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Orthoses for the lower limbs support patients to perform movements that they could

not perform on their own. In traditional devices, generic gait models for a limited set of

supportedmovements restrict the patients mobility and device acceptance. To overcome

such limitations, we propose a modular neural control approach with user feedback

for personalizable Knee-Ankle-Foot-Orthoses (KAFO). The modular controller consists

of two main neural components: neural orthosis control for gait phase tracking and

neural internal models for gait prediction and selection. A user interface providing online

feedback allows the user to shape the control output that adjusts the knee damping

parameter of a KAFO. The accuracy and robustness of the control approach were

investigated in different conditions including walking on flat ground and descending

stairs as well as stair climbing. We show that the controller accurately tracks and

predicts the user’s movements and generates corresponding gaits. Furthermore, based

on the modular control architecture, the controller can be extended to support various

distinguishable gaits depending on differences in sensory feedback.

Keywords: artificial neural network, neural orthosis control, adaptation, gait classification, level walking, stair

climbing, internal model, model invalidation

1. INTRODUCTION

Bipedal gait is inherently unstable (Winter, 1995; Milton et al., 2009) and therefore requires
constant balancing and support from the lower limbs. This inherent instability can be amplified
by changes in nerve, muscle, or bone status. Consequences can range from limited mobility to
a complete inability of effective locomotion. Many different supporting techniques have been
developed to regain mobility, e.g., crutches, splints, and prostheses, depending on the physical
condition. Here, we focus on a knee-ankle-foot-orthosis (KAFO), a device which is attached to
the lower limbs and provides mechanical support to its users.

Selecting and fitting such a supportive device for a patient are performed by professional staff.
Based on a given patient’s condition, the professional staff determines a device providing the
support needed to enable or improve the patient’s locomotion. This choice has to take into account
the patient’s remaining abilities, balancing the patient’s need for support against the danger of
excessive support which might prevent use of the patient’s remaining abilities. In this light, it is
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advantageous to maximize the patients’ own contribution to train
their remaining abilities pursuing the aim to preserve or regain
the patients’ mobility. This increase in mobility has, for example,
been observed in terms of the range of kinematic parameters and
walking speed (Irby et al., 2005, 2007).

From the patient’s perspective, other factors contribute to
the assessment of the chosen device and thus to the actual use
or even abandonment of a device. For example, comfort in
daily activities, the ability to fast and easily don/doff the device,
and cosmetic properties, i.e., how the device alters the self-
perception, or the perception of others (Bernhardt et al., 2006;
Robinson et al., 2010; McKee and Rivard, 2011), have a high
impact on patient satisfaction. Kaufman et al. (1996) presents
several studies where abandonment rates “from 60% to nearly
100%” were observed. In Phillips and Zhao (1993), from 60
users of lower extremity braces, 35 abandoned their devices.
In the list of top reasons, the authors cite whether the user’s
“personal opinion [was] considered in the selection process.”
Interestingly, it was not important if there were “alternatives
to choose from.” A follow-up survey on 250 veterans after 22
months of rehabilitation programs showed that only 16 out of
73 contactable patients were still using their braces. In other
words, 78% had abandoned their devices. In another example, in
31% of 35 replies, patients expressed that they did not use their
brace anymore while “60% continued to use their wheelchair
as their main means of displacement” (Mikelberg and Reid,
1981). Although the studies on device abandonment are from the
1980s and 1990s, they make clear the importance of the patient’s
opinion concerning the prescribed brace.

Another problem is side effects of orthosis use, which can
arise from device limitations or mistrust toward its reliability.
Gailey et al. (2008) gives an overview on gait deviations of
prosthesis users, including a tendency to favor the intact limb,
generating additional stress on the less impaired parts of the body
which may induce secondary conditions. There are, for example,
(1) degenerative changes (trunk asymmetry, osteoarthritis, and
scoliosis), (2) pain (lower back, hip, and/or knee joints), and
(3) general deconditioning. These changes can, for example, be
observed as asymmetric and slower gaits. Compensatory gait
patterns like “increased upper-body lateral sway, ankle plantar
flexion of the contralateral foot (vaulting) hip elevation during
swing phase (hip hike) or leg circumduction” are listed especially
for orthoses with fully extended knees in Yakimovich et al. (2009).
Mills et al. (2010) come to the conclusion that “there is a large
amount of variability with regard to how patients respond to
orthoses.” These studies suggest that the patient’s gait and device-
perception can be improved by individual fitting. As a device-
induced gait change surfaces on long timescales (Irby et al., 2005,
2007), Robinson et al. (2010) are speaking about a “lifetime of
adjustments,” an approach for individual fitting has to facilitate
continuous adaptation.

In consequence, to achieve patient acceptance in addition
to an optimal medical outcome, one has to consider the user’s
impression of the device and its fitting as well as the specialist’s
opinion.

When looking at controller techniques, finite state machine
based controllers (FSMs) provide a large fraction of state of the

art approaches. In a FSM, the supported gaits are represented
by a number of states, which define the control output. Given
specific conditions, transitions between these states occur. To
achieve adjustment in such an approach, parameters defining
the control output or transition conditions may be changed. The
number of states and transitions is typically left unchanged, with
exceptions like Zlatnik et al. (2002), where a rule database is used.
As the complexity and variety of the supported behaviors directly
translates to the complexity of the graph, a higher number of
states and transitions are needed. The process of designing or
extending gait support has to ensure that the controller will not
get stuck and that transitions support all possible changes in
patient behavior.

Approaches to provide complex behaviors, i.e., more gaits,
have to deal with increasing complexity. For example, a
controller, consisting of three FSMs for walking, standing and
sitting movements, is presented in Varol et al. (2010), where
additional transitions switch between these individual FSMs.
In Sup et al. (2011), a similar approach handles slopes of varying
degrees, using three FSMs for level ground, as well as 5 ◦ and 10 ◦

inclinations. These approaches try to reduce FSM complexity by
a divide-and-conquer approach, but only tackle sub-problems,
e.g., either level and slope walking or level walking, standing, and
sitting. A similar approach is gait (FSM) switching based on a
Gaussion mixture models (Varol et al., 2008). The switching is
based on a history of means and standard deviations in the input
channels treated with dimension reduction; inputs are sampled
with 1, 000Hz. The behavior was optimized in terms of increasing
the history length, resulting in a switching delay of 430ms in the
testing condition.

Other approaches try to provide adaptive control. Speed
estimation (Herr et al., 2002) and slope estimation in standing
(Lawson et al., 2011) try to achieve control which adapts to gait
and environment by the adjustment of control parameters at
runtime. These approaches are limited by the flexibility designed
into the underlying state machines.

