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Active inference is an ambitious theory that treats perception, inference, and

action selection of autonomous agents under the heading of a single principle. It

suggests biologically plausible explanations for many cognitive phenomena, including

consciousness. In active inference, action selection is driven by an objective function

that evaluates possible future actions with respect to current, inferred beliefs about the

world. Active inference at its core is independent from extrinsic rewards, resulting in a

high level of robustness across e.g., different environments or agent morphologies. In

the literature, paradigms that share this independence have been summarized under the

notion of intrinsic motivations. In general and in contrast to active inference, these models

of motivation come without a commitment to particular inference and action selection

mechanisms. In this article, we study if the inference and action selection machinery

of active inference can also be used by alternatives to the originally included intrinsic

motivation. The perception-action loop explicitly relates inference and action selection

to the environment and agent memory, and is consequently used as foundation for our

analysis. We reconstruct the active inference approach, locate the original formulation

within, and show how alternative intrinsic motivations can be used while keeping many

of the original features intact. Furthermore, we illustrate the connection to universal

reinforcement learning by means of our formalism. Active inference research may profit

from comparisons of the dynamics induced by alternative intrinsic motivations. Research

on intrinsic motivations may profit from an additional way to implement intrinsically

motivated agents that also share the biological plausibility of active inference.
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1. INTRODUCTION

Active inference (Friston et al., 2012), and a range of other
formalisms usually referred to as intrinsic motivations (Storck
et al., 1995; Klyubin et al., 2005; Ay et al., 2008), all aim to
answer a similar question: “Under minimal assumptions, how
should an agent act?” More practically, they relate to what would
be a universal way to generate behaviour for an agent or robot
that appropriately deals with its environment, i.e., acquires the
information needed to act and acts toward an intrinsic goal. To
this end, both the free energy principle and intrinsic motivations
aim to bridge the gap between giving a biologically plausible
explanation for how real organism deal with the problem and
providing a formalism that can be implemented in artificial
agents. Additionally, they share a range of properties, such as
an independence of a priori semantics and being defined purely
on the dynamics of the agent environment interaction, i.e., the
agent’s perception-action loop.

Despite these numerous similarities, as far as we know, there
has not been any unified or comparative treatment of those
approaches. We believe this is in part due to a lack of an
appropriate unifying mathematical framework. To alleviate this,
we present a technically complete and comprehensive treatment
of active inference, including a decomposition of its perception
and action selection modes. Such a decomposition allows us to
relate active inference and the inherent motivational principle
to other intrinsic motivation paradigms such as empowerment
(Klyubin et al., 2005), predictive information (Ay et al., 2008),
and knowledge seeking (Storck et al., 1995; Orseau et al.,
2013). Furthermore, we are able to clarify the relation to
universal reinforcement learning (Hutter, 2005). Our treatment
is deliberately comprehensive and complete, aiming to be a
reference for readers interested in the mathematical fundament.

A considerable number of articles have been published on
active inference (e.g., Friston et al., 2012, 2015, 2016a,b, 2017a,b;
Linson et al., 2018). Active inference defines a procedure for
both perception and action of an agent interacting with a
partially observable environment. The definition of the method,
in contrast to other existing approaches (e.g., Hutter, 2005;
Doshi-Velez et al., 2015; Leike, 2016), does not maintain a
clear separation between the inference and the action selection
mechanisms, and the objective function. Most approaches for
perception and action selection are generally formed of three
steps: The first step involves a learning or inference mechanism
to update the agent’s knowledge about the consequences of its
actions. In a second step, these consequences are evaluated
with respect to an agent-internal objective function. Finally, the
action selection mechanism chooses an action depending on the
preceding evaluation.

In active inference, these three elements are entangled.
On one hand, there is the main feature of active inference:
the combination of knowledge updating and action selection
into a single mechanism. This single mechanism is the
minimization of a “variational free energy” (Friston et al.,
2015, p. 188). The “inference” part of the name is justified
by the formal resemblance of the method to the variational
free energy minimization (also known as evidence lower

bound maximization) used in variational inference. Variational
inference is a way to turn Bayesian inference into an optimization
problem which gives rise to an approximate Bayesian inference
method (Wainwright and Jordan, 2007). The “active” part is
justified by the fact that the output of this minimization is a
probability distribution over actions from which the actions of
the agent are then sampled. Behaviour in active inference is thus
the result of a variational inference-like process. On the other
hand, the function (i.e., expected free energy) that induces the
objective function in active inference is said to be “of the same
form” as the variational free energy (Friston et al., 2017a, p. 2673)
or even to “follow” from it (Friston et al., 2016b, p. 10). This
suggests that expected free energy is the only objective function
compatible with active inference.

In summary, perception and action in active inference
intertwines four elements: variational approximation, inference,
action selection, and an objective function. Besides these
formal features, active inference is of particular interest for
its claims on biological plausibility and its relationship to the
thermodynamics of dissipative systems. According to Friston
et al. (2012, Section 3) active inference is a “corollary” to the free
energy principle. Therefore, it is claimed, actions must minimize
variational free energy to resist the dispersion of states of self-
organizing systems (see also Friston, 2013b; Allen and Friston,
2016). Active inference has also been used to reproduce a range
of neural phenomena in the human brain (Friston et al., 2016b),
and the overarching free energy principle has been proposed as a
“unified brain theory” Friston (2010). Furthermore, the principle
has been used in a hierarchical formulation as theoretical
underpinning of the predictive processing framework (Clark,
2015, p. 305–306), successfully explaining a wide range of
cognitive phenomena. Of particular interest for the present
special issue, the representation of probabilities in the active
inference framework is conjectured to be related to aspects of
consciousness (Friston, 2013a; Linson et al., 2018).

These strong connections between active inference and
biology, statistical physics, and consciousness research make the
method particularly interesting for the design of artificial agents
that can interact with- and learn about unknown environments.
However, it is currently not clear to which extent active inference
allows for modifications. We ask: how far do we have to commit
to the precise combination of elements used in the literature, and
what becomes interchangeable?

One target for modifications is the objective
function. In situations where the environment does not
provide a specific reward signal and the goal of the agent is
not directly specified, researchers often choose the objective
function from a range of intrinsic motivations. The concept of
intrinsic motivation was introduced as a psychological concept
by Ryan and Deci (2000), and is defined as “the doing of
an activity for its inherent satisfactions rather than for some
separable consequence.” The concept helps us to understand
one important aspect of consciousness: the assignment of affect
to certain experiences, e.g., the experience of fun (Dennett,
1991) when playing a game. Computational approaches to
intrinsic motivations (Oudeyer and Kaplan, 2009; Schmidhuber,
2010; Santucci et al., 2013) can be categorized roughly by the
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psychological motivations they are imitating, e.g., drives to
manipulate and explore, the reduction of cognitive dissonance,
the achievement of optimal incongruity, and finally motivations
for effectance, personal causation, competence and self-
determination. Intrinsic motivations have been used to enhance
behaviour aimed at extrinsic rewards (Sutton and Barto, 1998),
but their defining characteristic is that they can serve as a
goal-independent motivational core for autonomous behaviour
generation. This characteristic makes them good candidates for
the role of value functions for the design of intelligent systems
(Pfeifer et al., 2005). We attempt to clarify how to modify
active inference to accommodate objective functions based on
different intrinsic motivations. This may allow future studies
to investigate whether and how altering the objective function
affects the biological plausibility of active inference.

Another target for modification, originating more from a
theoretical standpoint, is the variational formulation of active
inference. As mentioned above, variational inference formulates
Bayesian inference as an optimization problem; a family of
probability distributions is optimized to approximate the direct,
non-variational Bayesian solution. Active inference is formulated
as an optimization problem as well. We consequently ask: is
active inference the variational formulation of a direct (non-
variational) Bayesian solution? Such a direct solution would
allow a formally simple formulation of active inference without
recourse to optimization or approximation methods, at the cost
of sacrificing tractability in most scenarios.

To explore these questions, we take a step back from
the established formalism, gradually extend the active
inference framework, and comprehensively reconstruct the
version presented in Friston et al. (2015). We disentangle
the four components of approximation, inference, action
selection, and objective functions that are interwoven in active
inference.

One of our findings, from a formal point of view, is
that expected free energy can be replaced by other intrinsic
motivations. Our reconstruction of active inference then yields
a unified formal framework that can accommodate:

• Direct, non-variational Bayesian inference in combination
with standard action selection schemes known from
reinforcement learning as well as objective functions
induced by intrinsic motivations.

• Universal reinforcement learning through a special choice of
the environment model and a small modification of the action
selection scheme.

• Variational inference in place of the direct Bayesian approach.
• Active inference in combination with objective functions

induced by intrinsic motivations.

We believe that our framework can benefit active inference
research as a means to compare the dynamics induced by
alternative action selection principles. Furthermore, it equips
researchers on intrinsic motivations with additional ways for
designing agents that share the biological plausibility of active
inference.

Finally, this article contributes to the research topic:
Consciousness in Humanoid Robots, in several ways. First, there

have been numerous claims on how active inference relates to
consciousness or related qualities, which we outlined earlier in
the introduction. The most recent work by Linson et al. (2018),
also part of this research topic, specifically discusses this relation,
particularly in regards to assigning salience. Furthermore,
intrinsic motivations (including the free energy principle for this
argument) have a range of properties that relate to or are useful to
a range of classical approaches recently summarized as as Good
Old-Fashioned Artificial Consciousness (GOFAC, Manzotti and
Chella, 2018). For example, embodied approaches still need
some form of value-function or motivation (Pfeifer et al., 2005),
and benefit from the fact that intrinsic motivations are usually
universal yet sensitive in regards to an agent’s embodiment.
The enactive AI framework (Froese and Ziemke, 2009), another
candidate for GOFAC, proposes further requirements on how
value underlying motivation should be grounded in constitutive
autonomy and adaptivity. Guckelsberger and Salge (2016)
present tentative claims on how empowerment maximization
relates to these requirements in biological systems, and how it
could contribute to realizing them in artificial ones. Finally, the
idea of using computational approaches for intrinsic motivation
goes back to developmental robotics (Oudeyer et al., 2007),
where it is suggested as way to produce a learning and adapting
robot, which could offer another road to robot consciousness.
Whether these Good Old-Fashioned approaches will ultimately
be successful is an open question, andManzotti and Chella (2018)
asses them rather critically. However, extending active inference
to alternative intrinsic motivations in a unified framework allows
to combine features of these two approaches. For example it may
bring together the neurobiological plausibility of active inference
and the constitutive autonomy afforded by empowerment.

2. RELATED WORK

Our work is largely based on Friston et al. (2015) and we
adopt the setup and models from it. This means many of our
assumptions are due to the original paper. Recently, Buckley
et al. (2017) have provided an overview of continuous-variable
active inference with a focus on the mathematical aspects, rather
than the relationship to thermodynamic free energy, biological
interpretations or neural correlates. Our work here is in as
similar spirit but focuses on the discrete formulation of active
inference and how it can be decomposed. As we point out in
the text, the case of direct Bayesian inference with separate
action selection is strongly related to general reinforcement
learning (Hutter, 2005; Leike, 2016; Aslanides et al., 2017).
This approach also tackles unknown environments with- and
in later versions also without externally specified reward in a
Bayesian way. Other work focusing on unknown environments
with rewards are e.g., (Ross and Pineau, 2008; Doshi-Velez et al.,
2015). We would like to stress that we do not propose agents
using Bayesian or variational inference as competitors to any
of the existing methods. Instead, our goal is to provide an
unbiased investigation of active inference with a particular focus
on extending the inference methods, objective functions and
action-selection mechanisms. Furthermore, these agents follow
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almost completely in a straightforward (if quite involved) way
from the model in Friston et al. (2015). A small difference is
the extension to parameterizations of environment and sensor
dynamics. These parameterizations can be found in Friston et al.
(2016b).

We note that work on planning as inference (Attias, 2003;
Toussaint, 2009; Botvinick and Toussaint, 2012) is generally
related to active inference. In this line of work the probability
distribution over actions or action sequences that lead to a given
goal specified as a sensor value is inferred. Since active inference
also tries to obtain a probability distribution over actions the
approaches are related. The formalization of the goal however
differs, at least at first sight. How exactly the two approaches
relate is beyond the scope of this publication.

3. STRUCTURE OF THIS ARTICLE

Going forward, we will first outline our mathematical notation
in Section 4. We then introduce the perception-action loop,
which contains both agent and environment in Section 5. In
Section 6 we introduce the model used by Friston et al. (2015).
We then show how to obtain beliefs about the consequences of
actions via both (direct) Bayesian inference (Section 6.2) and
(approximate) variational inference (Section 6.4). These beliefs
are represented in the form of a set of complete posteriors. Such
a set is a common object but usually does not play a prominent
role in Bayesian inference. Here, it turns out to be a convenient
structure for capturing the agent’ knowledge and describing
intrinsic motivations. Under certain assumptions that we discuss
in Section 6.3 the direct Bayesian case specializes to the belief
updating of the Bayesian universal reinforcement learning agent
of Aslanides et al. (2017). We then discuss in Section 7 how those
beliefs (i.e., the set of complete posteriors) can induce action-
value functions (playing the role of objective functions) via a
given intrinsic motivation function. We present standard (i.e.,
non-active inference) ways to select actions based on such action-
value functions. Then we look at different instances of intrinsic
motivation functions. The first is the “expected free energy” of
active inference. For this we explicitly show how our formalism
produces the original expression in Friston et al. (2015). Looking
at the formulations of other intrinsicmotivations it becomes clear
that the expected free energy relies on expressions quite similar
or identical to those that occur in other intrinsic motivations.
This suggests that, at least in principle, there is no reason why
active inference should only work with expected free energy as
an intrinsic motivation. Finally, in Section 8 formulate active
inference for arbitrary action-value functions which include
those induced by intrinsic motivations. Modifying the generative
model of Section 6.1 and looking at the variational approximation
of its posterior comes close but does not correspond to the
original active inference of Friston et al. (2015). We explain the
additional trick that is needed.

