ |w) p (w) dw, (17)

where p(w) = N
(

w|µw,6w

)

. Assuming that a Gaussian is a
good approximation for the distribution over w, this integral can
be solved in closed-form, yielding

p (τ ) = N
(

τ |µτ ,6τ

)

, (18)

with

µτ = 9µw,

6τ = σ
2IT×T +96w9T . (19)

To deal with not only one stroke and a single degree of freedom
(DoF) but withmultiple strokes andmultiple DoFs, one can think
of τ as a concatenation of trajectories. The matrix 9 becomes,
in this case, a block diagonal matrix and w a concatenation of
weight vectors. For further details about this formulation, the
interested reader is referred to our previous work (Maeda et al.,
2016) in which ProMPs were used to coordinate the movements
of a human and a robot in collaborative scenarios.

The variance σ 2 defining the Gaussian noise ǫ determines
how sensitive our system is to deviations from the distribution
over demonstrations because σ 2 directly influences the variance
along this distribution, as expressed by Equation (19). A small σ 2

results in assessing positions as incorrect more often, while a high
σ 2 results in a less strict evaluation.

3.4. Assessing the Correctness of New
Trajectories
The correctness of each position of a new trajectory is assessed
by comparing the probability density function evaluated at that
position with the probability density function evaluated at the
corresponding position along the mean trajectory, which is
considered by our system the best achievable trajectory, since
it is the one with the highest probability under the Gaussian
distribution over demonstrations.

First, the ratio

g (t) =
p (τ (t))

p
(

µτ (t)
) (20)

is computed for each time step t, where p (τ (t)) is the probability
of position τ (t) at time step t and p

(

µτ (t)
)

is the probability of
positionµτ (t) at time step t. Since the highest achievable value of
the Gaussian probability density function at each time step is the
one achieved by the mean trajectory, g is a function with values
between 0 and 1.

Subsequently a score

s
(

g (t)
)

=
arctan

((

g (t)+ a
)

b
)

2c
+ 0.5 (21)

for each time step t is computed, where

c = arctan
(

(1+ a) b
)

. (22)

The score function s was designed with a few desired properties
inmind.With a = −0.5, s is equal to 0 when the ratio g is equal to
0, it is 0.5 when g is 0.5 and it is 1 when g is 1. The score function
smonotonically increases with g. Its steepness is regulated by the
parameter b. We have been using a = −0.5 and b = 25. One
could consider using other score functions, depending on the
preferences of the users. The score function depicted in Figure 4

leads to a sharp distinction between right and wrong positions.
One might prefer a more gradual distinction. In this work, we
did not investigate what score function the users prefer nor
whether certain score functionsmake the users learn faster. These
considerations could be subject of extensive user studies.

4. METHOD TO PROVIDE HAPTIC
FEEDBACK

Up to now, it has been solely discussed in this paper how
to provide offline visual feedback to the user assessing the
correctness of his/her movements. Here, it is presented how our
framework provides online haptic feedback to the user, guiding
him/her toward correct movements.

The Haption Virtuose 6D can provide force feedback to the
user by simulating a virtual object attached to its end effector
constituting a mass-spring-damper system. Given the mass and
the inertia of the virtual object, the Virtuose API computes
stiffness and damping coefficients that guarantee the stability of
the system. The intensity of the force produced by this system can
be rescaled by a factor denoted in this paper by ζ .

In this work, we are interested in providing feedback to the
user according to a probability distribution over trajectories,
which is computed as in section 3.3. If the standard deviation at
a certain part of the distribution is high, the haptic device should
become compliant in that region, while if the standard deviation
is low, the haptic device should become stiff. The virtual object
always lies along the mean trajectory of the distribution. The

FIGURE 4 | Score function of the ratio g between the probability of a certain

position and the probability of the corresponding position along the mean

trajectory. This function is determined by (21) and was designed to be 0 when

g = 0, 1 when g = 1 and to monotonically increase with g. It is possible to

change the steepness of this function by changing its hyperparameter b. The

same color code as in this figure is used to give visual feedback to the user.
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factor ζ can be derived from

ζ − ζmin

ζmax − ζmin
=

σ − σmax

σmin − σmax
, (23)

where ζmin and ζmax are respectively the minimum and
the maximum force scaling factor. These values have been
empirically defined in our experiments. The variable σ stands for
the standard deviation that corresponds to the current position
of the virtual object. The variables σmin and σmax stand for the
minimum and maximum standard deviations of the distribution
over trajectories. These values can be determined from a set of
demonstrated trajectories. The underlying assumption behind
Equation (23) is that the stiffness is the highest when the
standard deviation is the minimum and the lowest when the
standard deviation is the maximum. Moreover, we assume a
linear dependence between ζ − ζmin and σ − σmax. Rearranging
Equation (23), we get

ζ = ζmin + (ζmax − ζmin)

(

σ − σmax

σmin − σmax

)

. (24)

The closest point along the mean trajectory that is not further
away from the previous position of the virtual object than
a certain threshold becomes the new position of the virtual
object. This threshold is especially necessary when dealing with
convoluted trajectories to avoid large sudden variations in the
position of the virtual object.