These controllers select between gaits chosen at design
time and are partially able to adapt to environmental changes
or walking speed. The included FSM controllers represent
predefined gait models, only allowing to fit the behavior to
the patient with design-time selected parameters. With more
supported movements comes higher complexity in terms of an
increase in states and possible transitions, which allow more
parameters to be selected, still the designed gait model may
not cover every individual gait. This problem of fitting the
controller to the patient gets worse in case of orthoses, where the
patient’s conditions are more variable. The variability in patients
conditions results in large variability in remaining abilities and,
thus, in large variability in individual need for support. These
varying conditions are often met with very individual avoidance
or compensation strategies, resulting in unique gaits which can
conflict with the general gait model.

In consequence, we identified five important problems, which
dominate the success of a device: (i) individualization according
to the patients’ neurological status and remaining motor
function. As a complication, orthosis patients can show very
differentiated medical conditions which have to be compatible
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with the devices’ support. (ii) Typically devices have a specialized
design supporting a reduced set of movements, which limit
the patients’ mobility. (iii) The target group of orthotic devices
is typically limited as a consequence of (i) and (ii). (iv) An
asymmetric gait due to patients’ favoring of healthy limbs leading
to gait deviations and secondary conditions. (v)Device acceptance
is strongly subjective and depends on users’ opinions toward the
device and their role in the selection process.

These problems have so far not been approached with a
common concept. Here, we assume, that they can be addressed
best on the controller side with a shift of focus on extensive
patient fitting and behavior adaptation. Thus, we propose a
personalized and patient centered approach, which individualizes
via training with patient data. With an user interface, patients
directly influence the control output, giving them direct feedback
on a possible tuning. The patients’ gaits are tracked in terms
of gait dynamics, i.e., joint-sensor dynamics. This approach of
relying on the sensor dynamics makes the controller independent
of the actual mechanical structure of the device as well as, for
example, the moments or joint angles the patients can apply and
maintain. As controller training leads to a high affinity to the gait
dynamics of the trained gait, a modular structure is presented. In
this modular structure, the number of supported gaits is limited
by the systems’ ability to differentiate the gaits by their dynamics.
These dynamics are determined by the chosen sensors. As the
design is not geared toward a specific set of sensors, the modular
controller is not explicitly limited toward specific movements.
Thus, given suitable data, which signifies the new gait, the
extension with a new gait is a simple, formalized process. With
this approach, we want to overcome design limitations and extend
the target group. Furthermore, training of individual gait with
direct patient feedback in the tuning process may lead to a better
fitting and understanding of the controller behavior, hopefully
leading to more symmetric gait and better device acceptance.

Taken together, in this study we present gait dependent
damping modulation based on gait phase tracking. Gait phase
tracking is based on observed gait samples and therefore
implements personalized gait support for single gaits. The
damping modulation is implemented as a one dimensional
mapping from the gait phase to the desired damping, which
can be adapted via a simple user interface. Together, an
implementation of (a) gait phase tracking paired with (b) suitable
damping modulation constitutes a supported gait. The second
contribution lies in the selection of a suitable gait from a set
of supported gaits, allowing to adapt the controller’s behavior
to gait changes. The most suitable gait is selected based on the
gait dynamics, which is predicted by internal models for the
gait dynamics. Thus, for the second contribution, now three
components constitute a supported gait: (a) gait phase tracking,
(b) suitable damping modulation, and (c) a model to predict
the gait’s dynamics for gait identification. Gait selection on three
such defined gaits, for walking on flat ground, stair climbing, and
descending stairs, have been tested on a healthy subject with an
orthosis prototype provided by Otto Bock. This prototype applies
damping to knee flexion, providing support to the users’ body.
Based on the tests with this prototype, we provide performance
data on the method’s ability to linearly track the gait phase, as
well as its ability to fast and reliably select a suitable single-gait

controller. As our long term goals of the study, we aim to
implement a fully adaptive controller with the patient’s user-
feedback. The feedback mechanism will not only enable the user
to influence the devices behavior, but also provide the means to
control changes made by an adaptive controller.

2. MATERIALS AND METHODS

In the introduction, we outlined the five general problems
we see with current control schemes and our approach to
them, like individualization, fitting, and behavior adaptation
based on patient gait data with the inclusion of user feedback.
Here, we outline the implementation based on the concrete
control scheme (Figure 1) for gait phase tracking, prediction, and
selection.

We present the hardware platform together with the sensors
capturing its configuration in section 2.1. In section 2.2, we
introduce the single gait controller as the core neural control
module. It consists of gait phase tracking, the timing module,
and the shaping module which transforms the gait phase into
the control output. The single gait controller relies on the user
interface to gather user-feedback (in section 2.3), which is only
considered here, as it provides the control output as a function of
the gait phase. Based on single gait control, section 2.4 presents
predicting gait models and the gait-selection module, which
will select a single-gait controller in accordance with current
motion. As fundamental basis for the analyses, we describe how
the segmentation of continuous recordings into steps has been
performed in section 2.5. Finally, the experiments underlying this
manuscript are presented in section 2.6.

2.1. Hardware
The hardware platform used during controller development and
for tests with healthy walkers is based on the Otto Bock C-Leg R©

hydraulic damper attached to the knee joint of a knee-ankle-foot-
orthosis. The damper allows the design of a semi-active orthosis,
as it actively manipulates damping of knee-flexion with a motor-
controlled valve. The interface allows to position the valve in
100 configurations from effectively free motion (open valve) over
high damping to blocked motion (closed valve).

While the overall design as leg splint with the knee damper
system restricts the target group, we aim to have the controller
as universally applicable as possible. Therefore, we implemented
and tested with two hardware models (Figure 2). One hardware
model has a compliant ankle joint (Figures 2A,B). It uses a
carbon fiber bar of high stiffness beneath the knee which is
directly attached to the foot, thus fixating the ankle. The other one
has an orthopedic ankle joint (Figures 2C,D). The orthopedic
ankle joint allows either free motion or to constraint the range
of motion by blocking it or inserting a spring (comparable to the
Otto Bock double action joints). Bothmodels’ hardware structure
is similar to Otto Bock’s C-Brace R© system, which is equipped
with a C-Leg

R©
hydraulic damper itself. As each device was fitted

for a different healthy user, the data wouldn’t have been directly
comparable. For this reason, we only include data from the device
with the orthopedic ankle joint in this study, while pointing out
that the controller itself is independent of the actual hardware
structure.
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FIGURE 1 | Overview: Based on (1) the hardware platform and its sensors, we develop (2) neural feed-forward gait controllers consisting of a timing and an output

shaping module. While the timing unit learns the user’s gait from observation, the shaping module is controlled via direct (3) user input, integrating the patient in the

control loop. The whole controller consists of several feed-forward controllers which are augmented with predicting gait models. Based on these (4) internal models,

the controller selects the correct gait for the current motion.