In the Appendix we provide some more detailed calculations
as well as notation translation tables (Appendix C) from our own
to those of Friston et al. (2015) and Friston et al. (2016b).

4. NOTATION

We will explain our notation in more detail in the text,
but for readers that mostly look at equations we give a
short summary. Note that, Appendix C comprises a translation
between Friston et al. (2015, 2016b) and the present notation.
Mostly, we will denote random variables by upper case letters e.g.,
X,Y ,A,E,M, S, ... their state spaces by calligraphic upper case
letters X ,Y ,A, E ,M,S ..., specific values of random variables
which are elements of the state spaces by lower case letters
x, y, a, e,m, s, .... An exception to this are random variables that
act as parameters of probability distributions. For those, we use
upper case Greek letters 4,8,2, ..., for their usually continuous
state spaces we use 14,12,18, ... and for specific values the
lower case Greek letters ξ ,φ, θ , .... In cases where a random
variable plays the role of an estimate of another variable X, we
write the estimate as X̂, its state space as X̂ and its values as x̂.

We distinguish different types of probability distributions
with letters p, q, r, and d. Here, p corresponds to probability
distributions describing properties of the physical world
including the agent and its environment, q identifies
model probabilities used by the agent internally, r denotes
approximations of such model probabilities which are also
internal to the agent, and d denotes a probability distribution
that can be replaced by a q or a r distribution. We write
conditional probabilities in the usual way, e.g., p(y|x). For a
model of this conditional probability parameterized by θ , we
write q(ŷ|x̂, θ).

5. PERCEPTION-ACTION LOOP

In this section we introduce an agent’s perception-action loop
(PA-loop) as a causal Bayesian network. This formalism forms the
basis for our treatment of active inference. The PA-loop should be
seen as specifying the (true) dynamics of the underlying physical
system that contains agent and environment as well as their
interactions. In Friston’s formulation, the environment dynamics
of the PA-loop are referred to as the generative process. In general
these dynamics are inaccessible to the agent itself. Nonetheless,
parts of these (true) dynamics are often assumed to be known to
the agent in order to simplify computation (see e.g., Friston et al.,
2015). We first formally introduce the PA-loop as causal Bayesian
network, and then state specific assumptions for the rest of this
article.

5.1. PA-loop Bayesian Network
Figure 1 shows an agent’s PA-loop, formalized as causal
Bayesian network. The network describes the following causal
dependencies over time: At t = 0 an initial environment state
e0 ∈ E leads to an initial sensor value s0 ∈ S . This sensor value
influences the memory state m1 ∈ M of the agent at time t = 1.
Depending on this memory state, action a1 ∈ A is performed
which influences the transition of the environment state from
e0 to e1 ∈ E . The new environment state leads to a new sensor
value s1 which, together with the performed action a1 and the
memory state m1, influence the next memory state m2. The loop
then continues in this way until a final time step T.
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FIGURE 1 | First two time steps of the Bayesian network representing the

perception-action loop (PA-loop). All subsequent time steps are identical to the

one from time t = 1 to t = 2.

We assume that all variables are finite and that the PA-loop is
time-homogeneous1. We exclude the first transition from t = 0
to t = 1 from the assumption of time-homogeneity in order
to avoid having to pick an arbitrary action which precedes the
investigated time-frame. The first transition is thus simplified
to p(m1|s0, a0) : = p(m1|s0). Under the assumption of time-
homogeneity and the causal dependencies expressed in Figure 1,
the joint probability distribution over the entire PA-loop is
defined by:

p(e0:T , s0:T , a1:T ,m1:T) =

(

T
∏

t=1

p(at|mt) p(mt|st−1, at−1) p(st|et)

× p(et|at , et−1)

)

p(s0|e0) p(e0) (1)

where e0:T is shorthand for states (e0, e1, . . . , eT). In order to
completely determine this distribution we therefore have to
specify the state spaces E ,S ,A, and M as well as the following
probabilities and mechanisms for all e0, et , et+1 ∈ E; s0, st ∈

S; at , at+1 ∈ A;m1,mt ,mt+1 ∈ M for t > 0:

• Initial environment distribution: p(e0),
• Environment dynamics: p(et+1|at+1, et),
• Sensor dynamics: p(st|et),
• Action generation: p(at|mt),
• Initial memory step p(m1|s0),
• Memory dynamics: p(mt+1|st , at ,mt).

In the following we will refer to a combination of initial
environment distribution, environment dynamics, and sensor
dynamics simply as an environment. Similarly, an agent is
a particular combination of initial memory step, memory
dynamics, and action generation. The indexing convention we
use here is identical to the one used for the generative model (see
Section 6.1) in Friston et al. (2015).

Also, note the dependence of Mt on St−1, Mt−1, and
additionally At−1 in Figure 1. In the literature, the dependence

1This means that all state spaces and transition probabilities are independent of

the time step, e.g.,Mt = Mt−1 and p(st |et) = p(st−1|et−1).

on At−1 is frequently not allowed (Ay et al., 2012; Ay and
Löhr, 2015). However, we assume an efference-like update
of the memory. Note that this dependence in addition to
the dependence on mt−1 is only relevant if the actions are
not deterministic functions of the memory state2. If action
selection is probabilistic, knowing the outcome at−1 of the
action generation mechanism p(at−1|mt−1) will convey more
information than only knowing the past memory state mt−1.
This additional information can be used in inference about
the environment state and fundamentally change the intrinsic
perspective of an agent. We do not discuss these changes
in more detail here but the reader should be aware of the
assumption.

In a realistic robot scenario, the action at , if it is to be known
by the agent, can only refer to the “action signal” or “action value”
that is sent to the robot’s physical actuators. These actuators will
usually be noisy and the robot will not have access to the final
effect of the signal it sends. The (noisy) conversion of an action
signal to a physical configuration change of the actuator is here
seen as part of the environment dynamics p(et|at , et−1). Similarly,
the sensor value is the signal that the physical sensor of the robot
produces as a result of a usually noisy measurement, so just like
the actuator, the conversion of a physical sensor configuration to
a sensor value is part of the sensor dynamics p(st|et) which in
turn belongs to the environment. As we will see later, the actions
and sensor valuesmust have well-defined state spacesA and S for
inference on an internal model to work. This further justifies this
perspective.

5.2. Assumptions
For the rest of this article we assume that the environment state
space E , sensor state space S as well as environment dynamics
p(et+1|at+1, et) and sensor dynamics p(st|et) are arbitrarily fixed
and that some initial environmental state e0 is given. Since we
are interested in intrinsic motivations, our focus is not on specific
environment or sensor dynamics but almost exclusively on action
generation mechanisms of agents that rely minimally on the
specifics of these dynamics.

In order to focus on action generation, we assume that all
the agents we deal with here have the same memory dynamics.
For this, we choose a memory that stores all past sensor values
s≺t = (s0, s1, ..., st−1) and actions a≺t = (a1, a2, ..., at−1) in the
memory state mt . This type of memory is also used in Friston
et al. (2015, 2016b) and provides the agent with all existing data
about its interactions with the environment. In this respect, it
could be called a perfect memory. At the same time, whatever the
agent learned from s≺t and a≺t that remains true based on the
next time step’s s�t+1 and a�t+1 must be relearned from scratch
by the agent. A more efficient memory use might store only a
sufficient statistic of the past data and keep reusable results of
computations inmemory. Such improvements are not part of this
article (see e.g., Fox and Tishby, 2016, for discussion).

Formally, the state space M of the memory is the set of all
sequences of sensor values and actions that can occur. Since there

2In the deterministic case there is a function f :M → A such that

p(mt |st−1, at−1,mt−1) = p(mt |st−1, f (mt−1),mt−1) = p(mt |st−1,mt−1).
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is only a sensor value and no action at t = 0, these sequences
always begin with a sensor value followed by pairs of sensor
values and actions. Furthermore, the sensor value and action
at t = T are never recorded. Since we have assumed a time-
homogeneous memory state spaceM we must define it so that it
contains all these possible sequences from the start. Formally, we
therefore choose the union of the spaces of sequences of a fixed
length (similar to a Kleene-closure):

M = S ∪

(

T−1
⋃

t= 1

S × (S ×A)t

)

. (2)

With this we can define the dynamics of the memory as:

p(m1|s0) :=

{

1 ifm1 = s0

0 else.
(3)

p(mt|st−1, at−1,mt−1) :=

{

1 ifmt = mt−1st−1at−1

0 else.
(4)

This perfect memory may seem unrealistic and can cause
problems if the sensor state space is large (e.g., high resolution
images). However, we are not concerned with this type of
problem here. Usually, the computation of actions based on past
actions and sensor values becomes a challenge of efficiency long
before storage limitations kick in: the necessary storage space
for perfect memory only increases linearly with time, while, as
we show later, the number of operations for Bayesian inference
increases exponentially.

For completeness we also note how the memory dynamics
look if actions are a deterministic function f :M → A of the
memory state. Recall that in this case we can drop the edge from
At−1 to Mt in the PA-loop in Figure 1 and have at = f (mt) so
that we can define:

p(m1|s0) :=

{

1 ifm1 = s0

0 else.
(5)

p(mt|st−1,mt−1) :=

{

1 ifmt = mt−1st−1f (mt−1)

0 else.
(6)

Given a fixed environment and the memory dynamics, we only
have to define the action generation mechanism p(at|mt) to fully
specify the perception-action loop. This is the subject of the next
two sections.

In order to stay as close to Friston et al. (2015) as possible,
we first explain the individual building blocks that can be
extracted from Friston’s active inference as described in Friston
et al. (2015). These are the variational inference and the action
selection. We then show how these two building blocks are
combined in the original formulation. We eventually leverage
our separation of components to show how the action selection
component can be modified, and thus extend the active inference
framework.

6. INFERENCE AND COMPLETE
POSTERIORS

Ultimately, an agent needs to select actions. Inference based on
past sensor values and actions is only needed if it is relevant to
the action selection. Friston’s active inference approach promises
to perform action selection within the same inference step that
is used to update the agent’s model of the environment. In this
section, we look at the inference component only and show how
an agent can update a generative model in response to observed
sensor values and performed actions.

The natural way of updating such a model is Bayesian
inference via Bayes’ rule. This type of inference leads to what we
call the complete posterior. The complete posterior represents all
knowledge that the agent can obtain about the consequences of
its actions from its past sensor values and actions. In Section 7 we
discuss how the agent can use the complete posterior to decide
what is the best action to take.

Bayesian inference as straightforward recipe is usually not
practical due to computational costs. The memory requirements
of the complete posterior update increases exponentially with
time and so does the number of operations needed to select
actions. To keep the computational tractable, we have to
limit ourselves to only use parts of the complete posterior.
Furthermore, since the direct expressions (even of parts) of
complete posteriors are usually intractable, approximations are
needed. Friston’s active inference is committed to variational
inference as an approximation technique. Therefore, we explain
how variational inference can be used as an approximation
technique. Our setup for variational inference (generative model
and approximate posterior) is identical to the one in Friston et al.
(2015), but in this section we ignore the inference of actions
included there. We will look at the extension to action inference
in Section 7.

In the perception-action loop in Figure 1, action selection
(and any inference mechanism used in the course of it) depends
exclusively on the memory state mt . As mentioned in Section 5,
we assume that this memory state contains all past sensor values
s≺t and all past actions a≺t . To save space, we write sa≺t : =

(s≺t , a≺t) to refer to both sensor values and actions.We then have:

mt = sa≺t . (7)

However, since it is more intuitive to understand inference
with respect to past sensor values and actions than in terms of
memory, we use sa≺t explicitly here in place ofmt .

6.1. Generative Model
The inference mechanism, internal to the action selection
mechanism p(a|m), takes place on a hierarchical generative
model (or density, in the continuous case). “Hierarchical”
means that the model has parameters and hyperparameters, and
“generative” indicates that the model relates parameters and
latent variables, i.e., the environment state, as “generative” causes
to sensor values and actions as data in a joint distribution. The
generative model we investigate here is a part of the generative
model used in Friston et al. (2015). For now, we omit the
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probability distribution over future actions and the “precision”,
which are only needed for active inference and are discussed later.
The generative models in Friston et al. (2016a,b, 2017a) are all
closely related.

Note that we are not inferring the causal structure of the
Bayesian network or state space cardinalities, but define the
generative model as a fixed Bayesian network with the graph
shown in Figure 2. It is possible to infer the causal structure (see
e.g., Ellis andWong, 2008), but in that case, it becomes impossible
to represent the whole generative model as a single Bayesian
network (Ortega, 2011).

The variables in the Bayesian network in Figure 2 that
model variables occurring outside of p(a|m) in the perception-
action loop (Figure 1), are denoted as hatted versions of their
counterparts. More precisely:

• ŝ ∈ Ŝ = S are modelled sensor values,
• â ∈ Â = A are modelled actions,
• ê ∈ Ê are modelled environment states.

