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This study presents a noncontact capacitive sensing method for forearm motion

recognition. A method is proposed to record upper limb motion information from muscle

contractions without contact with human skin, compensating for the limitations of existing

sEMG-based methods. The sensing front-ends are designed based on human forearm

shapes, and the forearm limb shape changes caused by muscle contractions will be

represented by capacitance signals. After implementation of the capacitive sensing

system, experiments on healthy subjects are conducted to evaluate the effectiveness.

Nine motion patterns combined with 16 motion transitions are investigated on seven

participants. We also designed an automatic data labeling method based on inertial

signals from the measured hand, which greatly accelerated the training procedure. With

the capacitive sensing system and the designed recognition algorithm, the method

produced an average recognition of over 92%. Correct decisions could be made with

approximately a 347-ms delay from the relaxed state to the time point of motion initiation.

The confounding factors that affect the performances are also analyzed, including the

sliding window length, the motion types and the external disturbances. We found the

average accuracy increased to 98.7% when five motion patterns were recognized. The

results of the study proved the feasibility and revealed the problems of the noncontact

capacitive sensing approach on upper-limb motion sensing and recognition. Future

efforts in this direction could be worthwhile for achieving more promising outcomes.

Keywords: noncontact capacitive sensing, upper-limb motion recognition, human-machine interface, automatic

data labeling, robot learning from humans

1. INTRODUCTION

Emerging robotic technologies that can augment, replace or imitate the functions of human
upper limbs are attracting greater attention in the field of industrial manufacturing. For instance,
robot learning from humans (Billard et al., 2016), which aims to automatically transfer human
motor skills to robots, rather than by manual programming, could greatly increase the working
efficiency of industrial robotic control. To accomplish this goal, an important step is to accurately
recognize the motions of the operator to instruct the robotic controller. The sensing method is the
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first key factor that determines the following process of human
motion recognition (Pons, 2008; Tang, 2016). Optical-based
methods (Bruno and Khatib, 2016) (cameras, lasers, and depth
sensing technologies, etc.) and mechanical sensing methods
(Dipietro et al., 2008; Xsens, 20171) (motion capture system,
inertial sensing technologies, and data gloves, etc.) are widely
used both in academic research and commercial products, as the
signals convey abundant human motion information. However,
these sensing methods cannot obtain human intent information
from muscle contractions.

Muscles are the actuators of human motion and act according
to neural stimulations (Winter, 2009). Muscle contractions lead
to joint intuitive motions, rather than responding to them.
Compared with motion measurement signals such as the inertial
measurement unit (IMU), muscle contraction signals not only
contain the kinematic information, such as posture and motion
patterns, but also the dynamic information such as the joint force
and joint stiffness (Ajoudani, 2016). They offer opportunities
to obtain more abundant human motion information and a
faster time response. Many researchers have extracted human
motion information from muscle signals to build a human-
machine interface for robotic control. In the current technology,
the surface electromyography (sEMG) signals are the most
widely used for human motion recognition. sEMG can be
measured in a non-invasive way with a relatively stable quality
in rigorous human motions. When converting the sEMG signals
to the corresponding human motion information, the two main
methods being studied are the machine learning based method
and the model based method. In the former method, the
performance mostly relies on the statistical representations of
the sEMG features. With a proper training procedure, it has
been shown to produce relative stable recognition performances
(accuracies) on multiple individuals (Novak and Riener, 2015).
It has also been studied for robotic manipulator control
(Artemiadis and Kyriakopoulos, 2010; Liarokapis et al., 2013;
Murillo andMoreno, 2016). For instance, in a study published by
Artemiadis and Kyriakopoulos (Artemiadis and Kyriakopoulos,
2010), a robotic manipulator control method based on sEMG
signals was proposed. The design of the method was based on
a support vector machine (SVM) to continuously map the joint
positions with sEMG features, and the position errors could
be controlled within several centimeters. The second type of
method is the model based method, which takes advantage of
the physical significance of the sEMG signals. It is also widely
studied in robotic manipulator control (Ikemoto et al., 2015;
Ison et al., 2016; Lunardini et al., 2016). For example, Lunardini
et al. (2016) proposed a 2-degree-of-freedom (DOF) robotic joint
torque control method based on themuscle synergymodel. In the
model, a synergy matrix was designed to map the N-dimensional
neural activations with the M-dimensional sEMG signals. The
robotic joint torques could be calculated from the difference
between the flexion and extension of neural activations. The
effectiveness of this method was validated by using an inter-day
experiment and the robustness was proved to be better than the
traditional muscle-pair methods.