In situations where there are no expert demonstrations
available, but there is a performance measurement of the
trajectories, it is possible to use reinforcement learning to
improve the distribution over trajectories. Such a situation could
be found in a teleoperation scenario, where an optimization
problem with multiple objectives may have to be solved,
accounting for distances to via points, distances to obstacles and
other performance measurements. In the next section, a novel
reinforcement learning algorithm is presented to address such
problems.

5. RELEVANCE WEIGHTED POLICY
OPTIMIZATION

We are interested in enabling a haptic device to assist a human in
a task also when the available demonstrations are suboptimal. As
it will be presented in section 6.2, our particular task is to move
an object in a virtual environment from a start position to an
end position through a window in a wall. We have defined three
objectives to determine the performance of solutions to this task:
distance to the start position, distance to the center of the window
and distance to the end position. An optimal policy for this task
is a trajectory that begins at the start position, passes through
the center of the window and reaches the end position. This
problem can be decomposed into three subproblems w.r.t. which
a policy parameter can be more or less relevant. Therefore, in this
section, a new policy search method is explained, which identifies
the relevance of each policy parameter to each subproblem in
order to improve the learning of the global task. This method

makes use of Reward-weighted Regression (Peters and Schaal,
2007). The basic idea of this method is to first find out how much
each policy parameter influences each objective. Subsequently,
this information is used to optimize the policy with respect to the
objectives. In our particular application, the policy parameters
are the elements of the weight vector w as in Equation (14).

5.1. Learning Relevance Functions
Our approach to answering how much each policy parameter
influences each objective consists of learning a relevance function
fo for each objective o. The argument of this function is an
index identifying a policy parameter. In other words, a relevance
function fo (n) evaluated for policy parameter indexed by n
represents how relevant this parameter is to the objective indexed
by o. In order to learn this function, in this paper, it is assumed
that a relevance function can be represented by a weighted sum of
basis functions with lower bound 0 and upper bound 1 as follows:

fo (n) =











0, if ρTφ (n) ≤ 0

1, if ρTφ (n) ≥ 1

ρTφ (n) , otherwise,

, (25)

where ρ is a vector of weights ρi for the basis functions φi and
φ (n) = [φ1 (n) ,φ2 (n) , · · · ,φI (n)]

T . It will become clear in the
remainder of this section why the lower bound of a relevance
function is 0 and its upper bound is 1.

The basis functions are

φi (n) =
1

exp
(

−k (n−mi)
) , (26)

φI = 1, (27)

with i ∈ {1, 2, · · · , I}, where I is the total number of basis
functions for the relevance function, n is an index representing
one of the policy parameters, k is a scalar determining steepness
and mi is a scalar determining the midpoint of the logistic basis
function with index i.

These basis functions have been chosen because weighted
combinations of them lead to reasonable relevance functions.
For example, three relevance functions that can be constructed
with the proposed basis functions are depicted in Figure 5.
The depicted relevance functions determine how each of the
parameters determining a movement influences objectives at the
beginning of the movement, in the middle or in the end. These
relevance functions are

fstart (n) = φ3 (n)− φ2 (n) , (28)

fmiddle (n) =
1

max
n
(φ1 (n)− φ2 (n))

φ1 (n)

−
1

max
n
(φ1 (n)− φ2 (n))

φ2 (n) , (29)

fend (n) = φ1 (n) , (30)
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FIGURE 5 | Three examples of relevance functions. Let us assume that our goal is to optimize a certain movement with respect to an objective at the beginning of the

movement, an objective in the middle and an objective in the end. Let us further assume that the movement to be optimized can be determined by 10 parameters and

that the first parameters (close to 1) have higher influence over the beginning of the movement, while the last ones (close to 10) have higher influence over the end.