FIGURE 2 | Hardware revisions: In (A,B) the first generation with compliant ankle, in (C,D) the second with orthopedic ankle joint. The schematics include positions of

thigh- and knee-angle sensors indicated by red angles and pressure sensors in green. Force sensing resistors (FSRs) are embedded between the orthosis frame and

the shoe. To protect the highly sensitive FSRs against interactions between the orthosis frame and the shoe, we embed them in a silicone plate (E). The applicability to

different different hardware layouts shows how versatile the presented controller is.

A data acquisition interface allows sampling of the embedded
sensors at 100Hz. As sensors, we equipped angle sensors at the
thigh and the knee-joint, and force sensing resistors (FSRs) in
the soles between orthosis frame and shoe. The latter are very
sensitive and show a binary switch characteristic due to their
measuring range of ≈ 0.1 − 100.0N. We therefore embedded
them in a silicone layer to reduce noise from interactions
between the orthosis frame and the shoe. We localized and
fixated all sensors on the device to keep the procedure of device
application as simple as possible. Additionally, sensor calibration

to achieve full range input signals for the artificial neural
networks does not have to be recalculated when reequipping
the device.

2.2. Neural Control for Gait Tracking
The application of damping to knee-flexion is a one dimensional
control problem, where the controller determines a valve
position regulating the desired damping. We assume, that
the required damping can be determined from the gait
phase, i.e., the configuration of the leg as represented by a
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suitable set of sensors. In practical situations, the controller
has to cope with huge variances in space and time. Here, the
controller is designed as a feed forward controller to achieve
an immediate response to sensory inputs Es(t) in two steps.
The timing unit estimates the phase of the gait ϕ(t) from
the sensory reading Es(t), while the shaping unit determines
the damping c(t) = c(ϕ(t)) given the phase (Figure 1).
Separating these two steps allows to independently
modify the gait tracking and the desired controllers
behavior.

For the time discrete control system we write at time step t:

timing unit : Es t 7→ ϕt ,ϕt ∈ [0, 1) (1)

shaping unit : ϕt 7→ ct
(

ϕt
)

, withc (0) ≡ c (1) . (2)

We chose to implement c with a radial-basis-function network as
universal function approximator, as detailed in section 2.3.

The gait progress ϕ is modeled as a cyclic, angular variable
(Figure 3), thus capturing the periodicity feature of walking.

The timing unit is implemented using a multi-layer
perceptron network with sigmoidal activation function (Nissen,
2003) with four neurons in one hidden layer and two output
neurons, representing ϕ as circular motion in the plane. Thus,
the output function is similar to the periodic sensory inputs,
which improves learning and accuracy.

ϕ̂t
:Es t 7→

(

xtϕ
ytϕ

)

=

(

cos
(

2πϕt
)

sin
(

2πϕt
)

)

.

In case of noisy sensors, a low-pass filter can be applied on top of
the output function ϕ̂. With reliable sensors, this step is typically
not needed. As it only leads to a small delay, it can be applied
anyhow.

The gait phase can then be gained using the transformation

ϕt =











1
4 for xtϕ = 0 ∧ ytϕ ≥ 0
1
2π tan

−1(ytϕ/xtϕ) for xtϕ 6= 0
3
4 for xtϕ = 0 ∧ ytϕ < 0

,ϕ ∈ [0, 1).

To facilitate network training, sensor calibration is used to map
all values to the range [−1, 1]. The calibration procedure uses:
vertical thigh (0), to 90 ◦ flexion (1). The knee angle is mapped

from straight (−1) to 90 ◦ flexion (1). For the force sensors,
thresholds are chosen such that ground contact maps to ≤ 0 and
a free foot to 1.

Training data is then segmented into steps (section 2.5) using
the ground contact signal. The step duration lj is determined as
the number of samples in the jth step. Then, the desired gait
phase ϕi and network output oi for each sample i are given as

ϕi =
i

lj
, (3)

Eoi =

(

o1
o2

)

=

(

−sin(2πϕi)
−cos(2πϕi)

)

. (4)

We chose the sensors with the aim to capture motion in terms of
sensor dynamics, instead of relying on defined events. The timing
module frees the sensory inputs from time dependencies and thus
provides a device, gait, and patient independent description of
gait progress. The second part, the shaping module, generates
the control output. It is augmented by a user interface for direct
user-feedback.

2.3. User Defined Output Modulation
The damping function is tailored to the need of the individual
user by incorporating user feedback in the shaping of the
damping function c(ϕ).

The user interface (Figure 4) provides the samples to fit
the Radial-Basis-Function network, which provides universal
function approximation (Park and Sandberg, 1991; Buhmann,
2003). The sliders represent the applied damping c(ϕ) by
values on a grid of supporting points, with the lowest
position corresponding to no damping, the highest position
to maximum damping. The Radial-Basis-Function network is
updated immediately and thus users can immediately experience
the effect of their changes. The choice of the Gaussian kernels’
widths allows to choose the amount of smoothing of user-input
applied during network-training.

We used a network of n = 10 equidistant nodes in the
interval [0, 1). The Gaussian transfer function had a half-width of

σ =
√

n
2 .

2.4. Gait Recognition
The neural orthosis controller described in section 2.2 is gait
specific: its timing and shaping units were designed to estimate

FIGURE 3 | Mapping of gait progress with time (A) to the cyclic gait-phase variable ϕ (B). Restricting ϕ ∈ [0, 1) allows a direct comparison to classical gait

descriptions in the literature. (Illustration (A) based on marketing material by Otto Bock).
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FIGURE 4 | User interface to tune the control output, i.e., the knee damping.

The horizontal axis shows the gait phase ϕ, the vertical the desired damping c.

Changing a slider, directly modifies the desired damping at the corresponding

gait phase. The system updates its behavior immediately to changed user

input. This enables users to tune the device’s behavior to their expectations

and needs.

the phase of a specific gait and generate the damping appropriate
for that gait. To support different gaits, we propose to train
different controllers for different gaits, and to activate the proper
controller based on model based gait recognition. As long
as the gaits can be differentiated with the available sensory
information (Figure 1), the number of supported gaits is not
directly limited. The controller can be extended by providing
single-gait controller modules together with internal models to
identify the corresponding gait (Braun et al., 2014).