To clearly distinguish the probabilities defined by the generative
model from the true dynamics, we use the symbol q instead
of p. In accordance with Figure 2, and also assuming time-
homogeneity, the joint probability distribution over all variables

in the model until some final modelled time T̂ is given by:

q(ê0:T , ŝ0:T , â1:T , θ
1, θ2, θ3, ξ 1, ξ 2, ξ 3)

:=

(

T
∏

t= 1

q(ŝt|êt , θ
1) q(êt|ât , êt−1, θ

2) q(ât)

)

× q(ŝ0|ê0, θ
1) q(ê0|θ

3)

(

3
∏

i= 1

q(θ i|ξ i) q(ξ i)

)

(8)

Here, θ1, θ2, θ3 are the parameters of the hierarchical model, and
ξ 1, ξ 2, ξ 3 are the hyperparameters. To save space, we combine the

FIGURE 2 | Bayesian network of the generative model with parameters

2 = (21,22,23) and hyperparameters 4 = (41,42,43). Hatted variables

are models / estimates of non-hatted counterparts in the perception-action

loop in Figure 1. An edge that splits up connecting one node to n nodes (e.g.,

22 to Ê1, Ê2, ...) corresponds to n edges from that node to all the targets

under the usual Bayesian network convention. Note that in contrast to the

perception-action loop in Figure 1, imagined actions Ât have no parents. They

are either set to past values or, for those in the future, a probability distribution

over them must be assumed.

parameters and hyperparameters by writing

θ := (θ1, θ2, θ3) (9)

ξ := (ξ 1, ξ 2, ξ 3). (10)

To fully specify the generative model, or equivalently a
probability distribution over Figure 2, we have to specify the state
spaces Ê , Ŝ , Â and:

• q(ŝ|ê, θ1) the sensor dynamics model,
• q(ê′|â′, ê, θ2) the environment dynamics model,
• q(ê0|θ

3) the initial environment state model,
• q(θ1|ξ 1) the sensor dynamics prior,
• q(θ2|ξ 2) the environment dynamics prior,
• q(θ3|ξ 3) the initial environment state prior,
• q(ξ 1) sensor dynamics hyperprior,
• q(ξ 2) environment dynamics hyperprior,
• q(ξ 3) initial environment state hyperprior,

• T̂ last modelled time step,
• q(ât) for all t ∈ {1, , ..., T̂} the probability distribution over the

actions at time t.

The state spaces of the parameters and hyperparameters are
determined by the choice of Ê , Ŝ , Â. We will see in Section 6.2
that Ŝ = S and Â = A should be chosen in order to use this
model for inference on past sensor values and actions. For Ê it
is not necessary to set it equal to E for the methods described to
work. We note that if we set Ê equal to the memory state space
of Equation (2) the model and its updates become equivalent
to those used by the Bayesian universal reinforcement learning
agent Hutter (2005) in a finite (environment and time-interval)
setting (see Section 6.3).

The last modelled time step T̂ can be chosen as T̂ = T, but
it is also possible to always set it to T̂ = t + n, in which case
n specifies a future time horizon from current time step t. Such
an agent would model a future that goes beyond the externally

specified last time step T. The dependence of T̂ on t (which we do
not denote explicitly) within p(a|m) is possible since the current
time step t is accessible from inspection of the memory state mt

which contains a sensor sequence of length t.
The generative model assumes that the actions are not

influenced by any other variables, hence we have to specify action
probabilities. This means that the agent does not model how
its actions come about, i.e., it does not model its own decision
process. Instead, the agent is interested in the (parameters of) the
environment and sensor dynamics. It actively sets the probability
distributions over past and future actions according to its
needs. In practice, it either fixes the probability distributions to
particular values (by using Dirac delta distributions) or to values
that optimize some measure. We look into the optimization
options in more detail later.

Note that the parameters and hyperparameters are standard
random variables in the Bayesian network of the model. Also, the
rules for calculating probabilities according to this model are just
the rules for calculating probabilities in this Bayesian network.

In what follows, we assume that the hyperparameters are
fixed as 41 = ξ 1,42 = ξ 2,43 = ξ 3. The following
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procedures (including both Bayesian and variational inference)
can be generalized to also infer hyperparameters. However, our
main reference (Friston et al., 2015) and most publications on
active inference also fix the hyperparameters.

6.2. Bayesian Complete Posteriors
During action generation [i.e., within p(a|m)] at time t, the agent
has retained all its previously perceived sensor states and its
previously performed actions in memory. The “experience” or
data contained in its memory is thusmt = sa≺t . This data can be
plugged into the generative model to obtain posterior probability
distributions over all non-observed random variables. Also, the
model can estimate the not yet observed sensor values ŝ

t:T̂
, past

and future unobservable environment states ê
0:T̂

, parameters θ

and hyperparameters ξ . These estimations are done by setting:

Âτ = aτ , for τ < t (11)

and

Ŝτ = sτ , for τ < t. (12)

as shown in Figure 3 for t = 2. For these assignments to be
generally possible, we need to choose Â and Ŝ equal to A and S

respectively. The resulting posterior probability distribution over
all non-observed random variables is then, according to standard
rules of calculating probabilities in a Bayesian network:

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ )

:=
q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ )

∫
∑

ŝ
t:T̂

,ê
0:T̂

,â
t:T̂

q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ ) dθ
. (13)

Eventually, the agent needs to evaluate the consequences of its
future actions. Just as it can update the model with respect to past
actions and sensor values, the agent can update its evaluations
with “contemplated” future action sequences â

t:T̂
. For each such

FIGURE 3 | Internal generative model with plugged in data up to t = 2 with

Ŝ0 = s0, Ŝ1 = s1 and Â1 = a1 as well as from now on fixed hyperparameters

ξ = (ξ1, ξ2, ξ3). Conditioning on the plugged in data leads to the posterior

distribution q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t, ξ ). Predictions for future sensor values

can be obtained by marginalising out other random variables e.g., to predict

Ŝ2 we would like to get q(ŝ2|s0, s1, a1, ξ ). Note however that this requires an

assumption for the probability distribution over Â2.

future action sequence â
t:T̂

, the agent obtains a distribution over
the remaining random variables in the model:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

:=
q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ )

∫
∑

ŝ
t:T̂

,ê
0:T̂

q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ ) dθ
. (14)

We call each such distribution a Bayesian complete posterior. We
choose the term complete posterior since the “posterior” by itself
usually refers to the posterior distribution over the parameters
and latent variables q(θ , êt−1|sa≺t , ξ ) [we here call this a
posterior factor, see Equation (16)] and the posterior predictive
distributions marginalize out the parameters and latent variables
to get q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ). The complete posteriors are probability

distributions over all random variables in the generative model
including parameters, latent variables, and future variables. In
this sense the set of all (Bayesian) complete posteriors represents
the complete knowledge state of the agent at time t about
consequences of future actions after updating the model with
past actions and observed sensor values sa≺t . At each time step
the sequence of past actions and sensor values is extended from
sa≺t to sa≺t+1 (i.e., mt goes to mt+1) and a new set of complete
posteriors is obtained.

All intrinsic motivations discussed in this article evaluate
future actions based on quantities that can be derived from the
corresponding complete posterior.

It is important to note that the complete posterior can be
factorized into a term containing the influence of past sensor
values and actions (data). This factorization can be made on the
parameters θ and ξ , the environment states ê≺t , predicted future
environment states ê

t:T̂
and sensor values ŝ

t:T̂
depending on the

future actions â
t:T̂

, and the estimated environment state êt−1 and
θ . Using the conditional independence

SA≺t ⊥⊥ Ŝ
t:T̂

, Ê
t:T̂

| Â
t:T̂

, Êt−1,2,4, (15)

which can be identified (via d-separation; Pearl, 2000) from the
Bayesian network in Figure 3, we can rewrite this as:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ). (16)

This equation represents the desired factorization. This
formulation separates complete posteriors into a predictive and
a posterior factor. The predictive factor is given as part of the
generative model (Equation 8)

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) =

T̂
∏

r=t

q(ŝr|êr , θ
1) q(êr|âr , êr−1, θ

2) (17)

and does not need to be updated through calculations at different
time steps. This factor contains the dependence of the complete
posterior on future actions. This dependency reflects that, under
the given generative model, the consequences of actions for each
combination of 2 and Êt−1 remain the same irrespective of
experience. What changes when a new action and sensor value
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pair comes in is the distribution over the values of 2 and Êt−1

and with them the expectations over consequences of actions.
On the other hand, the posterior factor must be updated

at every time step. In Appendix A, we sketch the computation
which shows that it involves a sum over |E|t elements. This
calculation is intractable as time goes on and one of the reasons
to use approximate inference methods like variational inference.

Due to the above factorization, we may only need to
approximate the posterior factor q(ê≺t , θ |sa≺t , ξ ) and use the
exact predictive factor if probabilities involving future sensor
values or environment states are needed.

This is the approach taken e.g., in Friston et al. (2015).
However, it is also possible to directly approximate parts of
the complete posterior involving random variables in both
factors, e.g., by approximating q(ê

0:T̂
, θ1|â

t:T̂
, sa≺t , ξ ). This latter

approach is taken in Friston et al. (2016b) and we see it again in
Equation (43) but in this publication the focus is on the former
approach.
In the next section, we look at the special case of universal
reinforcement learning before we go on to variational inference
to approximate the posterior factor of the (Bayesian) complete
posteriors.

6.3. Connection to Universal
Reinforcement Learning
In this section, we relate the generative model of Equation (8) and
its posterior predictive distribution to those used by the Bayesian
universal reinforcement learning agent. Originally, this agent is
defined byHutter (2005).More recent work includes Leike (2016)
and (for the current purpose sufficient and particularly relevant)
Aslanides et al. (2017).

Let us set Ê = M withM as in Equation (2) and let the agent
identify each past sa≺t with a state of the environment, i.e.,

êt−1 = sa≺t . (18)

Under this definition the next environment state êt is just the
concatenation of the last environment state sa≺t with the next
next action selected by the agent ât and the next sensor value ŝt :

êt = ŝâ�t = sa≺t ŝât . (19)

So given a next contemplated action ¯̂at the next environment
state êt is already partially determined. What remains to be
predicted is only the next sensor value ŝt . Formally, this is
reflected in the following derivation:

q(êt| ¯̂at , êt−1, θ
2) := q(ŝt , ât , ŝâ≺t| ¯̂at , sa≺t , θ

2) (20)

= q(ŝt|ât , ŝâ≺t , ¯̂at , sa≺t , θ
2) q(ât , ŝâ≺t| ¯̂at , sa≺t , θ

2)

(21)

= q(ŝt|ât , ŝâ≺t , ¯̂at , sa≺t , θ
2)δ ¯̂at (ât)δsa≺t (ŝâ≺t) (22)

= q(ŝt| ¯̂at , sa≺t , θ
2)δ ¯̂at (ât)δsa≺t (ŝâ≺t). (23)

This shows that in this case the model of the next environment
state (the left hand side) is determined by the model of the next
sensor value q(ŝt| ¯̂at , sa≺t , θ

2).

So instead of carrying a distribution over possible models of
the next environment state such an agent only needs to carry a
distribution over models of the next sensor value. Furthermore,
an additional model q(ŝ|ê, θ1) of the dependence of the sensor
values on environment states parameterized by θ1 is superfluous.
The next predicted sensor value is already predicted by the model
q(ŝt|ât , sa≺t , θ

2). It is therefore possible to drop the parameter θ1.
The parameter θ3, for the initial environment state

distribution, becomes a distribution over the initial sensor
value since ê0 = ŝ0:

q(ê0|θ
3) = q(ŝ0|θ

3). (24)

We can then derive the posterior predictive distribution and
show that it coincides with the one given in Aslanides et al.
(2017). For the complete posterior of Equation (16) we find:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ) (16 revisited)

= q(ê
t:T̂

|ŝ
t:T̂

, â
t:T̂

, êt−1, θ) q(ŝt:T̂ |ât:T̂ , êt−1, θ) q(ê≺t , θ |sa≺t , ξ )

(25)

= q(ŝ
t:T̂

|â
t:T̂

, sa≺t , θ) q(θ |sa≺t , ξ )

×

t
∏

τ=0

δsa≺τ (êτ )

T̂
∏

τ=t+1

δsa≺t ŝât : τ (êτ ). (26)

To translate this formulation into the notation of Aslanides et al.
(2017) first drop the representation of the environment state
which is determined by the sensor values and actions anyway.
This means that the complete posterior only needs to predict
future sensor values and parameters. Formally, this means the
complete posterior can be replaced without loss of generality:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) → q(ŝ
t:T̂

|â
t:T̂

, sa≺t , θ) q(θ |sa≺t , ξ ).

(27)

To translate notations let θ → ν; â, a → a; ŝ, s → e. Also, set
T̂ → t because only one step futures are considered in universal
reinforcement learning (this is due to the use of policies instead
of future action sequences). Then, the equation for the posterior
predictive distribution

q(ŝt|ât , sa≺t , ξ ) =

∫

q(ŝt|ât , sa≺t , θ) q(θ |sa≺t , ξ ) dθ , (28)

is equivalent to Aslanides et al. (2017, Equation 5) (the sum
replaces the integral for a countable 12):

ξ (e|ae≺t , a) =
∑

ν

p(e|ν, ae≺t , a)p(ν|ae≺t) (29)

⇔ ξ (e) =
∑

ν

p(e|ν)p(ν), (30)

where we dropped the conditioning on ae≺t , a from the notation
in the second line as done in the original (where this is claimed
to improve clarity). Also note that ξ (e) would be written q(e|ξ ) in
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our notation. In the universal reinforcement learning literature
parameters like θ (or ν) and ξ are sometimes directly used to
denote the probability distribution that they parameterize.

Updating of the posterior q(θ |sa≺t , ξ ) in response to new data
also coincides with updating of the weights p(ν):

q(θ |sa�t , ξ ) =
q(θ , st|at , sa≺t , ξ )

q(st|at , sa≺t , ξ )
(31)

=
q(st|at , sa≺t , θ , ξ ) q(θ |at , sa≺t , ξ )

q(st|at , sa≺t , ξ )
(32)

=
q(st|at , sa≺t , θ) q(θ |sa≺t , ξ )

q(st|at , sa≺t , ξ )
(33)

=
q(st|at , sa≺t , θ)

q(st|at , sa≺t , ξ )
q(θ |sa≺t , ξ ). (34)

The first two lines are general. From the second to third we used

St ⊥⊥ 4|At , SA≺t ,2 (35)

and

2 ⊥⊥ At|SA≺t ,4 (36)

which follow from the Bayesian network structure Figure 2. In
the notation of Aslanides et al. (2017) Equation (34) becomes

p(ν|e) =
p(e|ν)

p(e)
p(ν). (37)

This shows that assuming the same model class 12 the
predictions and belief updates of an agent using the Bayesian
complete posterior of Section 6.2 are the same as those of
the Bayesian universal reinforcement learning agent. Action
selection can then be performed just as in Aslanides et al.
(2017) as well. This is done by selecting policies. In the present
publication we instead select action sequences directly. However,
in both cases the choice maximizes the value predicted by the
model. More on this in Section 7.2.