The image depicts potentially suitable relevance functions for each of the objectives in this problem.

where the basis functions are

φ1 (n) =
1

exp (− (n− 3))
, (31)

φ2 (n) =
1

exp (− (n− 8))
, (32)

φ3 (n) = 1. (33)

In this framework, learning a relevance function with respect
to a certain objective means finding a vector ρ that leads to
a high variability in the value of that objective and to a low
variability in the values of other objectives. How a relevance
function influences the variability in the values of an objective
will be made explicit in the following.

First, a Gaussian distribution N
(

µρ ,6ρ

)

over ρ is initialized
with a certain mean µρ and a certain covariance matrix
6ρ . Subsequently, parameter vectors ρ are sampled from this
distribution and, for each sample, the relevance function fo is
computed using Equation (25).

Let us now assume that there is an initial Gaussian probability
distributionN (µw,6w) over the policy parametersw. The mean
µw and the covariance matrix 6w can be computed from an
initial set of demonstrations or determined by the user.

For each fo computed with the sampled vectors ρ, our
algorithm generates samples of the policy parameters w from the

distributionN

(

µw,6w
fo
)

, where

6w
fo =











σ 2
w1
fo (1) 0 · · · 0

0 σ 2
w2
fo (2) · · · 0

...
...

. . .
...

0 0 · · · σ 2
wN

fo (N)











(34)

and σ 2
wn
, ∀n ∈ {1, 2, · · · ,N}, are the variances in the diagonal of

the matrix6w. In other words, the policy parameters are sampled
in such a way that their original variance is weighted with a

relevance coefficient. The higher the relevance of a parameter, the
larger the range of values for that parameter among the samples.

Each sampled vector of policy parameters w determines a
policy with a corresponding value for each objective. In our
teleoperation scenario, for example, each policy parameter vector
w determines a trajectory, which has a certain distance to the start
position, a certain distance to the center of the window and a
certain distance to the end position. Given these objective values,
our algorithm computes a reward function

Rρ,o = exp



βrelevance



σo −
∑

i6=o

σi







 , (35)

where σo is the standard deviation of the values for objective o
and σi with i 6= o is the standard deviation of the values for the
other objectives. The scalar βrelevance can be determined with line
search.

Parameters ρ determining suitable relevance functions fo
result in higher reward Rρ,o because the range of values for the
parameters that mainly affect objective owill be high, producing a
high standard deviation of the values for that objective.Moreover,
the range of values for the parameters that mainly affect the other
objectives will be low, producing a low standard deviation of the
values for the other objectives.

Finally, Reward-weighted Regression (RWR) is used to learn
the relevance parameters ρ. RWR is an iterative algorithm that
finds the best Gaussian distribution over parameters of interest
(in the particular case of optimizing the relevance functions,
the parameters of interest are given by ρ) to maximize the
expected reward, given samples from the Gaussian distribution
of the previous iteration. In order to do so, RWR solves the
optimization problem

{µk+1
ρ ,6k+1

ρ } = argmax
{µρ ,6ρ }

S
∑

i=1

Rρ,o,iN
(

ρi;µρ ,6ρ

)

(36)
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at each iteration, where S is the number of sampled parameter

vectors ρi from the previous distribution N

(

µk
ρ ,6

k
ρ

)

. The

solution to this optimization problem is

µk+1
ρ =

S
∑

i=1
Rρ,o,iρi

S
∑

i=1
Ri

, (37)

6k+1
ρ =

S
∑

i=1
Rρ,o,i

(

ρi − µk
ρ

) (

ρi − µk
ρ

)T

S
∑

i=1
Rρ,o,i

. (38)

This procedure is repeated until convergence of Rρ,o has been
reached to learn a relevance function fo for each objective o. The
parameters determining the relevance functions fo are given by
the vector µρ computed in the last iteration. After this iterative
procedure is finished, our algorithm computes fo (n) /max

n
fo (n),

∀n ∈ {1, 2, · · · ,N}, and assigns this value to fo (n). This last step
makes the maximum value of fo be not less than 1 and helps
the exploration in the policy optimization phase, which will be
discussed in the next section. Algorithm 4 presents an informal
description of the relevance learning algorithm.

5.2. Policy Optimization Using Relevance
Functions
Now that a relevance function for each objective has been
learned, our algorithm uses this information to optimize a policy
with respect to each objective. As in section 5.1, it is assumed
here that there is an initial Gaussian probability distribution
N

(

µw,6w

)

over the policy parameters w.
For each objective o, our algorithm samples policy parameters

w from the distributionN

(

µw,6w
f ∗o

)

, where

6w
f ∗o =











σ 2
w1
f ∗o (1) 0 · · · 0

0 σ 2
w2
f ∗o (2) · · · 0

...
...