Gait recognition is based on the prediction of sensory input:
each gait is associated with a predictorP that predicts the sensory
input Es t+1 for the next time step based on a subset of the sensory
history HN =

{

Es t ,Es t−1, . . . ,Es t−N+1
}

, where N is the history
length. A comparison of the prediction of the next time step’s
sensory reading Ep t+1 to the actual sensory reading Es t+1 in the
next time step defines a prediction error. The prediction error
allows the decision unit to determine the best fitting gait model
by choosing the model with the smallest error within predefined
acceptable bounds of error.

To estimate reasonable history lengths N, we assume a
minimal step duration Tstep of

Tstep ' 1 s,

for complete steps with the orthosis. Further, we assume a stance
to swing duration ratio of ≈ 60 : 40 and that gait changes can
occur at any time1. When the gait changes, the history contains
two gaits and will naturally lead to diverging predictions of
models trained on a single gait. While this prediction error is

1If we consider, for example, Figures 13, 14, they show a transition from

descending stairs to flat walking. We see that after the heel strike follows a period,

where the dynamics seem to mostly follow the stair regime. This is followed by a

period where differences to both gaits occur. Here, it is difficult to determine the

gait until after the maximum knee flexion, when the gait dynamics converge to

those of the flat walking regime. As the flat walking gait is only reached during the

extension of the knee, we assume that the new gait is reached during the swing

phase. Still, the transition changes the whole step’s dynamics.

critical to achieve a fast invalidation of the old gait, we want the
history to contain only one gait swiftly afterwards. To estimate a
reasonable scale of the new gait’s duration in the transition step,
we go for a fraction of 50% of the swing phase as the smaller gait
phase. This translates to around 20% of the step length. Given the
hardware specific sampling frequency of 100Hz, we determine
the maximum number of samples in the history NHistory to

NHistory / 20 samples =
1

5
s.

When the history length is chosen larger, a gait change could stay
longer in the history than the above requested 20% of the step
length.

The history length is a trade-off between the prediction’s
accuracy and the supported frequency of gait switches. The
prediction accuracy should increase with a longer history, which
can cover more details leading to better discrimination. In
contrast, the frequency of supported gait switches will decrease,
because data from different gaits in the history will lead to lower
quality predictions while conflicting gaits stay in the history. The
choice of TH = 1

5 s allows several gait switches per step with quite
accurate results, as shown below.

2.4.1. Predicting Gait Models
The predicting gait models were implemented like the timing
unit of the feed-forward gait controller above. Based on a history
of sensor data, a single channel was predicted by the predicting
model. To this end, a multi-layer perceptron network with 3
neurons in the hidden layer and one output neuron was trained
on recorded gait samples to predict the sensory inputs using a
history. The history was implemented as a delay line (Figure 5).

First experiments showed that the backpropagation learning
algorithm tended to exploit the last sensor reading as a good
prediction of the next time step. Ignoring most of the history,
this was equivalent to the approximation with a constant value,
predicting the next time step’s state almost only on the preceding
one as the error of the approximation was in many cases of
the order of magnitude of the signal change, considering step
to step fluctuations and sensor noise. This prediction on only
one time step was independent of the trained mode. Thus, this
approach had no predictive power which related to the actual
gait’s dynamics.

As a consequence, only a subset of the history is actually
used for prediction. Especially for the predicted channel, the
current sensory reading is omitted and only older values are used.
Effectively, we have coarsened the history to a grid with a width
of 101t (Figure 5), to exclude simple models. Besides solving the
problem of forwarding of the last reading, this sparse selection
reduces the computational complexity of the models greatly.

Therefore, to predict channel i Ep t+1
i , we use sensory readings

of all other channels for t, t− 9, and t− 19, but only the readings
for t − 9 and t − 19 of the predicted channel (Figure 5).

2.4.2. Prediction-Based Gait Selection
The part of the controller, which selects the current gait based
on the model’s predictions, will be called the decision unit,
in accordance to previous naming conventions. The selection
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FIGURE 5 | Gait detection tries to minimize the prediction error for sensory

inputs Es t by choosing an appropriate model. Delay lines provide a history H

of sensory inputs, which is fed into a feed-forward model predicting a single

value in the next time step, here the knee. The delay relative to the predicted

signal is given as a multiple of the sampling interval 1/100 s. For the predicted

channel, the current input is not fed in, as experiments showed a high

probability of the network to choose it as the best prediction.

process chooses the gait model which minimizes the prediction

error Ee tj =
∣

∣

∣
Ep t
j −Es t2

∣

∣

∣
for the gait j with the sensory inputs Es t2 .

The subscript 2 indicating that the ground contact signal has not
been used for the calculation of the prediction error. The absolute
value was chosen to increase sensitivity to the amplitude of the
prediction error, preventing the low pass filter (below) to average
out fluctuations.

These prediction errors often occur in relatively short intervals
of the step. Thus, we apply post-processing in form of a low pass
filter to prolong the time span that the final fitness-measure is
usable.

ẽti,j = (1− β)ẽt−1
i,j + βeti,j,β = 0.9, i ∈

{

knee, hip
}

.

Model- (j) and channel (i) -specific thresholds θi,j suppress
prediction noise in the low pass filtered errors ẽti,j. These

thresholds are chosen for each gait j individually based on the
error signal ẽti,j for matching gait samples. Remaining prediction

errors are counted if they are greater than this threshold θi,j
(Figure 6) for each predicted channel i ∈

{

knee, hip
}

.

f ti = α ·

{

f t−1
i , if ẽti < θi

max
(

f t−1
i + 1, 2

)

, else
, α ∈ {R|0 < α < 1} .

This count f ti is limited to the range [0, 2] and decays with factor
α = 0.99. The factor α and the maximum value 2 are chosen such
that the value is significant on timescales of steps.

These f ti measure the unfitness of the model’s predictions per
channel and are merged with a gait specific weight γj to reflect the
importance of the individual channels,

f tj = γj f
t
thigh +

(

1− γj
)

f tknee.

Finally, all gaits with f tj > 1.1 are discarded and the gait with the

lowest f tj , i.e., smallest unfitness, is selected from the remaining

gaits. Its feed-forward controller operates the current time step.

2.4.3. Training of Prediciting Models and Selection
Training of predicting models is analogous to the feed-forward
controller’s timing unit and can use the same recordings. The
recordings should reflect the variance in the user’s gait and
should not be too regular. Then, the perceptron is trained using a
backpropagation algorithm.

To improve the performance of the internal models, each
model scales the sensory inputs such that typical signals lie in
the range (−1, 1). Of course, in addition to optimal working
conditions, such a scaling will help to differentiate huge changes
in amplitude which might be connected to different gaits. In a
converse argument, it supports bad predictions for gaits with too
low or too high amplitudes in comparison to a model’s training
data set.