6.4. Approximate Complete Posteriors
As mentioned in the last section, the complete posterior can
be approximated via variational inference (see Attias, 1999;
Winn and Bishop, 2005; Bishop, 2011; Blei et al., 2017). There
are alternative methods such as belief propagation, expectation
propagation (Minka, 2001; Vehtari et al., 2014), and sampling-
based methods (Lunn et al., 2000; Bishop, 2011), but active
inference commits to variational inference by framing inference
as variational free energy minimization (Friston et al., 2015).
Variational free energy (Equation 45) is just the negative evidence
lower bound (ELBO) of standard variational inference (e.g.,
Blei et al., 2017). In the following, we show how the complete
posterior can be approximated via variational inference.

The idea behind variational inference is to use a simple family
of probability distributions and identify the member of that
family which approximates the true complete posterior best.
This turns inference into an optimization problem. According
to Wainwright and Jordan (2007) this reformulation as an

optimization problem is the essence of variational methods.
If the family of distributions is chosen such that it includes
the complete posterior then the optimization will eventually
lead to the same result as Bayesian inference. However, one
advantage of the formulation as an optimization is that it can
also be performed over a family of probability distributions
that is simpler than the family that includes the actual
complete posterior. This is what turns variational inference
into an approximate inference procedure. Usually, the (simpler)
families of probability distributions are chosen as products of
independent distributions.

Recalling Equation (16), the complete posterior as a product
of a predictive and a posterior factor is:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ). (16 revisited)

This product is the main object of interest. We want to
approximate the formula with a probability distribution that lets
us (tractably) calculate the posteriors required by a given intrinsic
motivation, which can consequently be used for action selection.

As mentioned before, to approximate the complete posterior
we here approximate only the posterior factor and use the given
generative model’s predictive factor as is done in Friston et al.
(2015)3 The approximate posterior factor is then combined with
the exact predictive factor to get the approximate complete
posterior. Let us write r(ê≺t , θ |φ) for the approximate posterior
factor (Figure 4), defined as:

r(ê≺t , θ |φ) := r(ê≺t|φ
E≺t ) r(θ |φ) (38)

:=

t−1
∏

τ = 0

r(êτ |φ
Eτ )

3
∏

i= 1

r(θ i|φi). (39)

As we can see it models each of the random variables that the
posterior factor ranges over as independent of all others. This
is called a mean field approximation. Then, the approximate
complete posterior (Figure 5) is:

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ) := q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) r(ê≺t , θ |φ).

(40)

Note that the variational parameter absorbs the hyperparameter
ξ as well as the past sensor values and actions sa≺t . The parameter
does not absorb future actions which are part of the predictive
factor. The dependence on future actions needs to be kept if we
want to select actions using the approximate complete posterior.

3A close inspection of Friston et al. (2015, Equation 9) shows that the approximate

complete posterior that ends up being evaluated by the action-value function

is the one we discuss in Equation (40). It uses the predictive factor to get

the probabilities r(ê
t:T̂

|â
t:T̂

, êt−1,φ) of future environment states. However, the

approximate posterior in Friston et al. (2015, Equation 10) uses a factorization

of all future environment states like the one we give in Equation (43). The

probabilities of future environment states in that posterior are not used anywhere

in Friston et al. (2015). In principle, they could be used as is done in Friston et al.

(2016b, Equation 2.6) where the complete posterior of Equation (43) is used in the

action-value function. Both approaches are possible.
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FIGURE 4 | Bayesian network of the approximate posterior factor at t = 2.

The variational parameters 81,82,83, and 8E≺t = (8E0 ,8E1 ) are positioned

so as to indicate what dependencies and nodes they replace in the generative

model in Figure 2.

FIGURE 5 | Bayesian network of the approximate complete posterior of

Equation (40) at t = 2 for the future actions â
t:T̂

. Only Êt−1,2
1,22 and the

future action â
t:T̂

appear in the predictive factor and influence future variables.

In general there is one approximate complete posterior for each possible

sequence â
t:T̂

of future actions.

We have:

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ) ≈ q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) (41)

if

r(ê≺t , θ |φ) ≈ q(ê≺t , θ |sa≺t , ξ ). (42)

This approximation can be achieved by standard variational
inference methods.

For those interested more in the approximation of the
complete posterior as in Friston et al. (2016b), we provide the
used family of factorized distributions. It must be noted that
the agent in this case carries a separate approximate posterior
for each possible complete action sequence â0:T . For predictions
of environment states, it does not use the predictive factor, but
instead looks at the set of generative models compatible with the
past. For each of those, the agent considers all environment states
at different times as independent. The approximate posteriors,
compatible with a past sequence of actions a≺t , are of the

form:

r(ŝ
t:T̂

, ê
0:T̂

, θ1|â
t:T̂

, a≺t ,φ
1)

= q(ŝ
t:T̂

|ê
t:T̂

, θ1)

T̂
∏

τ = 0

r(êτ |ât:T̂ , a≺t ,φ
Eτ ) r(θ1|φ1). (43)

Note also that the relation between sensor values and
environment states is still provided by the generative models’
sensor dynamics q(ŝ

t:T̂
|ê
t:T̂

, θ1). In this article however, we focus
on the approach in Friston et al. (2015) which requires only one
approximate posterior at time t since future actions only occur
in the predictive factors which we do not approximate.

We define the relative entropy (or KL-divergence) between the
approximate and the true posterior factor:

KL[r(Ê≺t ,2|φ)|| q(Ê≺t ,2|sa≺t , ξ )]

:=
∑

ê≺t

∫

r(ê≺t , θ |φ) log
r(ê≺t , θ |φ)

q(ê≺t , θ |sa≺t , ξ )
dθ . (44)

Note that, we indicate the variables that are summed over by
capitalizing them. The KL-divergence quantifies the difference
between the two distributions. It is non-negative, and only zero
if the approximate and the true posterior factor are equal (see
e.g., Cover and Thomas, 2006).

The variational free energy, also known as the (negative)
evidence lower bound (ELBO) in variational inference literature,
is defined as:

F[ξ ,φ, sa≺t] :=
∑

ê≺t

∫

r(ê≺t , θ |φ) log
r(ê≺t , θ |φ)

q(s�t , ê≺t , θ |a≺t , ξ )
dθ

(45)

= − log q(s≺t|a≺t , ξ )

+ KL[r(Ê≺t ,2|φ)|| q(Ê≺t ,2|sa≺t , ξ )] (46)

The first term in Equation (46) is the surprise of negative
log evidence. For a fixed hyperparameter ξ it is a constant.
Minimizing the variational free energy therefore directly
minimizes the KL-divergence between the true and the
approximate posterior factor given sa≺t and ξ .

In our case, variational inference amounts to solve the
optimization problem:

φ∗
sa≺t ,ξ

:= argmin
φ

F[φ, sa≺t , ξ ]. (47)

This optimization is a standard problem. See Bishop (2011) and
Blei et al. (2017) for ways to solve it.

The resulting variational parameters φ∗
sa≺t ,ξ

=

(φ
E0
sa≺t ,ξ

, ...,φ
Et−1

sa≺t ,ξ
,φ1

sa≺t ,ξ ,φ
2
sa≺t ,ξ ,φ

3
sa≺t ,ξ ) define the

approximate posterior factor. The variational parameters,
together with the exact predictive factors, allow us to compute
the approximate complete posteriors for each sequence of future
actions â

t:T̂
:

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ∗
sa≺t ,ξ

)

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) r(ê≺t , θ |φ
∗
sa≺t ,ξ

) (48)
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≈ q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ). (49)

In the next section, we look at action selection as the second
component of action generation. To this end, we show how to
evaluate sequences of future actions â

t:T̂
by evaluating either

Bayesian complete posteriors or the approximate complete
posteriors.

7. ACTION SELECTION BASED ON
INTRINSIC MOTIVATIONS

7.1. Intrinsic Motivation and Action-Value
Functions
The previous section resulted in sets of Bayesian or approximate
complete posteriors. Independently of whether a complete
posterior is the approximate or the Bayesian version, it represents
the entire knowledge of the agent about the consequences of the
sequence of future actions â

t:T̂
that is associated with it. In order

to evaluate sequences of future actions the agent can only rely
on its knowledge which suggests that all such evaluations should
depend solely on complete posteriors. One could argue that
the motivation might also depend directly on the memory state
containing sa≺t . We here take a position somewhat similar to the
one proposed by Schmidhuber (2010) that intrinsic motivations
concerns the “learning of a better world model.” We consider
the complete posterior as the current world model and assume
that intrinsic motivations depend only on this model and not
on the exact values of past sensor values and actions. As we will
see this assumption is also enough to capture the three intrinsic
motivations that we discuss here. This level of generality is
sufficient for our purpose of extending the free energy principle.
Whether it sufficient for a final and general intrinsic motivation
definition is beyond the scope of this publication.

Complete posteriors are essentially conditional probability

distributions over Ŝ T̂−t+1 × Ê T̂+1 × 12 given elements

of ÂT̂−t+1. A necessary (but not sufficient) requirement
for intrinsic motivations in our context (agents with
generative models) is then that they are functions on
the space of such conditional probability distributions.
Let 1

ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1 be the space of conditional

probability distributions over Ŝ T̂−t+1 × Ê T̂+1 × 12 given

elements of ÂT̂−t+1. Then an intrinsic motivation is a function
M :1

ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1 × ÂT̂−t+1 → R taking a

probability distribution d(., ., .|.) ∈ 1
ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1

and a given future actions sequence â
t:T̂

∈ ÂT̂−t+1 to a real
value M(d(., ., .|.), â

t:T̂
) ∈ R. We can then see that the Bayesian

complete posterior q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) for a fixed past
sa≺t written as q(., ., .|., sa≺t , ξ ) provides such conditional
probability distribution. Similarly, every member of the family
of distributions used to approximate the Bayesian complete
posterior via variational inference r(ŝ

t:T̂
, ê

0:T̂
, θ |â

t:T̂
,φ) written

as r(., ., .|.,φ) also provides such a conditional probability
distribution. It will become important when discussing active
inference that the optimized value φ∗

sa≺t ,ξ
of the variational

parameters as well as any other value of the variational
parameters φ define an element with the right structure to be
evaluated together with a set of future actions by an intrinsic
motivation function.

Using intrinsic motivation functions we then define two kinds
of induced action-value functions. These are similar to value
functions in reinforcement learning4 The first is the Bayesian
action-value function (or functional):

Q̂(â
t:T̂

, sa≺t , ξ ) := M(q(., ., .|., sa≺t , ξ ), ât:T̂). (50)

In words the Bayesian action-value function Q̂(â
t:T̂

, sa≺t , ξ )
infers the set of Bayesian complete posteriors of past experience
sa≺t and then evaluates the sequence of future actions â

t:T̂
according to the intrinsic motivation functionM.

The variational action-value function is defined as5:

Q̂(â
t:T̂

,φ) := M(r(., ., .|.,φ), â
t:T̂

). (51)

So the variational action-value function Q̂(â
t:T̂

,φ) directly takes
the conditional probability distribution defined by variational
parameter φ and evaluates the sequence of future actions â

t:T̂
according to M. Unlike in the Bayesian case no inference takes
place during the evaluation of Q̂(â

t:T̂
,φ).

At the same time, after variational inference, if we plug in
φ∗
sa≺t ,ξ

for φ we have:

Q̂(â
t:T̂a

,φ∗
sa≺t ,ξ

) ≈ Q̂(â
t:T̂a

, sa≺t , ξ ). (52)

Note that the reason we have placed a hat on Q̂ is that, even in the
Bayesian case, it is usually not the optimal action-value function
but instead is an estimate based on the current knowledge state
represented by the complete posteriors of the agent.

Also note that some intrinsic motivations (e.g.,
empowerment) evaluate e.g., the next n actions by using
predictions reaching n + m steps into the future. This means
that they need all complete posteriors for ât : t+n+m−1 but only
evaluate the actions ât : t+n−1. In other words they cannot

evaluate actions up to their generative model’s time-horizon T̂

but only until a shorter time-horizon T̂a = T̂ − m for some
natural number m. When necessary we indicate such a situation
by only passing shorter future action sequences â

t:T̂a
to the

action-value function, in turn, the intrinsic motivation function.
The respective posteriors keep the original time horizon T̂ > T̂a.

7.2. Deterministic and Stochastic Action
Selection
We can then select actions simply by picking the first action in the
sequence â

t:T̂
that maximizes the Bayesian action-value function:

â∗
t:T̂

(mt) := â∗
t:T̂

(sa≺t) := argmax
â
t:T̂

Q̂(â
t:T̂

, sa≺t , ξ ) (53)

4The main difference is that the action-value functions here evaluate sequences

of future actions as opposed to policies. This is the prevalent practice in active

inference literature including Friston et al. (2015) and we therefore follow it here.
5We abuse notation here by reusing the same symbol Q̂ for the variational

action-value function as for the Bayesian action-value function. However, in this

publication the argument (sa≺t , ξ or φ) always indicates which one is meant.
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and set

â∗(mt) := â∗t (mt). (54)

or for the variational action value function:

â∗
t:T̂

(mt) := â∗
t:T̂

(φ∗
sa≺t ,ξ

) := argmax
â
t:T̂

Q̂(â
t:T̂

,φ∗
sa≺t ,ξ

). (55)

and set

â∗(mt) := â∗t (mt). (56)

This then results in a deterministic action generation p(a|m):

p(at|mt) := δâ∗(mt)(at).