. . .
...

0 0 · · · σ 2
wN

f ∗o (N)











(39)

and f ∗o is the learned relevance function with respect to the
objective o. Therefore, the policy parameters w are sampled from
a Gaussian distribution where the original variances σ 2

wn
are

weighted with the learned relevance function. This procedure
means that a larger range of values will be sampled for the policy
parameters wn that are more relevant to the objective o and a
smaller range of values will be sampled for the policy parameters
wn that are less relevant to this objective.

For each sampled vector of policy parameters wi, the reward
Rw,o,i associated with the objective o is computed. These
objectives and rewards depend on the problem. An objective
might be for instance to achieve a certain goal position, in which
case the reward could be a non-negative function monotonically
decreasing with the distance to the goal position. In our
particular teleoperation problem, the reward associated with the

Algorithm 4 Learning Relevance Functions

1: Inputs:mean µw and covariance 6w of the policy parameter
vectors w

2: Initialize the meanµρ and the covariance6ρ of the Gaussian
distribution over the parameter vectors ρ that determine the
relevance functions fo

3: repeat

4: Sample parameter vectors ρ fromN
(

µρ ,6ρ

)

5: for each sample vector ρ do

6: for each objective o do
7: Compute the relevance functions fo (Equation 25)
8: Compute matrix 6w

fo (Equation 34)
9: Sample policy parameter vectors w from

N

(

µw,6w
fo
)

10: for each sample vector w do

11: Compute value achieved by policy for
objective o

12: end for

13: Compute standard deviation σo of the values
achieved for o with the different samples

14: end for

15: for each objective o do
16: Compute Rρ,o (Equation 35)
17: end for

18: end for

19: Update µρ and 6ρ (Equations 37 and 38)
20: until convergence of the rewards Rρ,o

21: ρ∗ = µρ

22: for each objective o do
23: Compute f ∗o using ρ∗ (Equation 25)

24: Normalize f ∗o by computing
f ∗o (n)

max
n

f ∗o (n)

25: end for

26: return the relevance functions f ∗o

objective of being close to the start position is given by R =
exp

(

−βpolicydstart
)

, where dstart is the distance between the first
position of the trajectory and the position where the trajectories
should start.

Our algorithm uses once again RWR. This time, RWR is used
to maximize the expected reward with respect to µw and 6w

f ∗o .
This maximization is done iteratively according to

{µk+1
w ,Ck+1} = argmax

{µw ,6w
f ∗o }

S
∑

i=1

Rw,o,iN
(

wi;µw,6w
f ∗o

)

, (40)

where S is the number of sampled policy parameter vectors wi

from the previous distributionN

(

w;µk
w,6w

f ∗o k
)

.

The solution to Equation (40) is given by

µk+1
w =

S
∑

i=1
Rw,o,iwi

S
∑

i=1
Rw,o,i

, (41)
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Ck+1 =

S
∑

i=1
Rw,o,i

(

wi − µk
w

) (

wi − µk
w

)T

S
∑

i=1
Rw,o,i

. (42)

In each iteration, after applying Equations (41) and (42), our
algorithm updates the variances of each policy parameter σ 2

wn

with

σ 2
wn ,k+1

=
(

1− fo (n)
)

σ 2
wn ,k
+ fo (n)C

k+1
nn , (43)

where σ 2
wn ,k

is the previous variance of policy parameter wn

and Ck+1
nn is the nth element along the main diagonal of the

matrix Ck+1. This equation has the effect of keeping the previous
variance of the parameters that are less relevant to the objective
o while updating the variance of the parameters that are more
relevant to this objective. The algorithm then uses σ 2

wn ,k+1
to

compute 6w
f ∗o k+1 as in Equation (39).

Finally, Equation (43) justifies the lower bound of 0 and the
upper bound of 1 for the relevance function. The closer the
relevance of policy parameter wn is to 0, the closer the updated
variance of this parameter is to the previous variance σ 2

wn ,k
. The

closer the relevance of policy parameter wn is to 1, the closer
the updated variance of this parameter is to Ck+1

nn . In other
words, the previous variance of irrelevant policy parameters is
preserved, while the variance of relevant policy parameters is
updated. Algorithm 5 presents an informal description of the
algorithm for policy optimization using relevance functions.