1Available online at: https://www.xsens.com/products/

The sEMG-based studies provided a promising path toward
real applications of a human-machine interface. However, as
highlighted in many related studies, limitations still exist. Firstly,
the sEMG signals are measured using the electrodes that are
placed on specific sites. In order to obtain a better signal quality,
the electrodes have to firmly adhere to the skin. Sweat on the
surface of the skin seriously decreases the signal quality and
the subsequent recognition performance (Sensinger et al., 2009).
Secondly, the sensing positions of the sEMG electrodes influence
the recognition performance and therefore, a configuration
procedure is needed before each use (Young et al., 2011). To
overcome these drawbacks, some researchers have proposed
adaptive recognition methods (Gijsberts et al., 2014; Zhai et al.,
2017) or the use of high density electrodes (Ison et al., 2016).
However, it is still challenging tomeet the high demand of human
motion recognition in practical applications.

Attempts are being made by using other signal sources to
bypass the limitations in sEMG. The muscle contractions not
only generate electric effects (recorded as sEMG signals), but
also produce shape changes. Studies using ultrasound muscle
imaging have proved that the muscle morphological parameters,
such as the muscle thickness and pennation angle correlate with
joint motion information (Shi et al., 2008; Zhou, 2015). Some
researchers have used ultrasound muscle imaging signals for
human motion recognition. For instance, Castellini et al. (2012)
predicted finger position changes based on features calculated
from latitudinal ultrasound images of the forearm. A strong
linear relationship was found between the features and motions.
On the other hand, the drawbacks of the technique are obvious.
Duringmeasurements, conductive cream is needed at the sensing
sites to insure the signal quality. Displacement between the
probe and human skin also negatively affects the performance.
Although ultrasound muscle signals are not suitable for human
motion recognition in their current state. The studies revealed
that muscle shape change information could potentially be used
as a signal source for human motion recognition.

In our previous works (Zheng et al., 2014; Zheng and
Wang, 2017; Zheng et al., 2017a), we proposed a noncontact
capacitive sensing method for human motion recognition.
The method measured the limb shape changes during human
motion using a set of capacitors, and the sensing front-ends
of the system were not in contact with human skin. It was
proved in previous studies that noncontact capacitive sensing
could produce comparable recognition results with sEMG-based
strategies for lower-limb motion recognition. The capacitive
sensing approach is a promising alternative solution to sEMG-
based methods for human motion recognition. However, it
has not been systematically studied for upper-limb motions.
Upper limb motion patterns are different to lower limb motion
patterns, with tasks being more dexterous with no periodicity.
The muscle volumes are also smaller than that of the lower
limbs. As the sensing principle of capacitive sensing is to measure
limb shape changes caused by muscle deformations, the methods
for lower-limbs, such as gait-phase-based (Zheng and Wang,
2017; Zheng et al., 2017a) cannot be used for upper limb
motion recognition. Therefore, upper-limb motion recognition
with capacitive sensing needs to be explored.
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The contributions of the study are two fold. Firstly, we
provide an alternative solution to the existing studies in
upper-limb motion recognition tasks. We aim to recognize
upper-limb motion patterns from muscle contraction signals
using a noncontact method. Secondly, we aim to broaden the
application of the capacitive sensing method to new tasks.
The issues regarding the use of the methods for upper limb
motion sensing and recognition are addressed. We recently
made some initial attempts on upper-limb motion recognition
using the capacitive sensing method (Zheng et al., 2017b).
However, in the work of (Zheng et al., 2017b), the sensing
approach was only implemented on one subject with static
motion recognition (without motion transitions). Further critical
problems that are relevant for practical use have yet to be
addressed. In this study, we proposed a noncontact capacitive
sensing method for upper-limb motion recognition. The sensing
front-ends and the recognition method were designed and the
confounding factors in data segmentation, training procedure
and motion types were evaluated. Moreover, the method for
automatic data labeling was designed to accelerate the training
procedure.