We note here that in the case of universal reinforcement learning
the role of Q̂(â

t:T̂
, sa≺t , ξ ) is played by Vπ

ξ (sa≺t). There π is
a policy that selects actions in dependence on the entire past
sa≺t and ξ parameterizes the posterior just like in the present
publication. The argmax in Equation (53) selects a policy instead
of an action sequence and that policy is used for the action
generation.

A possible stochastic action selection that is important for
active inference is choosing the action according to a so called
softmax policy (Sutton and Barto, 1998):

p(at|mt) :=
∑

â
t+1 : T̂

1

Z(γ , sa≺t , ξ )
eγ Q̂(ât:T̂ ,sa≺t ,ξ ) (57)

where:

Z(γ , sa≺t , ξ ) :=
∑

â
t:T̂

eγ Q̂(ât:T̂ ,sa≺t ,ξ ) (58)

is a normalization factor. Note that we are marginalizing out later
actions in the sequence â

t:T̂
to get a distribution only over the

action ât . For the variational action-value function this becomes:

p(at|mt) :=
∑

â
t+1 : T̂

1

Z(γ ,φ∗
sa≺t ,ξ

)
e
γ Q̂(â

t:T̂
,φ∗

sa≺t ,ξ
)

(59)

where:

Z(γ ,φ∗
sa≺t ,ξ

) :=
∑

â
t:T̂

e
γ Q̂(â

t:T̂
,φ∗

sa≺t ,ξ
)
. (60)

Since it is relevant for active inference (see Section 8), note that
the softmax distribution over future actions can also be defined
for arbitrary φ and not only for the optimized φ∗

sa≺t ,ξ
. At the

same time, the softmax distribution for the optimized φsa≺t ,ξ

clearly also approximates the softmax distribution of the Bayesian
action-value function.

Softmax policies assign action sequences with higher values of
Q̂ higher probabilities. They are often used as a replacement for
the deterministic action selection to introduce some exploration.

Here, lower γ leads to higher exploration; conversely, in the
limit where γ → ∞ the softmax turns into the deterministic
action selection. From an intrinsic motivation point of view such
additional exploration should be superfluous in many cases since
many intrinsic motivations try to directly drive exploration by
themselves. Another interpretation of such a choice is to see γ

as a trade-off factor between the processing cost of choosing an
action precisely and achieving a high action-value. The lower γ ,
the higher the cost of precision. This leads to the agentmore often
taking actions that do not attain maximum action-value.

We note that the softmax policy is not the only possible
stochastic action selection mechanism. Another option discussed
in the literature is Thompson sampling (Ortega and Braun, 2010,
2014; Aslanides et al., 2017). In our framework this corresponds
to a two step action selection procedure where we first sample an
environment and parameter pair (¯̂et−1, θ̄) from a posterior factor
(Bayesian or variational)

(¯̂et−1, θ̄) ∼ d(Êt−1,2|sa≺t , ξ ) (61)

then plug the according predictive factor q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, ¯̂et−1, θ̄)
into the action value function

Q̂(â
t:T̂

, sa≺t , ξ ) := M(q(., .|., ¯̂et−1, θ̄), ât:T̂). (62)

This allows intrinsic motivations that only evaluate the
probability distribution over future sensor values Ŝ

t:T̂
and

environment states Ê
t:T̂

. However, it rules out those that evaluate
the posterior probability of environment parameters 2 because
we sample a specific θ̄ .

7.3. Intrinsic Motivations
Now, we look at some intrinsic motivations including the
intrinsic motivation part underlying Friston’s active inference.

In the definitions, we use d(., ., .|.) ∈ 1
ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1

as a generic conditional probability distribution. The generic
symbol d is used since it represents both Bayesian complete
posteriors and approximate complete posteriors. In fact, the
definitions of the intrinsic motivations are agnostic with respect
to the method used to obtain a complete posterior. In the present
context, it is important that these definitions are general enough
to induce both Bayesian and variational action-value functions.
We usually state the definition of the motivation function
using general expressions (e.g., marginalizations) derived from
d(, ., .|.). Also, we look at how they can be obtained from
Bayesian complete posteriors to give to the reader an intuition
for the computations involved in applications. The approximate
complete posterior usually makes these calculations easier and we
will present an example of this.

7.3.1. Free Energy Principle
Here, we present the non-variational Bayesian inference versions
for the expressions that occur in the “expected free energy”
in Friston et al. (2015, 2017a). These papers only include
approximate expressions after variational inference. Most of the
expressions we give here can be found in Friston et al. (2017b).
The exception is Equation (74), which can be obtained from
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an approximate term in Friston et al. (2017a) in the same way
that the non-variational Bayesian inference terms in Friston et al.
(2017b) are obtained from the approximate ones in Friston et al.
(2015).

In the following, we can set T̂a = T̂, since actions are only
evaluated with respect to their immediate effects.

According to Friston et al. (2017b, Equation (A2) Appendix),
the “expected free energy” is just the future conditional entropy
of sensor values6 given environment states. Formally, this is
(with a negative sign to make minimizing expected free energy
equivalent to maximizing the action-value function):

M(d(., ., .|.), â
t:T̂

) :=
∑

ê
t:T̂

d(ê
t:T̂

|â
t:T̂

)
∑

ŝ
t:T̂

d(ŝ
t:T̂

|ê
t:T̂

) log d(ŝ
t:T̂

|ê
t:T̂

)

(63)

= −
∑

ê
t:T̂

d(ê
t:T̂

|â
t:T̂

) Hd(Ŝt:T̂ |êt:T̂ ) (64)

= −Hd(Ŝt:T̂ |Êt:T̂ , ât:T̂ ). (65)

Note that, we indicate the probability distribution d used to
calculate entropies Hd(X) or mutual informations Id(X :Y) in
the subscript. Furthermore,we indicate the variables that are
summed over with capital letters and those that are fixed (e.g.,
â
t:T̂

above) with small capital letters.
In the case where d(., ., .|.) is the Bayesian complete

posterior q(., ., .|., sa≺t , ξ ), it uses the predictive distribution of
environment states q(ê

t:T̂
|â

t:T̂
, sa≺t , ξ ) and the posterior of the

conditional distribution of sensor values given environment
states q(ŝ

t:T̂
|ê
t:T̂

, sa≺t , ξ ). As we see next, both distributions can
be obtained from the Bayesian complete posterior.

The former distribution is a familiar expression in hierarchical
Bayesian models and corresponds to a posterior predictive
distribution or predictive density [cmp. e.g., Bishop, 2011,
Equation (3.74)] that can be calculated via:

q(ê
t:T̂

|â
t:T̂

, sa≺t , ξ )

=

∫

∑

ŝ
t:T̂

,ê≺t

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) dθ (66)

=

∫

∑

ŝ
t:T̂

,ê≺t

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ) dθ (67)

=

∫

∑

êt−1

q(ê
t:T̂

|â
t:T̂

, êt−1, θ) q(êt−1, θ |sa≺t , ξ ) dθ , (68)

where we split the complete posterior into the predictive and
posterior factor and then marginalized out environment states
ê≺t−1 since the predictive factor does not depend on them.
Note that in practice, this marginalization corresponds to a sum
over |E|t−1 terms and therefore has a computational cost that
grows exponential in time. However, if we use the approximate
complete posterior such that d(., ., .|.) = r(., ., .|.,φ), we see from

6The original text refers to this as the “expected entropy of outcomes,” not

the expected conditional entropy of outcomes. Nonetheless, the associated

Equation (A2) in the original is identical to ours.

Equation (40), that q(ê≺t , θ |sa≺t , ξ ) is replaced by r(ê≺t , θ |φ)
which is defined as (Equation 38):

r(ê≺t , θ |φ) :=

t−1
∏

τ=0

r(êτ |φ
Eτ )

3
∏

i= 1

r(θ i|φi). (69)

This means that r(êt−1, θ |φ) is just r(êt−1|φ
Et−1) r(θ |φ), which

we obtain directly from the variational inference without any
marginalization. If Bayesian inference increases in computational
cost exponentially in time, this simplification leads to a significant
advantage. This formulation leaves an integral over θ or,
more precisely, a triple integral over the three θ1, θ2, θ3.
However, if the q(θ i|ξ i) are chosen as conjugate priors to
q(ŝ|ê, θ1), q(ê′|â′, ê, θ2), q(ê0|θ

3) respectively, then these integrals
can be calculated analytically [compare the similar calculation of
q(ê≺t , θ |sa≺t , ξ ) in Appendix A]. The remaining computational
problem is only the sum over all êt−1.

The latter term (the posterior conditional distribution over
sensor values given environment states) can be obtained via

q(ŝ
t:T̂

|ê
t:T̂

, sa≺t , ξ ) = q(ŝ
t:T̂

|ê
t:T̂

, â
t:T̂

, sa≺t , ξ ) (70)

=
q(ŝ

t:T̂
, ê

t:T̂
|â

t:T̂
, sa≺t , ξ )

q(ê
t:T̂

|â
t:T̂

, sa≺t , ξ )
. (71)

Here, the first equation holds since

Ŝ
t:T̂

⊥⊥ Â
t:T̂

| Ê
t:T̂

, SA≺t . (72)

Both numerator and denominator can be obtained from the
complete posterior via marginalization as for the former term.
This marginalization also shows that the intrinsic motivation
function, Equation (63), is a functional of the complete posteriors
or d(., ., .|.).

In most publications on active inference the expected free
energy in Equation (63) is only part of what is referred to as the
expected free energy. Usually, there is a second term measuring
the relative entropy to an externally specified prior over future
outcomes (also called “predictive distribution encoding goals”
Friston et al. 2015), i.e., a desired probability distribution pd(ŝ

t:T̂
).

The relative entropy term is formally given by:

KL[d(Ŝ
t:T̂

|â
t:T̂

)|| pd(Ŝd
t:T̂

)] =
∑

ŝ
t:T̂

d(ŝ
t:T̂

|â
t:T̂

) log
d(ŝ

t:T̂
|â

t:T̂
)

pd(ŝ
t:T̂

)
.

(73)

Clearly, this term will lead the agent to act such that the
future distribution over sensor values is similar to the desired
distribution. Since this term is used to encode extrinsic value
for the agent, we mostly ignore it in this publication. It could
included into any of the following intrinsic motivations.

In Friston et al. (2017a) yet another term, called “negative
novelty” or “ignorance”, occurs in the expected free energy.
This term concerns the posterior distribution over parameter
θ1. It can be slightly generalized to refer to any subset of the
parameters θ = (θ1, θ2, θ3). We can write it as a conditional
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mutual information between future sensor values and parameters
(the “ignorance” is the negative of this):

Id(Ŝt:T̂ :2|â
t:T̂

) =
∑

ŝ
t:T̂

d(ŝ
t:T̂

|â
t:T̂

)

∫

d(θ |ŝ
t:T̂

, â
t:T̂

)

× log
d(θ |ŝ

t:T̂
, â

t:T̂
)

d(θ)
dθ . (74)

This is identical to the information gain used in knowledge
seeking agents. The necessary posteriors in the Bayesian case are
q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ), q(θ |ŝt:T̂ , ât:T̂ , sa≺t , ξ ) and q(θ |sa≺t , ξ ) with

q(ŝ
t : T̂

|â
t : T̂

, sa≺t , ξ ) =

∫

∑

ê≺t

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ) dθ

(75)

a straightforward (if costly) marginalization of the complete
posterior. Just like previously for q(ê

t:T̂
|â

t:T̂
, sa≺t , ξ ), the

marginalization is greatly simplified in the variational case (see
Appendix B for a more explicit calculation). The integrals can be
computed if using conjugate priors. The other two posteriors can
be obtained via

q(θ |ŝ
t:T̂

, â
t:T̂

, sa≺t , ξ )

=
1

q(ŝ
t:T̂

|â
t:T̂

, sa≺t , ξ )

∑

ê
0:T̂

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ). (76)

and

q(θ |sa≺t , ξ ) = q(θ |â
t:T̂

, sa≺t , ξ ) (77)

=
∑

ŝ
t:T̂

,ê
0:T̂

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ). (78)

In the latter equation we used

Â
t:T̂

⊥⊥ 2|SA≺t . (79)

The marginalizations grow exponentially in computational cost

with T̂. In this case, the variational approximation only reduces
the necessary marginalization over ê≺t−1 to one over êt−1, but the
marginalization over future environment states ê

t:T̂
and sensor

values ŝ
t:T̂

remains the same since we use the exact predictive

factor. In practice the time horizon into the future T̂ − t must
then be chosen sufficiently short, so that marginalizing out ê

t:T̂

and Ŝ
t:T̂

is feasible. Together with the variational approximation
the required marginalizations over past and future are then
constant over time which makes the implementation of agents
with extended lifetimes possible.

The combination of the conditional entropy term and the
information gain defines the (intrinsic part) of the action-value
function of Friston’s active inference (or free energy principle):

M
FEP(d(., ., .|.), â

t:T̂
) = −Hd(Ŝt:T̂ |Êt:T̂)+ Id(Ŝt:T̂ : θ |â

t:T̂
) (80)

In the active inference literature this is usually approximated by
a sum over the values at individual timesteps:

M
FEP(d(., ., .|.), â

t:T̂
) =

T̂
∑

τ=t

−Hd(Ŝτ |Êτ )+ Id(Ŝτ :2|â
t:T̂

).