5.3. Example of Policy Optimization With
Relevance Weighting
In order to make the proposed Relevance Weighted Policy
Optimization algorithmmore clear, we present an example using
the 2D scenario depicted in Figure 6A. This scenario is composed
of a start position, a wall with a window and an end position.

Algorithm 5 Policy Optimization using Relevance Functions

1: Inputs:mean µw and covariance 6w of the policy parameter
vectors w, learned relevance functions f ∗o

2: repeat

3: for each objective o do
4: Compute matrix 6w

f ∗o (Equation 39)
5: Sample policy parameter vectors w from

N

(

µw,6w
f ∗o

)

6: for each sample vector w do

7: Compute the reward Rw,o of the policy with
parameters given by vector w associated with objective o

8: end for

9: Update µw and compute C (Equations 41 and 42)
10: Update the variances of the policy parameters σ 2

wn

(Equation 43)
11: end for

12: until convergence of the rewards Rw,o
13: return the mean µw and the variances σ 2

wn

Given the initial trajectories depicted in Figure 6A, the goal of
our algorithm is to find a distribution over trajectories that begin
at the start position, pass through the center of the window and
reach the end position.

First, the algorithm aligns the initial trajectories in time and
computes the parameters w for each of them using Equation
(16). Subsequently, the relevance functions for start position,
center and end position are learned as in section 5.1. An
example of learned relevance functions is depicted in Figure 6B.
After learning the relevance functions, the algorithm uses the
procedure explained in section 5.2 to learn a policy that
satisfies the three above-stated objectives. Figure 7 shows how
the distribution over trajectories changes with the number of
iterations of the algorithm. The distances to start, center and end

FIGURE 6 | (A) 2D problem used to explain the proposed Relevance Weighted Policy Optimization (RWPO) algorithm. The green x at the lower left corner of the

image represents the start position. The blue lines in the middle represent a wall with a window in the center. The red x at the upper-right corner represents the end

position. The goal of our algorithm is, given a few initial trajectories (depicted in light gray), to find a distribution over trajectories that begin at the start position, pass

through the center of the window and reach the end position. (B) Learned relevance functions for the 2D problem. The learned relevance functions show that policy

parameters close to w1 are more important for beginning at the start position, policy parameters around w5 are more important to pass through the center of the

window and policy parameters close to w10 are more important to reach the end position.
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FIGURE 7 | Example of policy search with relevance weighting. The proposed algorithm finds a distribution over trajectories that start and end at the correct positions

(represented by the green x and by the red x, respectively) and do not hit the wall (represented by the blue lines).

FIGURE 8 | Iteration vs. distances and iteration vs. return. The plots represent mean and two times the standard deviation. All the distances to the points of interest

decrease to 0 or close to it with the number of iterations. A return function given by exp

(

−βpolicy
(

dstart + dcenter + dend
))

increases with the number of iterations.

Here, βpolicy is a parameter which can be determined with line search, dstart is the distance to the start, dcenter is the distance to the center and dend is the distance

to the end.
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positions decrease with the number of iterations and the return
exp

(

−βpolicy
(

dstart + dcenter + dend
))

increases, as depicted by
Figure 8. Here, βpolicy is a parameter which can be determined
with line search, dstart is the distance to the start, dcenter is the
distance to the center and dend is the distance to the end.

Relevance Weighted Policy Optimization implements policy
search for each objective sequentially. For each objective, the
algorithm samples a larger range of values for the parameters that
are more relevant to that objective, while sampling values close to
the mean for the parameters that are less relevant. Subsequently,
the algorithm optimizes the mean and the variances of the policy
parameters given the samples. After optimization, the mean and
the variance of the parameters that matter more to that objective
are updated, while the mean and the variance of parameters
that matter less remain similar to the previous distribution.
The algorithm does not require defining a reward function with

different weights for the different objectives, which can be time-
consuming and ineffective. Moreover, at each iteration, when
optimizing the distribution over policy parameters with respect
to a certain objective, the algorithm does not accidentally find
solutions that are good according to this objective, but bad
according to the other objectives because only the mean and the
variance of the parameters that matter change substantially. The
mean and the variance of the other parameters remain close to
the mean and the variance of the previous distribution.