2. METHODS

2.1. Measurement System
The measurement system comprised of a capacitive sensing
front-end, a capacitive sensing circuit (or capacitive signal
sampling circuit), an IMU and a control circuit. The capacitive
sensing front-end was designed to be applied onto the forearm
to measure the muscle shape changes during motion. The main
structure of the front-end was a band made of a thermoplastic
material. The material became soft when heated up to 70◦C
and recovered at normal temperature. This characteristic made
it possible to customize the size of the sensing front-end for
each subject. The sensing-band was an open circle and the gap
was placed on the medial side of the limb. A bandage was
applied onto the edge of the gap for adjusting the tightness
of the sensing band when fitting. Six copper films were fixed
onto the inner surface of the sensing band which served as
the electrode of the capacitive sensing system. The front-end
was worn outside of the clothes (see Figure 1). When being
fitted onto the human body, each copper electrode, the human
body, and the cloth between them formed a plate capacitor.
When limb shape changes occurred, the distance between the
human skin and the electrodes changed, which caused a change
to the capacitance value. By recording the capacitance signals,
we could obtain upper-limb motion information. The capacitive
sensing circuit was designed to measure capacitance values. A
time-to-digital model was integrated into the circuit to record
the charge-and-recharge cycle time of the equivalent capacitors.
In order to convert the time to actual capacitance values, a
reference capacitor was embedded onto the circuit. Using this
method, the cycle time ratio between the reference capacitor and
each equivalent capacitor (capacitive sensor) could be used to
derive the actual capacitance values. In the initial attempts, the
reference capacitor was set as 100 pF. The capacitive sensing
circuit could sample capacitance values from 12 to 800 pF,

more details can be found in Zheng et al. (2014). In this
study, an IMU module was placed on the back of the measured
hand to record the Eular angles (pitch, roll, and yaw). The
output range of each axis was from –180 to 180◦. For both
of the circuits (the capacitive sensing circuit and the IMU
module), the sampling rate was 100 Hz. The control circuit was
designed to synchronize the capacitance signals and the IMU
signals. All of the sensor data were packaged and transmitted
to the computer every 10 ms (the sampling rate was also
100 Hz). We also designed a graphic user interface (GUI) on
the computer to control data communication and conduct the
experiment.

2.2. Experiment Setups
2.2.1. Motion Recognition
The first experiment (Exp 1) conducted was the motion
recognition experiment. Seven healthy participants were
recruited for the experiment. All of the participants provided
written and informed consent. The experiment was approved
by the Local Ethics Committee of Peking University. The
demographic information of the subjects is shown in Table 1.
In this table, FL represents the forearm length (measured arm),
which is the length between the stylion radiale and the radiale
(elbow joint) with the arm sagging naturally. The abbreviation
FC was used for forearm circumference which was measured
from the most prominent part of the forearm. Before each
subject took part in the experiment, a sensing front-end was
customized based on the shape of the forearm. The sensing band
was worn on the most prominent part of the measured forearm,
which was about two thirds of the total forearm length from
the distal end. The length of the sensing band was built based
on the FL of each subject, the distance of the gap was 2 cm,
and the width was 7 cm. Before the experiments, the subjects
wore their customized sensing bands on the outside of their
clothes and adjusted the bandage based on their own feelings. In
the experiment, the subjects sat in the chair according to their
own comfort (as shown in the left side of Figure 2). They were
instructed to perform nine types of motion, including relax (R),
wrist flexion/extension (WF/WE), wrist pronation/supination
(WP/WS), wrist radius/ulna deviation (RD/UD), fist (F) and
palm (P). When in the relaxed state, the subjects were asked to
keep their hand in the neutral position and totally relaxed (with
the palm being almost vertical to the ground). For each motion
pattern except relax, five trials of the measurement were carried
out. In each trial, the subject started from the relaxed state (R)
and performed the corresponding motion to their maximum
extent following the instructions. After maintaining the motion
for a few seconds (about 10 s), the subject returned to the relaxed
state and remained still for a further 5 s. The data from the first
few seconds and the last few seconds of each trial were recorded
as relax (R). The capacitance signals (six channels in total) and
the IMU on the back of the palm were simultaneously sampled
at 100 Hz and stored in the computer. After the experiment, nine
motion patterns (R, WF, WE, WP, WS, RD, UD, P and F) with 16
transitions (R↔WF, R↔WE, R↔WP, R↔WS, R↔RD, R↔UD,
R↔P, and R↔F) were investigated.
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FIGURE 1 | The sensing principle of the capacitive sensing system. The sensing front-end was placed onto the forearm of the human body. As shown in the figure,