2.5. Step Segmentation
Segmentation of gait data by step boundaries is needed to create
training data as well as for the analysis of the tracking unit’s
and gait recognition performance. As typical in the literature,
the heel-strike marks beginning and end of a step (Figure 3),
which we determine by flanks of the pressure onset at the heel
FSR. Due to the high sensitivity of the sensors and interaction
with the orthosis frame and foot, only onsets can be detected and
we have to apply filters to compensate varying amplitudes and
fluctuations.

The sensory data is assumed to be in the range [−1, 1] with 1
no pressure and−1 high pressure. To improve robustness, we use
a hysteresis to detect state changes, changing to ground contact
when the sensor goes below 0, and to free heel when > 0.8.
Heel-strike detection is implemented with a finite state machine
as:

1. Based on the first sample, the state is initialized to ground
contact or free heel.

2. For each sample

a. If ground contact and the current sample is above threshold
for free heel, then change the state to free heel.

b. If free heel and the current sample is below threshold for
ground contact, then change the state to ground contact.

3. Collect the sample numbers of all touch down events (state
changes to ground contact) in a list.

4. As the detection reacts to the steepest part of the flank in the
FSR signal, we move the touch down event to the preceding
sample which is closest to an FSR reading of 0.8 to determine
the onset of heel-strike.

This list of events now describes the heel-strikes in the given
recording.

2.6. Experiments
2.6.1. Gait Phase Tracking
For single gait support, the following statements hold. (i) We
make no assumptions about when and what kind of support
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FIGURE 6 | Based on the gait-specific predictions for the next sensory inputs Ep t
j
and the actual sensory reading, the decision unit calculates the prediction error Ee t

j

and applies a low-pass filter before an unfitness measure f t
j
is calculated for each gait. At the end, from gaits with f t

j
in an acceptable range, the best fitting one is

selected.

the user needs. (ii) The damping function c is smooth (due
to the representation as an RBF function). And (iii) the
applied damping at knee-flexion is a direct function of the
gait phase and thus of the sensory input ct = ct(ϕt(Est)).
Thus, the applied damping c only changes when the gait

phase ϕ changes and, in consequence, the controller’s ability
to apply the desired damping at any gait phase solely depends
on the properties of the gait phase ϕ. Thus, the quality
of the gait phase ϕ determines the quality of the control
output.
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Ideally, the gait phase ϕ produces a linear mapping for
constant motion velocity, as it guarantees the same detail of
control for all phases of gait, i.e., control accuracy does not
depend on the gait phase. Thus, we investigate the linearity of
the gait progress representation and the timing of the heel strike
after training. We compare to the ideal gait phase ϕ′ according
to section 2.5, which can only be derived after the heel-strike and
therefore has to be acquired for offline processing. To evaluate
steps of different duration, we will resample and interpolate each
step to 200 samples, leading to an ideal slope of 1ϕ′ = 1

200 . The
deviation of the controller’s gait phase to these will be investigated
in terms of linearity, monotony, and smoothness.

Furthermore, the timing of the gait phase has to match the
timing of the step to provide a useful representation for users,
such that the tuning of the control output with the user interface
(Figure 4) can be done intuitively.

2.6.2. Gait Selection
Due to the controller providing body support at the knee level,
it assists in the stance phase, while in the swing phase, all single-
gait controllers provide free knee swinging. We therefore argue,
that the most important aspect for secure and seamless operation
is timely gait switching to prepare for the heel-strike. Thus,
to evaluate the accuracy of gait recognition, we check that the
controller not only classifies the step correctly but also achieves
a correct result prior to heel strike. To quantify correctness
and timing, we analyze a walking sequence where a healthy
user annotates the intended gait, for example flat walking, stair
climbing, and descending stairs. The inclusion of descending
stairs requires that we have to deactivate the damping unit for
security reasons.

Then, we analyze step by step and measure the time ahead of
the heel-strike that the decision unit recognized the step’s final
gait. Figure 7 shows how the user’s annotations are compared
to the controllers’ classification: For each step, we compare the
controllers’ classification against the last valid user annotation. If
both match, we measure the duration the correct classification
was known and set this duration in relation to the duration of the
swing phase to allow the comparison independent of the actual

step length. We call this fraction the range of certainty. A range of
certainty of zero means that the correct gait was not known prior
to heel-strike. For a range of certainty of one, the controller was
certain of the used gait for the whole swing phase.

Thus, the range of certainty allows to asses if the controller
is able to apply the correct gait model during swing phase,
where all single-gait models will provide free knee motion. We
then analyze the average success rate and range of certainty
for all tested gaits, to determine if the presented controller in
combination with the sampling frequency of the data acquisition
board can react to gait changes. Then, we quantify the controller’s
ability to differentiate the tested gaits against each other with the
selected set of sensors. We conclude with the investigation of gait
changes for steps showing conflicts between the user’s annotation
and the controller’s classification.

To access the orthosis controllers accuracy, we take a reaction
time into account. At a sampling rate of 100Hz and step lengths
in the experiment between 1.3 and 1.8 s, a range of certainty of 3%
guarantees that the orthosis controllers’ classification is in time
for heel-strike.

3. RESULTS

3.1. Gait Phase Tracking
The experiments conducted aim to show that a trained gait model
is able to track gait progress better than a model trained for other
gaits. Control quality depends on the smoothness and monotony
of the tracked gait phase ϕ, which we quantify in terms of
linearity and the distribution of increments, e.g., discrete slopes.
Furthermore, the accuracy of the tracked heel-strike is used as a
measure for correct timing.

In a first run, the single gait controllers were trained on runs
with 49 steps on even ground and 59 steps on stairs. In a second
run, we record the gait phase ϕ of these two controllers for
later comparison to the ideal gait phase ϕ′. We analyzed 30
steps on even ground and 38 steps climbing stairs of a healthy
subject wearing the orthosis. Steps at gait changes were manually
removed, due to issues discussed later.

FIGURE 7 | Determination of the time a correct classification result was available before heel-strike: The range of certainty, i.e., the fraction of swing phase where user

annotations (dotted black) and the system’s prediction match. It describes the duration for which the prediction produces a correct result and describes the predictive

power of the model for a specific step.
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FIGURE 8 | Smoothness of gait phase representation. Colored lines indicate 25 steps on flat ground and 8 on stairs, without gait transitions. Compared are models

for walking on flat ground and stair climbing on their native and the opposite terrain. The native models (A r2 = 0.88, D r2 = 0.72) produce smoother gait phase

output in comparison to the unfitting models (B r2 = 0.33, C r2 = 0.06). The latter expose phase shifts and strong deviations the ideal gait phase ϕ′ indicated by the

dashed line. The coefficient of determination (r2) supports the notion that the native models are generally following the ideal linear relation. The lower number of steps

in (D) increases the influence of the step segmentation, degrading r2.