(81)

7.3.2. Free Energy Principle Specialized to Friston

et al. (2015)
UsingAppendix C, we show how to get the action-value function
of Friston et al. (2015, Equation 9) in our framework. In Friston
et al. (2015), the extrinsic value term of Equation (73) is included,
but not the information gain term of Equation (74). Furthermore,
the sum over timesteps in Equation (81) is used. This leads to the
following expression:

M
FEP(d(., ., .|.), â

t:T̂
) =

T̂
∑

τ=t

−Hd(Ŝτ |Êτ )

−KL[d(Ŝτ |ât:T̂)|| p
d(Ŝτ )]. (82)

If we plug in an approximate complete posterior, we get:

M
FEP(r(., ., .|.), â

t:T̂
) =

T̂
∑

τ=t

−Hr(Ŝτ |Êτ )

−KL[r(Ŝτ |ât:T̂)|| p
d(Ŝτ )]. (83)

with

−Hr(Ŝτ |Êτ ) =
∑

êτ

r(êτ |ât:T̂ , êt−1,φ)
∑

ŝτ

r(ŝτ |êτ ,φ) log r(ŝτ |êτ ,φ),

(84)

and

KL[r(Ŝτ |ât:T̂)|| p
d(Ŝτ )] =

∑

ŝτ

r(ŝτ |ât:T̂ ,φ) log
r(ŝτ |ât:T̂ ,φ)

pd(ŝτ )
.

(85)
For the particular approximate posterior of Equation (40), with
its factorization into exact predictive and approximate posterior
factor, the individual terms can be further rewritten.

r(êτ |ât:T̂ , êt−1,φ) =
∑

ŝ
t:T̂

,ê
τ+1 : T̂

êt : τ−1 ê0:T−2

∫

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ) dθ

(86)

=
∑

ŝ
t:T̂

,ê
τ+1 : T̂

êt : τ−1 ê0:T−2

∫

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ)

× r(ê≺t , θ |φ) dθ (87)

=
∑

ŝ
t:T̂

,ê
τ+1 : T̂

êt : τ−1 ê0:T−2

∫

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ)

×

t−1
∏

r= 0

r(êr|φ
Er )

3
∏

i= 1

r(θ i|φi) dθ (88)

Frontiers in Neurorobotics | www.frontiersin.org 15 August 2018 | Volume 12 | Article 45

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Biehl et al. Expanding the Active Inference Landscape

=
∑

êt : τ−1

∫

q(êt : τ−1|ât:T̂ , êt−1, θ
2)

× r(êt−1|φ
Et−1 ) r(θ2|φ2) dθ2 (89)

=





∑

êt : τ−1

∫ τ
∏

r= t

q(êr|âr , êr−1, θ
2) r(θ2|φ2) dθ2





× r(êt−1|φ
Et−1 ). (90)

In Friston et al. (2015), the environment dynamics
q(êr|âr , êr−1, θ

2) are not inferred and are therefore not
parameterized:

q(êr|âr , êr−1, θ
2) = q(êr|âr , êr−1) (91)

and are set to the physical environment dynamics:

q(êr|âr , êr−1) = p(êr|âr , êr−1). (92)

This means the integral over θ2 above is trivial and we get:

r(êτ |ât:T̂ , êt−1,φ) =
∑

êt : τ−1

τ
∏

r= t

q(êr|âr , êr−1) r(êt−1|φ
Et−1) (93)

In the notation of Friston et al. (2015) (see Appendix C for a
translation table), we have

q(êr|âr , êr−1) = B(âr)êr êr−1
(94)

where B(âr) is a matrix, and

r(êt−1|φ
Et−1) = (ŝt−1)êt−1

(95)

where (ŝt−1) is a vector, so that

r(êτ |ât:T̂ , êt−1,φ) = (B(âτ ) · · ·B(ât) · ŝt−1)êτ (96)

= : (ŝτ (ât:T̂))êτ (97)

Similarly, since the sensor dynamics in Friston et al. (2015) are
also not inferred, we find

r(ŝτ |êτ ,φ) = q(ŝτ |êτ ) = p(ŝτ |êτ ). (98)

Friston et al. writes:

q(ŝτ |êτ ) = : Aŝτ êτ (99)

with A a matrix. So that,

r(ŝτ |ât:T̂ ,φ
Et−1) = A · ŝτ (ât:T̂) (100)

= : ôτ (ât:T̂). (101)

Then

Hr(Ŝτ |Êτ ) = −1 · (A× logA) · ŝτ (ât:T̂) (102)

where× is a Hadamard product and 1 is a vector of ones. Also,

KL[r(Ŝτ |ât:T̂)|| p
d(Ŝτ )] = ôτ (ât:T̂)·(log ôτ (ât:T̂)−logCτ ) (103)

where (Cτ )ŝτ = pd(ŝτ ). Plugging these expressions into
Equation (83), substituting â

t:T̂
→ π , and comparing this to

Friston et al. (2015, Equation 9) shows that7:

M
FEP(r(., ., .|.),π) = 1 · (A× logA) · ŝτ (ât:T̂) (104)

−ôτ (ât:T̂) · (log ôτ (ât:T̂)− logCτ )

= Q(π). (105)

This verifies that our formulation of the action-value function
specializes to the “expected (negative) free energy”Q(π).

7.3.3. Empowerment Maximization
Empowerment maximization (Klyubin et al., 2005) is an intrinsic
motivation that seeks to maximize the channel capacity from
sequences of the agent’s actions into the subsequent sensor
value. The agent, equipped with complete knowledge of the
environment dynamics, can directly observe the environment
state. If the environment is deterministic, an empowerment
maximization policy leads the agent to a state from which it can
reach the highest number of future states within a preset number
of actions.

Salge et al. (2014) provide a good overview of existing research
on empowerment maximization. A more recent study relates
the intrinsic motivation to the essential dynamics of living
systems, based on assumptions from autopoietic enactivism
Guckelsberger and Salge (2016). Several approximations have
been proposed, along with experimental evaluations in complex
state / action spaces. Salge et al. (2018) show how deterministic
empowerment maximization in a three-dimensional grid-world
can be made more efficient by different modifications of
UCT tree search. Three recent studies approximate stochastic
empowerment and its maximization via variational inference
and deep neural networks, leveraging a variational bound
on the mutual information proposed by Barber and Agakov
(2003). Mohamed and Rezende (2015) focus on a model-
free approximation of open-loop empowerment, and Gregor
et al. (2016) propose two means to approximate closed-
loop empowerment. While these two approaches consider
both applications in discrete and continuous state / action
spaces, Karl et al. (2017) develop an open-loop, model-
based approximation for the continuous domain specifically.
The latter study also demonstrates how empowerment can
yield good performance in established reinforcement learning
benchmarks such as bipedal balancing in the absence of
extrinsic rewards. In recent years, research on empowerment
has particularly focused on applications in multi-agent systems.
Coupled empowerment maximization as a specific multi-
agent policy has been proposed as intrinsic drive for either
supportive or antagonistic behaviour in open-ended scenarios
with sparse reward landscapes Guckelsberger et al. (2016b).
This theoretical investigation has then been backed up with
empirical evaluations on supportive and adversarial video
game characters Guckelsberger et al. (2016a, 2018). Beyond
virtual agents, the same policy has been proposed as a

7There is a small typo in Friston et al. (2015, Equation 9) where the time index of

ŝt−1 in (ŝτ (ât:T̂ )) = (B(âτ ) · · ·B(ât) · ŝt−1) is given as t instead of t − 1.
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good heuristic to facilitate critical aspects of human-robot
interaction, such as self-preservation, protection of the human
partner, and response to human actions Salge and Polani
(2017).

For empowerment, we select T̂a = t + n and T̂ = t + n+m,
with n ≥ 0 andm ≥ 1. This means the agent chooses n+1 actions
which it expects to maximize the resultingm-step empowerment.
The according action-value function is:

M
EM(d(., ., .|.), â

t:T̂a
) := max

d(â
T̂a+1 : T̂

)
Id(ÂT̂a+1 : T̂

: Ŝ
T̂
|â

t:T̂a
) (106)

= max
d(â

T̂a+1 : T̂
)

∑

â
T̂a+1 : T̂

,ŝ
T̂

d(â
T̂a+1 : T̂

)

× d(ŝ
T̂
|â

t:T̂
) log

d(ŝ
T̂
|â

t:T̂
)

d(ŝ
T̂
|â

t:T̂a
)
. (107)

Note that in the denominator of the fraction, the action sequence
only runs to t:T̂a and not to t:T̂ as in the numerator.

In the Bayesian case, the required posteriors are
q(ŝ

T̂
|â

t:T̂
, sa≺t , ξ ) (for each â

T̂a+1 : T̂
) and q(ŝ

T̂
|â

t:T̂a
, sa≺t , ξ ). The

former distribution is a further marginalization over ŝ
t+1 : T̂−1

of q(ŝ
t:T̂

|â
t:T̂

, sa≺t , ξ ). The variational approximation only helps
getting q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ), not the further marginalization. The

latter distribution is obtained for a given q(â
T̂a+1 : T̂

) from the

former one via

q(ŝ
T̂
|â

t:T̂a
, sa≺t , ξ ) =

∑

â
T̂a+1 : T̂

q(ŝ
T̂
, â

T̂a+1 : T̂
|â

t:T̂a
, sa≺t , ξ ) (108)

=
∑

â
T̂a+1 : T̂

q(ŝ
T̂
|â

T̂a+1 : T̂
, â

t:T̂a
, sa≺t , ξ ) q(âT̂a+1 : T̂

)

(109)

since the empowerment calculation imposes

q(â
T̂a+1 : T̂

|â
t:T̂a

, sa≺t , ξ ) = q(â
T̂a+1 : T̂

). (110)

7.3.4. Predictive Information Maximization
Predictive information maximization, (Ay et al., 2008),
is an intrinsic motivation that seeks to maximize the
predictive information of the sensor process. Predictive
information is the mutual information between past and
future sensory signal, and has been proposed as a general
measure of complexity of stochastic processes (Bialek
and Tishby, 1999). For applications in the literature see
Ay et al. (2012); Martius et al. (2013, 2014). Also, see
Little and Sommer (2013) for a comparison to entropy
minimization.

For predictive information, we select a half time horizon k =

⌊(t:T̂ − t + 1)/2⌋ where k > 0 for predictive information
to be defined (i.e., t:T̂ − t > 0). Then, we can define the
expected mutual information between the next m sensor values
and the subsequent m sensor values as the action-value function
of predictive information maximization. This is similar to the
time-local predictive information in Martius et al. (2013):

M
PI(d(., ., .|.), â

t:T̂
) := Id(Ŝt : t+k−1 : Ŝt+k : t+2k−1|ât:T̂). (111)

We omit writing out the conditional mutual information
since it is defined in the usual way. Note that it is possible

that t + 2k − 1 < t:T̂ so that the action sequence â
t:T̂

might go beyond the evaluated sensor probabilities. This
displacement leads to no problem since the sensor values
do not depend on future actions. The posteriors needed are:
q(ŝt : t+k−1|ât:T̂ , sa≺t , ξ ), q(ŝt+k : t+2k−1|ŝt : t+k−1, ât:T̂ , sa≺t , ξ ),
and q(ŝt+k : t+2k−1|ât:T̂ , sa≺t , ξ ). The first and the last are again
marginalizations of q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ) seen in Equation (75).

The second posterior is a fraction of such marginalizations.

7.3.5. Knowledge Seeking
Knowledge seeking agents (Storck et al., 1995; Orseau et al., 2013)
maximize the information gain with respect to a probability
distribution over environments. The information gain we use
here is the relative entropy between the belief over environments
after actions and subsequent sensor values and the belief over
environments (this is the KL-KSA of Orseau et al. 2013, “KL”
for Kullback-Leibler divergence). In our case the belief over
environments can be identified with the posterior q(θ |sa≺t , ξ )
since every θ = (θ1, θ2, θ3) defines an environment. In principle,
this can be extended to the posterior q(ξ |sa≺t , ξ ) over the
hyperprior ξ , but we focus on θ here. This definition is more
similar to the original one. Then, we define the knowledge
seeking action-value function using the information gain of
Equation (74):

M
KSA(d(., ., .|.), â

t:T̂
) := Id(Ŝt:T̂ :2|â

t:T̂
). (112)

We have discussed the necessary posteriors following
Equation (74).

After this overview of some intrinsic motivations, we look
at active inference. However, what should be clear is, that, in
principle, both the posteriors needed for the intrinsic motivation
function of the original active inference (Friston et al., 2015)
and the posteriors needed for alternative inferences overlap. This
overlap shows that the other intrinsic motivations mentioned
here also profit from variational inference approximations. There
is also no indication that these intrinsic motivations cannot be
used together with the next discussed active inference.

8. ACTIVE INFERENCE

Now, we look at active inference. Note that this section is
independent of the intrinsic motivation function underlying the
action-value function Q̂.

In the following we first look at and try to explain a slightly
simplified version of the active inference in Friston et al. (2015).
Afterwards we also state the full version.

As mentioned in the introduction, current active inference
versions are formulated as an optimization procedure that, at
least at first sight, looks similar to the optimization of a variational
free energy familiar from variational inference. Recall that, in
variational inference the parameters of a family of distributions
are optimized to approximate an exact (Bayesian) posterior of
a generative model. In the case we discussed in Section 6.4
the sought after exact posterior is the posterior factor of the

Frontiers in Neurorobotics | www.frontiersin.org 17 August 2018 | Volume 12 | Article 45

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Biehl et al. Expanding the Active Inference Landscape

generative model of Section 6.1. One of our questions about
active inference is whether it is a straightforward application of
variational inference to a posterior of some generative model.
This would imply the existence of a generative model whose
standard updating with past actions and sensor values leads to an
optimal posterior distribution over future actions. Note that, this
does not work with the generative model in of Section 6.1 since
the future actions there are independent of the past sensor values
and actions. Given the appropriate generative model, it would
then be natural to introduce it first and then apply a variational
approximation similar to our procedure in Section 6.

We were not able to find in the literature or construct
ourselves a generative model such that variational inference
leads directly to the active inference as given in Friston et al.
(2015). Instead we present a generative model that contains a
posterior whose variational approximation optimization is very
similar to the optimization procedure of active inference. It is
also closely related to the two-step action generation of first
inferring the posterior and then selecting the optimal actions.
This background provides some intuition for the particularities
of active inference.

One difference of the generative model used here is that
its structure depends on the current time step in a systematic
way. The previous generative model of Section 6.1 had a time-
invariant structure.