Figure 9 exemplifies how the algorithm samples trajectories
in the 2D teleoperation problem. Figure 9A shows samples from
the original distribution. Figure 9B shows samples of the first
iteration of the algorithm right before optimizing for beginning
at the start position. Figure 9C depicts the next step, still in the
first iteration, after the first optimization for starting at the start
position and before optimizing for passing through the center

FIGURE 9 | Sampling with relevance weighting. (A) Samples from the original distribution. (B) Samples to optimize the distribution over trajectories with respect to

beginning at the start position. (C) Samples to optimize the distribution over trajectories with respect to passing through the center of the window. (D) Samples to

optimize the distribution over trajectories with respect to reaching the end position. The proposed algorithm explores for each objective a large range of values for the

policy parameters that are relevant to that objective, while sampling values close to the mean for the other policy parameters. The variance of the irrelevant parameters

is recovered according to Equation (43). Therefore, after optimizing for each objective, the distribution over the relevant parameters is updated, while the distribution

over the irrelevant parameters is preserved.
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of the window. Finally, Figure 9D shows samples at the first
iteration of the algorithm, right before optimizing for reaching
the end position.

Figure 10A shows a distribution over trajectories learned
by Reward-weighted Regression (RWR) optimizing only for
passing through the center of the window. Figure 10B shows the
solution of Relevance Weighted Policy Optimization (RWPO)
for this same optimization problem. RWPO’s solution achieves
the objective with higher accuracy and preserves a large variance
for parts of the trajectory that do not influence the objective.

Finally, Figure 11 shows a comparison between Reward-
weighted Regression (RWR), sequential Reward-weighted
Regression (sRWR) and Relevance Weighted Policy
Optimization (RWPO). RWR used here a reward function

of the form R = exp
(

−βpolicy
(

dstart + dcenter + dend
))

, while
sRWR and RWPO used one reward function for each objective:

Rstart = exp
(

−βpolicy
(

dstart
))

, (44)

Rcenter = exp
(

−βpolicy
(

dcenter
))

, (45)

Rend = exp
(

−βpolicy
(

dend
))

. (46)

6. EXPERIMENTS

We demonstrate our method to assist the practice of
motor skills by humans with the task of writing Japanese
characters. Moreover, an experiment involving a haptic
device, the Haption Virtuose 6D, demonstrates how our

FIGURE 10 | (A) Sample trajectories after using Reward-weighted Regression (RWR) to optimize the distribution over trajectories with respect to passing through the

center of the window. (B) Sample trajectories after using Relevance Weighted Policy Optimization (RWPO) to optimize the distribution over trajectories with respect to

the same objective, using the same reward function. In contrast to RWR, RWPO finds a better policy to avoid hitting the wall and does not shrink the variance of parts

of the trajectories that are far away from the region of interest.

FIGURE 11 | Comparison between Reward-weighted Regression (RWR), sequential Reward-weighted Regression (sRWR) and Relevance Weighted Policy

Optimization (RWPO). This time, the three algorithms optimize the distribution over trajectories with respect to all objectives. (A) Distribution after optimization with

RWR, which uses a single reward function with a term for each objective. (B) Distribution after optimization using sRWR, which optimizes for each objective

sequentially and has a reward function for each objective. (C) Distribution after optimization using RWPO, which uses the concept of relevance functions and

optimizes for each objective sequentially with a reward function for each objective.
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method can be used to give haptic feedback to the user,
guiding him/her toward correct movements according to
certain performance criteria even in the absence of expert
demonstrations.

6.1. Teaching Japanese Characters
In these experiments, first, a human provided with a computer
mouse 10 demonstrations of a certain Japanese character
composed of multiple strokes. Our system aligned these
demonstrations in space and time. Afterward, a human provided
a new trajectory. This new trajectory was also aligned in space
and time by our system with respect to the demonstrations. Once
all the demonstrations and the new trajectory had been time-
aligned, our system computed a probability distribution over
the demonstrations. Based on the probability density function
evaluated at each position of the new trajectory in comparison
to the probability density function evaluated at corresponding
positions along the mean trajectory, our system computed a
score. This score was then used to highlight parts of the new
trajectory that do not fit the distribution over demonstrations
with a high probability.

Figure 12 shows some examples of feedbacks provided by our
system. The new trajectory provided by the user is also aligned
in space and time. Therefore the absolute position of his/her
character and its scale are not relevant. The speed profile of the
new trajectory can also be different from the speed profile of
the demonstrations. Figure 12 shows the new trajectories already
after alignment in space and time.

6.2. Haptic Feedback
When learning complex movements in a 3D environment or
perhaps when manipulating objects, haptic feedback may give
the human information about how to adapt his/her movements
that would be difficult to extract only from visual feedback.
Therefore, we investigated how to give haptic feedback based
on a probability distribution over trajectories possibly provided
by an instructor or resulting from a reinforcement learning
algorithm. This study was carried out in accordance with the
recommendations of the Declaration of Helsinki in its latest
version. The protocol was approved by the Ethical Committee of
the Technische Universität Darmstadt. All participants provided
written informed consent before participation.