In Figure 8, the controller-derived gait phases ϕFlat and ϕStair

are plotted against the ideal, offline computed gait phase ϕ′. In
the case where the model matches the user’s gait (Figures 8A,D),
the ideal gait phase is approximated well. In the mixed cases
(Figures 8B,C), where the model does not match the gait, the
controller’s heel strike has a phase shift against the real event.
In addition, the flat ground model on stairs (Figure 8B) shows 4
steps with almost constant intervals between the steps. The stair
climbing model on flat ground (Figure 8C) fails to reproduce the
gait phase completely; it only oscillates between 0.2 and 0.8. The
r2 values inTable 1 support that the nativemodel is close to linear
and significantly better than the non-native model.

The accuracy in timing of the heel-strike is accurate only
for the trained gait, as the phase shift in Figure 8 and
Table 1 shows. Considering the sampling frequency of 100Hz
and an average duration of 150–200 samples, the gait phase
should progress by 360 ◦

200 – 360 ◦

150 = 1.8 ◦–2.4 ◦ per sample. This
value matches with the average precision shown in Table 1,

which is determined by averaging the phase shift indicated in
Figure 8.

The distribution of increments 1ϕ in Figure 9 supports these
observations. When considering the variation of increments
around 1ϕ′ = 1

200 , we considered the interval
[

1
21ϕ′, 21ϕ′

]

.
Using this interval, we allow a variation of up to a factor of
two in each direction, but do not count extreme or negative
increments, as the standard deviation might have. For level
walking (Figure 9A), the fitting model has 69% of increments
in this interval, while the model for stair climbing only has a
fraction of 31% inside this interval. In the case of steps on
stairs (Figure 9B), 65% of the increments are inside for the
fitting model and only 40% for the flat walking model. The
histogram for the native models (in red) has its maximum around
the optimal slope with lower standard deviation (Table 1). For
the mixed cases (in blue), the optimal slope is not in the
center of the distributions but has a maximum around zero and
larger standard deviations. Furthermore, we see the presence
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TABLE 1 | Linearity of the graphs in Figure 8 according to the r2 values for a linear regression.

Environment

Flat ground Stairs

r2 Accuracy [◦] Std. dev. Skew r2 Accuracy [◦] Std. dev. Skew

Flat 0.88 1.8 0.004 3.94 0.33 34.2± 3.7 0.033 1.17

M
o
d
e
l

Stair climbing 0.06 −18.0± 1.2 0.017 −10.45 0.72 2.5± 5.5 0.005 2.02

Timing accuracy of heel strike based on the heel-strikes’ phase shifts as shown in Figure 8. The standard deviation and skewness relate to Figure 9. For flat ground based on 30 steps

and while stair climbing (38 steps for the flat model and 31 steps for the stair climbing model).

FIGURE 9 | Distribution of gait phase increment sizes 1ϕ. The native models (in red) have a distribution of increments centered near the ideal linear slope. The

non-native models (in blue) show a stronger deviation from the ideal slope. The standard deviation and skewness are noted in Table 1. (A) Increments on flat ground.

(B) Increments while stair climbing.

of significant negative changes for the stair climbing model
on flat ground and an increase in larger values in the case
of the flat ground model on stairs, i.e., less monotony and
smoothness.

The ability to apply a damping pattern to steps of varying
length is shown in Figure 10. As the abstract gait progress ϕ

removes any time dependency from the input, changes in step
duration and length are transparently handled. The red bars in
Figure 10 indicate unit lengths: the steps to the right are twice as
fast as the ones to the left.

3.2. Gait Selection
In this section, we test the hypothesis that a set of feed-
forward single-gait controllers can be combined into to a
multi-gait controller that enables the correct feed-forward
controller to support a wide range of motions. Therefore, to
evaluate the accuracy of gait recognition, we have to show
that the gait recognition provides a correct result and that this
result is available in time for the controller to react to gait
changes.

The experiments include walking on flat ground, stair
climbing, and descending stairs performed by a healthy subject.

FIGURE 10 | Automatic adaptation to different step-lengths. The abstract gait

progress ϕ removes any time dependency from the input. Step duration and

length are transparently handled. The red bars indicate unit lengths: the steps

to the right are twice as fast as the ones to the left.

Prior to use, the gait models were trained with 146 steps for
walking on flat ground, 35 steps for stair climbing, and 32 steps
for descending stairs. The difference in training set sizes is due
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to every stair run including steps of flat ground and the gaits
on stairs being comparatively exhausting. Three independent
recordings with 215 steps were used in the evaluation. These
include gait transitions between 81 steps on flat ground, 64
steps mixing flat ground and stair climbing and 70 steps mixing
flat ground and descending stairs. As the staircase used in the
experiment is comprised of sequences of 5 stairs, each of the
mixed runs includes the high number of 36 transition steps.

The development of gait certainty over the swing phase
(Figure 11) shows that the gait for 83% of steps was known
at toe-off. The fraction of correct classification now increases
toward above 94% at heel-strike. This high accuracy is indicative
of the fact, that most steps stem from step-sequences with the
same gait. Furthermore, it indicates that many gait changes occur
during swing phase.

The final classification accuracy, with ranges of certainty of at
least 3%, are plotted in Figure 12 as confusion matrix between

FIGURE 11 | The average success rate increases during swing phase,

indicating that the classification matches the user annotation better the smaller

the timescale of the prediction is. A high onset of more than 84% indicates

step sequences of unaltered gait. The red line to the right indicates the time,

where the controller can still use gait information before heel-strike at ≈ 97%

swing phase (3% range of certainty Figure 7), e.g., to successfully apply

pre-damping.

the user annotations in the rows and the controllers’ classification
in the columns. Note that the additional column unknown gait
in the controllers’ classifications, which counts cases, where the
prediction errors are unacceptably high for all gait models. In
these cases, the application of a fall back controller allows safe
operation, for example, knee locking on ground contact, although
it is most likely less comfortable. In general, the confusion matrix
shows high classification rates between 87% for descending
stairs, 95% for walking on flat ground, and 100% for stair
climbing. Furthermore, we see a number of steps, where the gait
recognition was unable to differentiate or evenmixing upwalking
on flat ground and descending stairs. The wrong classified steps
are one transition step each for descending stairs and walking on
flat ground.