In Section 6, we showed how the generative model, together
with either Bayesian or variational inference, can provide an
agent with a set of complete posteriors. Each complete posterior
is a conditional probability distribution over all currently
unobserved variables (Ŝ

t:T̂
, Ê0:T) and parameters (2 and more

generally also 4) given past sensor values and actions sa≺t and
a particular sequence of future actions â

t:T̂
. Inference means

updating the set of posteriors in response to observations sa≺t .
Active inference should then update the distribution over future
actions in response to observations. This means the according
posterior cannot be conditional on future action sequences like
the complete posterior in Equation (16). Since active inference
promises belief or knowledge updating and action selection in
one mechanism the posterior should also range over unobserved
relevant variables like future sensor values, environment states,
and parameters. This leads to the posterior of Equation (13):

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ). (13 revisited)

If this posterior has the right structure, then we can derive a
future action distribution by marginalizing:

q(â
t:T̂

|sa≺t , ξ ) =
∑

ŝ
t:T̂

,ê
0:T̂

∫

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ) dθ . (113)

Actions can then be sampled from the distribution obtained by
marginalizing further to the next action only:

p(at|mt) :=
∑

â
t+1 : T̂

q(â
t:T̂

|sa≺t , ξ ). (114)

This scheme could justifiably be called (non-variational) active
inference since the future action distribution is directly obtained
by updating the generative model.

However, as we mentioned above, according to the generative
model of Figure 2, the distribution over future actions is
independent of the past sensor values and actions:

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ) = q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) q(ât:T̂)

(115)

since

q(â
t:T̂

|sa≺t , ξ ) = q(â
t:T̂

). (116)

Therefore, we can never learn anything about future actions
from past sensor values and actions using this model. In other
words, if we intend to select the actions based on the past, we
cannot uphold this independent model. The inferred actions
must become dependent on the history and the generative model
has to be changed for a scheme like the one sketched above to be
successful.

In Section 7.2, we have mentioned that the softmax policy
based on a given action-value function Q̂ could be a desirable
outcome of an active inference scheme such as the above. Thus,
if we ended up with

q(â
t:T̂

|sa≺t , ξ ) =
1

Z(γ , sa≺t , ξ )
eγ Q̂(ât:T̂ ,sa≺t ,ξ ) (117)

as a result of some active inference process, that would be a
viable solution. We can force this by building this conditional
distribution directly into a new generative model. Note that
this conditional distribution determines all future actions â

t:T̂
starting at time t and not just the next action ât . In the
end however only the next action will be taken according
to Equation (114) and at time t + 1 the action generation
mechanism starts again, now with â

t+1 : T̂
influenced by the new

data sat in addition to sa≺t . So the model structure changes
over time in this case with the dependency of actions on pasts
sa≺t shifting together with each time-step. Keeping the rest
of the previous Bayesian network structure intact we define
that at each time t the next action Ât depends on past sensor
values and actions sa≺t as well as on the hyperparameter ξ (see
Figure 6):

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ) := q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ)

× q(â
t:T̂

|sa≺t , ξ ) q(θ , ê≺t|sa≺t , ξ ).

(118)

On the right hand side we have the predictive and posterior
factors left and right of the distribution over future actions.
We define this conditional future action distribution to be the
softmax of Equation (117). This means that the mechanism-
generating future actions uses the Bayesian action-value function
Q̂(â

t:T̂
, sa≺t , ξ ). The Bayesian action-value function depends

on the complete posterior q(ŝ
t:T̂

, ê
t:T̂

, θ |â
t:T̂

, sa≺t , ξ ) calculated
using the old generative model of Figure 2 where actions do
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FIGURE 6 | Generative model including q(â
t:T̂

|sa≺t, ξ ) at t = 2 with ŜÂ≺2 influencing future actions Â
2 : T̂

. Note that, only future actions are dependent on past

sensor values and actions, e.g., action Â1 has no incoming edges. The increased gap between time step t = 1 and t = 2 is to indicate that this time step is special in

the model. For each time step t there is an according model with the particular relation between past ŜÂ≺t and Â
t:T̂

shifted accordingly.

not not depend on past sensor values and actions. This is a
complex construction with what amounts to Bayesian inference
essentially happening within an edge (i.e., ŜÂ≺t → Â

t:T̂
) of a

Bayesian network. However, logically there is no problem since
the posterior q(ŝ

t:T̂
, ê

t:T̂
, θ |â

t:T̂
, sa≺t , ξ ) for each â

t:T̂
to be well

defined really only needs sa≺t , ξ , and the model structure. Here
we see the model structure as “hard wired” into the mechanism,
since it is fixed for each time step t from the beginning.

We now approximate the posterior of Equation (117) using
variational inference. Like in Section 6.4 we do not approximate
the predictive factor. Instead we only approximate the product
of posterior factor q(θ , ê≺t|sa≺t , ξ ) and future action distribution
q(â

t:T̂
|sa≺t , ξ ). By construction these are two independent factors

but with an eye to active inference which treats belief or
knowledge updating and action generation together we also
treat them together. For the approximation we again use the
approximate posterio factor of Equation (38) and combine it with
a distribution over future actions r(â

t:T̂
|π) parameterized by π :

r(â
t:T̂

, ê≺t , θ |π ,φ) := r(â
t:T̂

|π) r(ê≺t , θ |φ) (119)

:= r(â
t:T̂

|π) r(ê≺t|φ
E≺t ) r(θ |φ). (120)

The variational free energy is then:

F[π ,φ, sa≺t , ξ ] :=
∑

â
t:T̂

,ê≺t

∫

r(â
t:T̂

|π) r(ê≺t , θ |φ)

× log
r(â

t:T̂
|π) r(ê≺t , θ |φ)

q(s≺t , ât:T̂ , ê≺t , θ |a≺t , ξ )
dθ (121)

=
∑

â
t:T̂

,ê≺t

∫

r(â
t:T̂

|π) r(ê≺t , θ |φ)

× log
r(â

t:T̂
|π) r(ê≺t , θ |φ)

q(â
t:T̂

|sa≺t , ξ ) q(ê≺t , θ |sa≺t , ξ ) q(s≺t|a≺t , ξ )
dθ

(122)

= F[φ, sa≺t , ξ ]+ KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|sa≺t , ξ )].

(123)

Where F[φ, sa≺t , ξ ] is the variational free energy of the (non-
active) variational inference (see Equation 45). Variational
inference then minimizes the above expression with respect to
parameters φ and π :

φ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

:= argmin
φ,π

F[π ,φ, sa≺t , ξ ]

= argmin
φ

F[φ, sa≺t , ξ ] (124)

+ argmin
π

KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|sa≺t , ξ )].

(125)

We see that the minimization in this case separates into two
minimization problems. The first is just the variational inference
of Section 6.4 and the second minimizes the KL-divergence
between the parameterized action distribution r(â

t:T̂
|π) and the

softmax q(â
t:T̂

|sa≺t , ξ ) of the Bayesian action-value function. It

is instructive to look at this KL-divergence term closer:

KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|sa≺t , ξ )] = −Hr(Ât:T̂
|π) (126)

−
∑

â
t:T̂

r(â
t:T̂

|π) log q(â
t:T̂

|sa≺t , ξ )

= −Hr(Ât:T̂
|π)

−
∑

â
t:T̂

r(â
t:T̂

|π)Q̂(â
t:T̂

, sa≺t , ξ )

+ logZ(γ , sa≺t , ξ ). (127)

We see that the optimization of π leads toward high entropy
distributions for which the expectation value of the action-value
function Q̂(â

t:T̂
,φ) is large. Action selection could then happen

according to

p(at|mt) :=
∑

ât+1:T

r(â
t:T̂

|π∗
sa≺t ,ξ

). (128)

So the described variational inference procedure, at least
formally, leads to a useful result. However, this is not the active
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inference procedure of Friston et al. (2015). As noted above the
minimization actually splits into two completely independent
minimizations here. The result of the minimization with respect
to φ in Equation (125) is actually not used for action selection and
since action selection is all that matters here is mere ornament.
However, there is a way to make use of it. Recall that plugging
φ∗
sa≺t ,ξ

into the variational action-value function Q̂(â
t:T̂

,φ)means
that it approximates the Bayesian action value function (see
Equation 52). This means that if we define a softmax distribution
r(â

t:T̂
|φ) of the variational action-value function parameterized

by φ as:

r(â
t:T̂

|φ) =
1

Z(γ ,φ)
eγ Q̂(ât:T̂ ,φ). (129)

Then this approximates the softmax of the Bayesian action-value
function:

r(â
t:T̂

|φ∗
sa≺t ,ξ

) ≈ q(â
t:T̂

|sa≺t , ξ ). (130)

Consequently, once we have obtained φ∗
sa≺t ,ξ

from the first
minimization problem in Equation (125) we can plug it into
r(â

t:T̂
|φ) and then minimize the KL-divergence of r(â

t:T̂
|π) to

this distribution instead of the one to q(â
t:T̂

|sa≺t , ξ ). In this way
the result of the first could be reused for the secondminimization.
This remains a two part action generation mechanism however.
Active inference combines these two steps into one minimization
by replacing q(â

t:T̂
|sa≺t , ξ ) in the variational free energy of

Equation (121) with r(â
t:T̂

|φ). Since r(â
t:T̂

|φ) thereby becomes
part of the denominator it is also given the same symbol (in our
case q) as the generative model. So we define:

q(â
t:T̂

|φ) := r(â
t:T̂

|φ). (131)

In this form the softmax q(â
t:T̂

|φ) is a cornerstone of active
inference. In brief, it can be regarded as a prior over action
sequences. To obtain purposeful behaviour it specifies prior
assumptions about what sorts of actions an agent should take
when its belief parameter takes value φ. Strictly speaking the
expression resulting from the replacement q(Â

t:T̂
|sa≺t , ξ ) →

q(â
t:T̂

|φ) in Equation (121) is then not a variational free energy
anymore since the variational parameters φ occur in both
the numerator and the denominator. Nonetheless, this is the
functional that is minimized in active inference as described
in Friston et al. (2015). So active inference is defined as the
optimization problem (cmp. Friston et al., 2015, Equation 1):

φ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

= argmin
φ,π

∑

â
t:T̂

,ê≺t

∫

r(â
t:T̂

|π) r(ê≺t , θ |φ)

log
r(â

t:T̂
|π) r(ê≺t , θ |φ)

q(s≺t , ât:T̂ , ê≺t , θ |φ, a≺t , ξ )
dθ (132)

= argmin
φ,π

(F[φ, sa≺t , ξ ]

+KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|φ)]
)

. (133)

This minimization does not split into the two independent parts
anymore since both the future action distribution q(Â

t:T̂
|φ) of

the generative model and the approximate posterior factor in the
variational free energyF[φ, sa≺t , ξ ] are parameterized by φ. This
justifies the claim that active inference obtains both belief update
and action selection through a single principle or optimization.

Compared to Friston et al. (2015), we have introduced a
simplification of active inference. In the original text, additional
distributions over γ (with according random variable Ŵ) are
introduced to the generative model as q(γ |ξŴ) (which is a fixed
prior) and to the approximate posterior as r(γ |φŴ). For the sake
of completeness, we show the full equations as well. Since γ is
now part of the model, we write q(â

t:T̂
|γ ,φ) instead of q(â

t:T̂
|φ).

The basic procedure above stays the same. The active inference
optimization becomes:

φ∗
sa≺t ,ξ

,φŴ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

= argmin
φ,φŴ ,π

∑

â
t:T̂

,ê≺t

∫∫

r(â
t:T̂

|π) r(γ |φŴ) r(ê≺t , θ |φ)

× log
r(â

t:T̂
|π) r(γ |φŴ) r(ê≺t , θ |φ)

q(s≺t , ât:T̂ , γ , ê≺t , θ |φ, a≺t , ξ )
dθ dγ . (134)

Note that here, by construction, the denominator can be written
as:

q(s≺t , ât:T̂ , γ , ê≺t , θ |φ, a≺t , ξ )

= q(â
t:T̂

|γ ,φ) q(γ |φŴ) q(ê≺t , θ |sa≺t , ξ ) q(s≺t|a≺t , ξ ). (135)

Which allows us to write Equation (134) with the original
variational free energy again:

φ∗
sa≺t ,ξ

,φŴ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

= argmin
φ,φŴ ,π

(F[φ, sa≺t , ξ ]

+KL[r(Â
t:T̂

,Ŵ|π ,φŴ)|| q(Â
t:T̂

,Ŵ|φ, ξŴ)]
)

.

(136)

9. APPLICATIONS AND LIMITATIONS

An application of the active inference described here to a
simple maze task can be found in Friston et al. (2015). Active
inference using different forms of approximate posteriors can be
found in Friston et al. (2016b). Here, Friston et al. (2017a) also
includes a knowledge seeking term in addition to the conditional
entropy term. In the universal reinforcement learning framework
Aslanides et al. (2017) also implement a knowledge seeking agent.
These works can be quite directly translated into our framework.

For applications of intrinsic motivations that are not so
directly related to our framework see also the references in the
according Sections 7.3.3 to 7.3.5.

A quantitative analysis of the limitations of the different
approaches we discussed is beyond the scope of this publication.
However, we can make a few observations that may help
researchers interested in applying the discussed approaches.

Concerning the computation of the complete posterior by
direct Bayesian methods is not feasible beyond the simplest of
systems and even then only for very short time durations. As
mentioned in the text it contains a sum over |Ê|t elements. If the
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time horizon into the future is T̂ − t then the predictive factor

consists of Ŝ T̂−t×Ê T̂−t×ÂT̂−t entries. This means predicting far

into the future is also not feasible. Therefore T̂−twill usually have
to be fixed to a small number. Methods that also approximate the
predictive factor (e.g., Friston et al., 2016b, 2017a) may be useful
here. However, to our knowledge, their scalability has not been
addressed yet. Since in these approaches the predictive factor is
approximated in a similar way as the posterior factor here, we
would expect that it is similar to the scalability of approximating
the posterior factor.