In this user experiment, users had to use the Haption Virtuose
6D device to teleoperate a small cube in a 3D environment (See
Figure 14A). The users were instructed to begin at the position
marked by the yellow sphere, pass through the center of the
window in the wall and end at the position marked by the blue
sphere. Moreover, it was allowed, at any time, to rotate the virtual
environment, zoom in and zoom out using the computer mouse.
Five users took part in our experiments: two females and three
males, between 27 and 29 years old. Three users had not used the
Virtuose 6D before, while two users did have some experience
with it.

In the first phase of the experiment, users tried to perform
the task ten times without force feedback. Right before each
trial, the user pressed a button on the handle of the haptic
device, indicating to our system when to start recording the

FIGURE 12 | The demonstrations after rescaling, repositioning and time-alignment are depicted in light gray. Parts of a new trajectory that are considered correct are

depicted in blue. Parts of a new trajectory that are considered wrong are marked with red x’s . (A) Instance with a small mistake in the third stroke. (B) Third stroke

goes further than it should. (C) First stroke is too short. (D) Third stroke starts too low. (E) Second stroke is too long and third stroke has its arch in the wrong

direction. (F) First stroke is too long.

Frontiers in Neurorobotics | www.frontiersin.org 15 May 2018 | Volume 12 | Article 24

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ewerton et al. Assisting Movement With Augmented Feedback

trajectory. By pressing this same button another time, by the end
of the trajectory, the user indicated to our system when to finish
recording. The users were then instructed to move the cube back
to the start position and perform another trial. This procedure
would be repeated until ten trajectories had been recorded.
Afterward, our system would align them in time and compute
a probability distribution over them. Figure 14B shows a
visualization of the distribution over trajectories of one user after
this phase. Subsequently, our system optimized this distribution
over trajectories using the proposed Relevance Weighted Policy
Optimization (RWPO) algorithm. An example of trajectories
before and after RWPO is depicted in Figure 13. Figure 14C
shows the optimized distribution over trajectories given the
initial distribution shown in Figure 14B. After optimizing the
distribution over trajectories, our system used it to give force
feedback to the user according to themethod explained in section
4. The users were requested to try to perform the task with force
feedback ten times using the aforementioned procedure to record
the trajectories.

Results showing the performance of the users with and
without force feedback are presented in Figure 15. The use of

force feedback did not greatly influence the distance to the start
because the force feedback was activated only when the user
pressed a button, right before starting to move. The start distance
of the third trial of user 2 with force feedback is an outlier.
This outlier was due to the user starting far away from the start
position. The use of force feedback decreased the distance to the
center of the window for all users and the distance to the end
for three out of five users. The plots of trial vs. distances indicate
that the users did not achieve a better performance with the force
feedback only due to training through repetition because there
is a clear difference between the performance in trials with force
feedback and the performance in trials without force feedback.

A 2 (feedback) × 3 (distance measures) repeated-measures
ANOVA was conducted to test the performance differences
between the conditions with and without force feedback. The
results reveal significant main effects of feedback [F(1, 4) = 16.31;
p < 0.05; η2p = 0.80] and distance measure [F(1, 5) = 12.93;

p < 0.05; η2p = 0.76; after ǫ correction for lack of sphericity] as
well as a significant interaction of feedback × distance measure
[F(1, 5) = 10.10; p < 0.05; η2p = 0.72; after ǫ correction for lack of
sphericity]. Follow-up one-factor (feedback) repeated-measures

FIGURE 13 | (A) Original trajectories. (B) Sample trajectories after Relevance Weighted Policy Optimization (RWPO).

FIGURE 14 | (A) Virtual environment. The goal of the user is to teleoperate the green cube to move it from the position marked by the yellow sphere to the position

marked by the blue sphere through the window to not hit the wall. (B) Distribution over trajectories before reinforcement learning. (C) Distribution over trajectories after

reinforcement learning using the proposed Relevance Weighted Policy Optimization (RWPO) algorithm.
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FIGURE 15 | Distances without force feedback and with force feedback. (A–C) User vs. distances, where each data point corresponds to a different trial. (D–F) Trial

vs. distances, where each data point corresponds to a different user.