The dynamics of knee and thigh angle (Figures 13, 14) show
the transition step between descending stairs and walking on flat
ground. It is easy to see that these steps are neither similar to one
nor the other gait in 2D when plotting the angles over time, or
thigh angle against knee angle. For the predicting models, which
are working on a higher dimensional history, the dissimilarity is
even more drastic. As a consequence, prediction errors are high
for all models for this kind of gait transition step. It is to be
expected, though, that many of these transitions fall into swing-
phase transitions, where highly varying dynamics are possible
and the actual control output is not that important for a device
supporting mechanically.

4. DISCUSSION

The presented neural mechanisms set out as an adaptive orthosis
controller, empowering users to control device behavior.

4.1. Gait Phase Representation
We implemented a neural single-gait controller to individualize
gait support in terms of (1) the patient’s gait dynamics with
learning from observation and (2) direct user feedback with

FIGURE 12 | Classification accuracy for a range of certainty of at least 3%. The rows show the user annotation, the columns show the system’s output. Note that the

latter has the additional category “unkown/fall back” which is selected, when all predicting models generate high errors. Stair climbing has a high accuracy due to its

unique phase relation, which leads to a 100% success rate. Flat walking and stair descent have a higher overlap. Of 215 steps, only 2 transition steps were wrongly

categorized (Figures 13, 14).
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FIGURE 13 | Example for mismatch between user-label and gait detection at the transition from stair descent to flat walking. The transition step clearly deviates from

earlier and following steps in that it shows mixed characteristics (Figure 14).

FIGURE 14 | For the label mismatch of Figure 13, the plot of thigh- over knee-angle shows that the transition step has quite unique properties. Note, that the

predicting gait models work on a history going back 0.2 s, i.e., they are working on a higher dimensional space and thus can easier separate these gaits.

an interface for tuning, placing the patient in the loop.
The gait phase abstracts gait dynamics and thereby removes
dependencies on remaining abilities, except the ability to
initiate motion. Furthermore, the gait phase removes the
time domain from the sensory inputs. Thus, it transparently
supports gaits of different speeds and step lengths (Figure 10)
as well as standing; it provides immediate reactions to regular
and critical events like stumbling. Variability in the training
set enables use in varying environments such that a level

walking controller supports even ground as well as slopes of
several degrees (up to ±15 ◦ were tested but not presented
here).

The presented user feedback is a minimal implementation,
which allows to define an arbitrary damping function c in
sufficient detail and allows the user to adapt c at run-time. It
allows the users to understand the controller behavior in an
experimental way: this way the users can develop an intuition of
how changes to c modify the controllers behavior. Furthermore,
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it simplifies the mapping from the gait phase to a valve position.
Calibration and transformation are not necessary, as the user
implicitly deals with these nonlinear operations. From the users’
perspective, the user interface allows to define the level of support
required. More important, their opinion is directly included in
the controller’s behavior. This inclusion of the patient’s opinion
concerns one of the top reasons for device abandonment see
(Phillips and Zhao, 1993) and references therein.

Quantitative measurements verify instant reaction to motion,
and high accuracy in timing and tracking of the patient’s gait.
We validated experimentally that the timing unit determines
the heel-strike with high accuracy in the order of the sampling
frequency. Furthermore, testing under the assumption that
the recorded steps were ideally and steadily progressing, the
timing unit was shown to approximate a linear progression of
gait phase for trained gaits. Our generic approach of function
approximation as representation for the control output provides
intuitive tuning of the control output.

While the accuracy of gait phase tracking shows that gait
models for quite different gaits can be learned, like flat ground
walking and stair climbing, it also makes clear, that training
leads to specialization of the feed-forward controller. To support
movement in different environments, the controller has to be
extended with controllers for multiple gaits in such amanner that
free motion is possible.

4.2. Gait Selection
Specialization to one gait in the single-gait controller is overcome
by a gait selection process based on predicting models. To
support a gait, the controller therefore needs (1) a timing module
with training samples, (2) the desired output shaping module,
and (3) a predicting model which can be trained with the same
samples as (1). This modular control approach overcomes design
problems which typically restrict supported motion and the
patient target group.

Based on the internal models’ prediction errors, the gait
selection swiftly chooses a single gait controller with the
best fitting dynamics. Eighty-four percent of the steps in our
experiments were already correctly identified at heel-off, most of
them as part of a sequence of the same gait. But, the≈ 84% steps
include at least 50% of the 72 transition steps. The ≈ 13% steps,
which are identified between heel-off and heel-strike, indicate
that gait recognition has to perform continuous. Figures 13, 14
indicate that the gait dynamics is not bound to switch at any
specific point and shows the flexibility and precision of the
presented approach. For example, the initial step after standing
phases is typically handled by the stair climbing module, which
supports only vertical lift-off.

A fall-back controller, based on the ground contact sensing
FSR, enables save operation in cases when gait dynamics are not
matched by a model. The requirement for a fall-back controller
is especially associated with transition steps, which often are
singular events. The use of a history enables swift detection of
changes in the motion. But at the same time, a gait change in
the history will reduce the precision of predictions. Therefore,
the history length not only determines the accuracy of gait

prediction, but it also determines the frequency of changes, which
can be tracked.

4.3. Advantages and Limitations
The greatest advantages of the presented approach lie in (1) its
flexibility, as only the equipped sensors determine which gaits can
be differentiated, (2) its implicit support for stumbling support,
due to ground contact directly shifting the gait phase toward
stance phase, (3) device independence, and (4) independence of
remaining abilities, as long as circular motion can be initiated.

A difficulty in the evaluation of the presented approach lies in
the handling of transition steps. As gait transitions can seemingly
happen anytime, training data will not cover them in all possible
variations. This singular nature of transition steps was not
captured in the user annotations. Nonetheless, the results show
that the controller is able to choose a gait with similar dynamics
in many cases. In these cases, the user’s annotation describes an
intention, but not necessarily provides the best match to gait
dynamics. In other words, the annotations are only valid for
steps without transitions, for which excellent recognition rates
could be seen even with 100Hz sampling rate and 3 channels.
For transition steps, a broad selection of training data will allow
to address many transitions. For all other cases, the fallback
controller has to provide save operation, i.e., guarantee support
in stance phase, which can be achieved with the FSRs.

A general problem is the question of the number of supported
movements. While three gaits were sufficient to control all
motions during experiment sessions, it is still unclear how many
gaits need to be supported for comfortable operation in everyday
life. At the same time, support for more gaits might fill gaps in
gait transitions as more independent motions are supported.

The presented control approach integrates the user into
the tuning process and allows to directly model individual
movements.We believe that this approach improves the handling
of gait deviations and device acceptance. Still, the presented
experiments have been conducted with a healthy subject. Thus,
patient tests have to be undertaken to understand the interaction
and consequences for real patients.