Employing variational inference reduces the computational
burden for obtaining a posterior factor considerably. The sum
over all possible past environment histories (the |Ê|t elements)
is approximated within the optimization. Clearly, by employing
variational inference we inherit all shortcomings of this
method. As mentioned also in Friston et al. (2016b) variational
inference approximations are known to become overconfident
i.e., the approximate posterior tends to ignore values with low
probabilities (see e.g., Bishop, 2011). In practice this can of course
lead to poor decision making. Furthermore, the convergence of
the optimization to obtain the approximate posterior can also
become slow. As time t increases the necessary computations
for each optimization step in the widely used coordinate ascent
variational inference algorithm (Blei et al., 2017) grow with t2.
Experiments suggest that the number of necessary optimization
steps also grows over time. At the moment, we do not know how
fast but this may also lead to problems. A possible solution would
be to introduce some form of forgetting such that the considered
past does not grow forever.

Ignoring the problem of obtaining a complete posterior,
we still have to evaluate and select actions. Computing the
information theoretic quantities needed for the mentioned
intrinsic motivations and their induced action-value functions is
also computationally expensive. In this case fixing the future time

horizon T̂ − t can lead to constant computational requirements.
These grow exponentially with the time horizon which makes
large time horizons impossible without further approximations.
Note that the action selection mechanisms discussed here also
require the computation of the action-value functions for each
of the future action sequences.

Active inference is not a standard variational inference
problem and therefore standard algorithms like the coordinate
ascent variational inference may fail in this case. Other
optimization procedures like gradient descent may still work. As
far as we know there have been no studies of the scalability of the
active inference scheme up to now.

10. CONCLUSION

We have reconstructed the active inference approach of Friston
et al. (2015) in in a formally consistent way. We started by
disentangling the components of inference and action selection.
This disentanglement has allowed us to also remove the
variational inference completely and formulate the pure Bayesian

knowledge updating for the generative model of Friston et al.
(2015). We have shown in Section 6.3 that a special case of this
model is equivalent to a finite version of the model used by the
Bayesian universal reinforcement agent (Hutter, 2005). We then
pointed out how to approximate the pure Bayesian knowledge
updating with variational inference. To formalize the notion of
intrinsic motivations within this framework, we have introduced
intrinsic motivation functions that take complete posteriors and
future actions as inputs. These induce action-value functions
similar to those used in reinforcement learning. The action-
value functions can then be used for both, the Bayesian and the
variational agent, in standard deterministic or softmax action
selection schemes.

Our analysis of the intrinsic motivations Expected Free
Energy Maximization, Empowerment Maximization, Predictive
Information Maximization, and Knowledge Seeking indicates that
there is significant common structure between the different
approaches and it may be possible to combine them. At the
time of writing, we have already made first steps toward
using the present framework for a systematic quantitative
analysis and comparison of the different intrinsic motivations.
Eventually, such studies will shed more conclusive light on the
computational requirements and emergent dynamics of different
motivations. An investigation of the biological plausibility of
different motivations might lead to different results and this is
of equal interest.

Beyond the comparison of different intrinsic motivations
within an active inference framework, the present work can thus
contribute to investigations on the role of intrinsic motivations in
living organisms. If biological plausibility of active inference can
be upheld, and maintained for alternative intrinsic motivations,
then experimental studies might be derived to test differentiating
predictions. If active inference was key to cognitive phenomena
such as consciousness, it would be interesting to see how the
cognitive dynamics would be affected by alternative intrinsic
motivations.
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APPENDIX

A. POSTERIOR FACTOR

Here we want to calculate the posterior factor q(ê≺t , θ |sa≺t , ξ )
of the complete posterior in Equation (16) without an
approximation (i.e., as in direct, non-variational Bayesian
inference).

q(ê≺t , θ |sa≺t , ξ )

=
1

q(s≺t|a≺t , ξ )
q(s≺t , ê≺t , θ |a≺t , ξ ) (A1)

=
1

q(s≺t|a≺t , ξ )
q(s≺t|ê≺t , θ

1) q(ê≺t|a≺t , θ
2, θ3) q(θ |ξ ) (A2)

=
1

q(s≺t|a≺t , ξ )

t
∏

τ=0

q(sτ |êτ , θ
1)

t
∏

r=1

q(êr|ar , êr−1, θ
2) q(ê0|θ

3)

3
∏

i=1

q(θ i|ξ i). (A3)

We see that the numerator is given by the generative model. The
denominator can be calulated according to:

q(s≺t|a≺t , ξ )

=

∫

12

q(s≺t|a≺t , θ) q(θ |ξ ) dθ (A4)

=

∫

12





∑

ê≺t

q(ê0|θ
3)

t
∏

τ=0

q(sτ |êτ , θ
1)

t
∏

r=1

q(êr|ar , êr−1, θ
2)





3
∏

i=1

q(θ i|ξ i) dθ (A5)

=
∑

ê≺t

∫

12

q(ê0|θ
3)

t
∏

τ=0

q(sτ |êτ , θ
1)

t
∏

r=1

q(êr|ar , êr−1, θ
2)

3
∏

i=1

q(θ i|ξ i) dθ (A6)

=
∑

ê≺t

(

∫

q(ê0|θ
3) q(θ3|ξ 3) dθ3

∫ t
∏

τ=0

q(sτ |êτ , θ
1) q(θ1|ξ 1) dθ1

×

∫ t
∏

r=1

q(êr|ar , êr−1, θ
2) q(θ2|ξ 2) dθ2

)

(A7)

The three integrals can be solved analytically if q(θ i|ξ i) are
chosen as conjugate priors to q(sτ |êτ , θ

1), q(êr|ar , êr−1, θ
2), and

q(ê0|θ
3) respectively. However, the sum is over |E|t terms and

therefore untractable as time increases.

B. APPROXIMATE POSTERIOR
PREDICTIVE DISTRIBUTION

Here, we calculate the (variational) approximate predictive
posterior distribution of q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ) from a given

approximate complete posterior. This expression plays a role

in multiple intrinsic motivation functions like empowerment
maximization, predictive information maximization, and
knowledge seeking. For an arbitrary φ we have:

r(ŝ
t:T̂

|â
t:T̂

,φ)

: =
∑

ê≺t

∫

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ) r(ê≺t , θ |φ) dθ (A8)

=
∑

êt−1

∫

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ) r(êt−1, θ |φ) dθ (A9)

=
∑

êt−1

(

∫

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ)

3
∏

i=1

r(θ i|φi) dθ

)

r(êt−1|φ
Et−1 )

(A10)

=
∑

êt−1







∑

ê
t:T̂

∫

q(ŝ
t:T̂

|ê
t:T̂

, θ1) r(θ1|φ1) dθ1×

×

∫

q(ê
t:T̂

|â
t:T̂

, êt−1, θ
2) r(θ2|φ2) dθ2 r(êt−1|φ

Et−1 ) (A11)

=
∑

êt−1







∑

ê
t:T̂

∫ T̂
∏

τ=t

q(ŝτ |êτ , θ
1) r(θ1|φ1) dθ1×

×

∫ T̂
∏

τ=t

q(êτ |âτ , êr−1, θ
2) r(θ2|φ2) dθ2 r(êt−1|φ

Et−1 ) (A12)

=
∑

êt−1

∑

ê
t:T̂

r(ŝ
t:T̂

|ê
t:T̂

,φ1) r(ê
t:T̂

|â
t:T̂

, êt−1,φ
2) r(êt−1|φ

Et−1 )

(A13)

From first to second line we usually have to marginalize
q(ê≺t , θ |sa≺t , ξ ) to q(êt−1, θ |sa≺t , ξ ) with a sum over all |E|t−1

possible environment histories ê≺t−1. Using the approximate
posterior, we can use r(êt−1|φ

Et−1) directly without dealing with
the intractable sum. From third to fourth line, r(θ3|φ3) drops
out since it can be integrated out (and its integral is equal to
one). Note that during the optimization Equation (47) r(θ3|φ3)
does play a role so it is not superfluous.From fifth to last line,
we perform the integration over the parameters θ1 and θ2.
These integrals can be calculated analytically if we choose the
models r(θ1|φ1) and r(θ2|φ2) as conjugate priors to q(s|e, θ1)
and q(e′|a′, e, θ2). Variational inference prediction of the next
n = T̂ − t − 1 sensor values requires the sum and calculation
of |Ê|n terms for |Ŝ|n possible futures.

C. NOTATION TRANSLATION TABLES

A table to translate between our notation and the one used in
Friston et al. (2015). The translation is also valid in many cases
for Friston et al. (2016a,b, 2017a). Some of the parameters shown
here only show up in the latter publications.
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This article Friston et al. (2015) Note

et ∈ E Actual environment states

êt ∈ Ê st ∈ S Estimated/modeled environment states

st ∈ S ot ∈ � Actual/observed sensor or outcome values

ŝt ∈ Ŝ = S ot ∈ � Estimated/modeled (usually future) sensor or outcome values. Note that the index τ instead of t often indicates an

estimated future sensor value in Friston et al. (2015).

at ∈ A at ∈ A Actions

ât ∈ Â = A ut ∈ U Contemplated (usually future) actions

mt ∈ M Agent memory state

â
t:T̂

π , ũ π and ũ both uniquely specify future action sequences

θ θ Generative model parameters

q(ŝ|ê, θ1) = q(ŝ|ê) P(o|s) = Aos Model sensor dynamics, not parameterised in Friston et al. (2015), A is a matrix representation

q(ê′|â′, ê, θ2) = q(ê′|â′, ê) P(s′|s, u) = B(u)s′s Model environment dynamics, not parameterised in Friston et al. (2015), B(u) is a matrix representation for each

possible action u

q(ê0|θ
3) P(s0|m) = Ds0 Modeled initial environment state, not parameterised in Friston et al. (2015), D is a vector representation. Note, the

parameter m is a fixed hyperparameter

ξ = (ξ1, ξ2, ξ3) m Generative model hyperparam. or model parameter that subsumes all hyperparameters

ξ1 sensor dynamics hyperparam.

ξ2 Environment dynamics hyperparam.

ξ3 Initial environment state hyperparam.

ξŴ (α,β) Precision hyperparam.

(φ,φŴ ) µ Variational param.

φ
E
0:T̂

(

s Environment states variational param.,

φEτ

(

s τ for each timestep τ

φ1 Sensor dynamics variational param.

φ2 Environment dynamics variational param.

φ3 Initial environment state variational param.

π

(

π Future action sequence variational param.

φŴ

(

γ Precision variational param.

Q̂(â
t:T̂

,φ) Q(π ) = Q(ũ|π ) Variational action-value function. The dependence of Q(ũ|π ) on

(

s t is omitted

p(s�t, e�t, a≺t ) R(õ, s̃, ã) Our physical environment corresponds to the generative process

q(ŝ�t, ê�t, ât:T̂ , γ |a≺t, ξ ) P(õ, s̃, ũ, γ |ã,m) The generative model for active inference including γ (which we mostly omit)

r(ê
0:T̂

, â
t:T̂

, γ |π ,φ,φŴ ) Q(s̃, ũ, γ |µ) Approximate complete posterior for active inference

p
d (ŝτ ) P(oτ |m) Prior over future outcomes.

Since our treatment is more general than that of Friston et al. (2015) and quite similar (though not identical) to the treatment in
Friston et al. (2016a,b, 2017a) we also give the relations to variables in those publications. We hope this will help interested readers to
understand the latter publications even if some aspects of those are different. A discussion of those differences is beyond the scope of
the present article.
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This article Friston et al. (2016b) Note

et ∈ E Actual environment states

êt ∈ Ê st ∈ S Estimated/modeled environment states

st ∈ S ot ∈ � Actual/observed sensor or outcome values

ŝt ∈ Ŝ = S ot ∈ � Estimated/modeled (usually future) sensor or outcome values. Note that the index τ instead of t

often indicates an estimated future sensor value in Friston et al. (2015).

at ∈ A ut ∈ A Actions

ât ∈ Â = A ut ∈ Υ Contemplated (usually future) actions

mt ∈ M Agent memory state

â
0:T̂

π , action sequences

θ θ Generative model parameters

θ1 A Sensor dynamics param.

θ2 B Environment dynamics param.

θ3 D Initial environment state param.

ξ η Generative model hyperparam. or model parameter that subsumes all hyperparameters

ξ1 a sensor dynamics hyperparam.

ξ2 b Environment dynamics hyperparam.

ξ3 d Initial environment state hyperparam.

ξŴ β Precision hyperparam.

(φ,φŴ ) η Variational param.

φ
E
0:T̂ s0:T Environment states variational param.

q(êτ |ât:T̂
, a0 : t−1,φ

Eτ ) (sπ
τ )êτ

For each sequence of actions and for each timestep there is a parameter sπ
τ . Since a

categorical distribution is used, the parameter is a vector of probabilities whose entry êτ is

equal to the probability of êτ if we set Ê = {1, ..., |Ê|}

φ1 a Sensor dynamics variational param.

φ2 b Environment dynamics variational param.

φ3 d Initial environment state variational param.

π π Future action sequence variational param.

φŴ β Precision variational param.

Q̂(â
t:T̂

,φ) −G(π ) Variational action-value function. The dependence of G(π ) on sπ
0:T is omitted

p(s�t, e�t, a≺t ) R(õ, s̃, ã) Our physical environment corresponds to the generative process

q(ŝ�t, ê0:T̂ , â0:T̂ , γ , θ , ξ ) P(õ, s̃,π , γ ,A,B,D|a,b,d,β) The generative model for active inference

r(ê
0:T̂

, â
0:T̂

, γ , θ |π ,φŴ ,φ) Q(s̃,π ,A,B,D, γ |sπ

0:T̂
,π ,a,b,d,β) Approximate complete posterior for active inference

p
d (ŝτ ) P(oτ ) = σ (Uτ ) Prior over future outcomes.
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