ANOVA revealed a significant difference for distance to the
center [F(1, 4) = 57.32; p < 0.05; η2p = 0.94], but not
for distance to the start [F(1, 4) = 0.11; p = 0.76] and end
[F(1, 4) = 3.61; p = 0.13], respectively. Therefore, feedback had
only a significant and strong effect on the distance to the center.
However, due to the small sample, the distance to the end test was
slightly underpowered (1 − β = 0.798; corresponding to η2p =
0.474). Thus, we conclude that force feedback has a differential
influence on performance. Whereas force feedback does not

influence initial error, later errors are expected to be substantially
influenced by force feedback. However, further studies with
bigger samples are required to confirm this conclusion.

As it can be seen in Figure 15C, users 3 and 5 were
able to reach the desired end position with approximately the
same accuracy with and without force feedback. Moreover,
it has not been enforced in our experiments that users
really finish their trials at the end position. Users have
been instructed to finish their trials both with and without
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force feedback whenever they thought they have reached
the end position. We could instead, for the trials with
force feedback, instruct users to stop only when they feel
force feedback contrary to the continuation of the trajectory,
which could potentially help minimizing the variance of the
end distance with force feedback as observed for users 1
and 2.

7. CONCLUSION AND FUTURE WORK

This paper presents a probabilistic approach for assisting
the practice and the execution of motor tasks by humans.
The method here presented addresses the alignment in space
and time of trajectories representing different executions
of a motor task, possibly composed of multiple strokes.
Moreover, it addresses building a probability distribution
over demonstrations provided by an expert, which can then
be used to assess a new execution of a motor task by
a user. When no expert demonstrations are available, our
system uses a novel reinforcement learning algorithm to
learn suitable distributions over trajectories given performance
criteria. This novel algorithm, named RelevanceWeighted Policy
Optimization, is able to solve optimization problems with
multiple objectives by introducing the concept of relevance
functions of the policy parameters. The relevance functions
determine how the policy parameters are sampled when
optimizing the policy for each objective.

We evaluated our framework for providing visual feedback
to a user practicing the writing of Japanese characters using
a computer mouse. Moreover, we demonstrated how our
framework can provide force feedback to a user, guiding him/her
toward correct movements in a teleoperation task involving a
haptic device and a 3D environment.

Our algorithm to give visual feedback to the user practicing
Japanese characters has still some limitations that could
possibly be addressed by introducing a few heuristics.
For example, the current algorithm assumes that the
orientation of the characters is approximately the same. A
correct character written in a different orientation would
be deemed wrong by our algorithm. Procrustes Analysis
(Goodall, 1991) provides a solution to align objects with
different orientations. Our algorithm could be extended
in the future with a similar technique to give meaningful
feedback to the user regardless the orientation of the
characters.

In our system, the user has to enter the correct number
of strokes to receive feedback. For example, if the user is
practicing a character composed of three strokes, the systemwaits
until the user has drawn three strokes. Furthermore, the user
has to write the strokes in the right order to get meaningful
feedback, otherwise, strokes that do not really correspond to
each other are compared. These limitations can potentially
be addressed by analyzing multiple possible alignments and
multiple possible stroke orders, giving feedback to the user
according to the alignment and order that result in the best
score.

Our current framework can give the user feedback concerning
the shape of a movement, but not concerning its speed. In
previous work (Ewerton et al., 2016), we have demonstrated
how to learn distributions over shape and phase parameters
to represent multiple trajectories with multiple speed profiles.
Instead of giving the user force feedback toward the closest
position along the mean trajectory, the distribution over phase
parameters could be used to determine the speed of the attractor
along the mean trajectory and how much the user is allowed to
deviate from that speed. This extension shall be made in future
work.

The framework proposed here could be applied in a scenario
where a human would hold a brush connected to a robot arm.
The robot could give the user force feedback to help him/her
learn both the position and the orientation of the brush when
writing calligraphy.

Especially if our framework can be extended to give feedback
to the user concerning the right speed of a movement, it could
potentially be applied in sports. This work could, for example,
help users perform correct movements in weight training, such
as in Parisi et al. (2016) and Kowsar et al. (2016). Another
possibility would be to help users train golf swings given expert
demonstrations or given optimized probability distributions over
swings. The training of golf swings could be based on haptic
guidance and use a similar setup as in Kümmel et al. (2014).

Future work should also explore further applications of the
proposed RelevanceWeighted Policy Optimization algorithm. In
particular, it should be verified whether this algorithm can help
finding solutions in more complicated teleoperation scenarios
with different performance criteria, favoring, for example,
smooth movements.
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