For patient tests, the user interface should be simplified.
Instead of defining the damping function via a set of function
values over a grid of support points, more suitable parameters
should be chosen. A promising idea would be to focus on the start
and end points of the support periods. Considering these together
with the amplitude and the slope should provide an interface
which is easy to understand, but even easier to handle.

4.4. Gait Phase Tracking in the Literature
Li et al. (2014) aim for a similar result by gait phase tracking
on the contralateral leg. Inference of the controllers internal gait
phase is based on the assumption of a constant phase shift to the
ipsilateral leg. Besides practical issues with the instrumentation
of the contralateral leg which directly impact comfort of use and
visual appearance, it is important to note that constant phase
shift can only be assumed in non-critical situations. Especially
when stumbling or external forces disturb this phase shift, the
contralateral leg does not reflect the device’s state. The presented
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approach always faithfully reflects the ipsilateral state, keeping
the procedure of device application to the ipsilateral leg.

The first prosthetic device to reduce its wearers energetic cost
of walking were presented in Malcolm et al. (2013) and Mooney
et al. (2014). The effect was highest, when device activation was
triggered at ≈ 43%. This result indicates that control based on
gait progress presents an interesting approach to pursue.

4.5. Multi-Gait Support in the Literature
Besides the here presented prediction error to invalidate gait
models, many other approaches (Meyer, 1997; Mazzaro et al.,
2005; Ding, 2008; Varol et al., 2008, 2010) are proposed. They
are based on, for example, Gaussian mixture models or hidden
Markov Models. Unfortunately, all of these studies discuss
different selections of gaits, gait variations. For this reason, an
actual performance comparison is difficult and would most likely
be possible for image sequence based approaches (Mazzaro et al.,
2005; Meyer, 1997), which are unfitting for prosthetic devices due
to their outside-view on the walker. Furthermore, this study was
working with a healthy walker. Still, average success rates between
83 and 94% are comparable to vision based model invalidation
approaches (Meyer, 1997; Mazzaro et al., 2005).

Besides image sequence based approaches, the literature
mostly covers active prostheses. Due to space and weight
limitations, active prostheses are of higher practical relevance
than active orthoses, and therefore more present in the literature.
Here, we will not cover technical differences, but focus on the
controller.

Lawson et al. (2013) present a prosthesis controller for stair
ascent and descent. The FSM architecture prevents the easy
inclusion of other gaits and the missing support of level walking
omits the region of high model overlap in this study. Sup
et al. (2011) presents a hierarchy of FSMs, where one outer
FSM with a slope estimator selects from three slope specific
FSMs for 0, 5, and 10 ◦, respectively. While the fixation to
slopes is incompatible with the gaits of this study, the addition
of parameter estimation would provide beneficial input to the
presented controller. A history based Gaussian mixture model
differentiates standing andwalking in Varol et al. (2008), selecting
gait-specific FSM controllers on the fly. This study is based
on seven signals sampled at 1, 000Hz. An offline analysis was
performed to reduce the dimensionality of the input for the
Gaussian mixture models. In another step, the history length
was increased, until the method provided a 100% success rate.
History frames of 50, 100, 200, or 400 samples were tried and
finally a window size of 100 samples was selected with an overall
delay of 430ms. Later, this approach was extended to include
sitting motion (Varol et al., 2010). The selection of sensors was
described as task specific. In this study, the optimal delay was
500ms.

All in all, the cross section of literature shows unique, and
often incomparable gait selections and approaches. A similar
approach with instantaneous selection was used in Varol et al.
(2008, 2010) to differentiate standing, walking, and sitting
motion. In contrast, the dynamics based gait tracking in our
approach renders the recognition of standing superfluous. This
focus on the device configuration simplifies data processing

and needs neither explicit models of the device or gait nor
expensive preprocessing. The presented work is based on only
3 sensors sampled at 100Hz. Further improvements can be
implemented with estimators of environmental parameters,
sensors which provide differentiating inputs, or higher sampling
frequencies. Especially with higher sampling frequencies,
extensive optimization of the history and controller parameters,
like amplification gains and weights could lead to significant
improvements.

In comparison to biologically inspired modeling of modular
motor learning and control, our control mechanism implements
a partial function of the internal models for motor control
proposed by Wolpert and Kawato (1998). The internal models
are classified into three types: inverse internal model (the system
calculates a motor command from a desired trajectory/state
information), forward internal model (the system predicts
sensory consequences from efference copies), and integrated
internal model (the system integrates both inverse and forward
models). In our case here, our shaping module acts as an inverse
internal model that translates a user desired damping curve (i.e.,
desired trajectory) into a proper valve control command (i.e.,
motor command).

4.6. Outlook
Further optimization is possible with the many parameters in
prediction, gait selection. Here, also other machine learning
techniques can be employed (e.g., self-organizing learning of
an adaptive resonance model Grossberg, 1987) is possible. The
application of additional sensors, like torque sensors in the joints
or IMUs, can improve differentiation.

Patients tests can show if the desired aims can be reached with
the presented approach in real-world scenarios. Therefore, they
are very important for future research.

The most interesting aspect is that our approach provides
the building blocks for a completely self-learning controller.
We demonstrated generalization of gait patterns, adaptation
to changes in gait and in the environment as observed via
gait changes. The user interface allows a user to adapt the
support to individual needs. Still, at the stage presented
here, the controller is not fully adaptive to a user in that
it neither 1. automatically updates gait patterns, 2. damping
output (lifetime of adjustments), nor does it learn new gaits
on its own. Nonetheless, the modular structure allows to
pursue these advanced aims. Additionally, other procedures (e.g.,
reinforcement learning or imitation learning) can be employed
for offline training, where the subject provides the reward
(good or bad) according to a given profile, or for fitting to
the pattern of damping in human walking (Nakanishi et al.,
2004).

Observation based training can be implemented at runtime,
constructing and improving gait models continuously. A simple
approach is to continuously add new samples to the training
set and update the multi-layer perceptron networks’s weights.
The classification of recorded steps can be used to create new
models, when new observations contradict existing models. In
this way, bootstrapping of the controller can consist of a mostly
generic model for walking on flat ground and an appropriate
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fallback controller. Then, during everyday usage, the controller
adapts to the patient and vice-versa, while the patient can
always influence the control output. Suggestions for automatic
tuning could be generated and tested in accordance with the
patient, based on gait quality assessment in the controller. In
this way, patients would be empowered to fit their own orthosis,
hopefully improving trust into and the general opinion of the
device.
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