the sensing front-end was a C-shaped band which encircled the arm. The bandage was applied to the gap in the band to adjust the tightness. The electrodes were

fixed on the inner surface of the band, an expansion of this can be seen on the right side of the figure. There were layers of cloth between the electrode and the

human body. Using this configuration, the electrode, cloth and human body formed an equivalent capacitor.

TABLE 1 | Detailed information for seven healthy subjects (S1–S7).

Weight (kg) Height (cm) Measured arm FL (cm) FC (cm)

S1 75 181 R 24 25

S2 64 177 R 23 23

S3 65 165 R 21 25

S4 90 180 R 24 25

S5 78 183 R 27 25

S6 85 185 R 27 26

S7 65 166 R 24 26

FIGURE 2 | Experimental setup (left) and placement of the capacitive sensing band on human body (right). The communication between the circuits and the

computer was accomplished through the serial port. The capacitive signal sampling circuit was fixed inside a specifically designed metal box for electromagnetic

shielding, shown as the blue box in the figure. During the experiment, the subject sat in front of the screen and performed the motion tasks following instructions. The

experimenter conducted the experiment (not shown in the figure). The IMU board was pasted on the back of the measured hand to record the Eular angles. The figure

shows subject 2 (S2), the subject gave written informed consent for the publication of this image.

2.2.2. Experiments With External Disturbances
Re-wearing the sensing band: In addition to the motion
recognition experiment, we tested the system performance with

external disturbances. The aim of the experiment (Exp 2) was to
test the recognition performance when re-wearing the sensing
band. In this experiment, one subject was employed. The male
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subject was 23 years old, had a height of 181 cm, weighed 76
kg, and had a FL of 24 cm and FC of 25 cm. The sensing band
was reshaped onto his right forearm. There were two experiment
sessions. In each session, the subject performed the motion tasks
according to the protocol of Exp 1. The two experiment sessions
were measured on two different days. Before the experiment in
each session, the subject was asked to wear his sensing band based
on his own comfort.

Different postures in relax: In upper-limb motion
recognition, postures of the arm also exerted an influence
on the recognition performance (Khushaba et al., 2016). In this
study, nine motion patterns were investigated, including six
wrist joint motions, two gestures and relax. We carried out an
experiment (Exp 3) on one male subject with varying wrist angles
during the relaxed state (R). The subject was 29 years old, had a
height of 181 cm, weighed 76 kg, and had a FL of 24 cm and a FC
of 25 cm. The measured arm was the right forearm. The motion
patterns were the same as that of Exp 1. During relax, the subject
was asked to place his hand with a random tilt angle to the
directions of the flexion/extension/pronation/supination/ulna
deviation/radius deviation. The motion range of each trial was
chosen based on his own thoughts and was below his maximum
extent. The experiment setups were the same as Exp 1.

Accumulated training test: During on-line recognition, new
data can also be added into the training data set. We therefore
initially tested the performance with accumulated training. In
this experiment (Exp4), one male subject was recruited. The
subject was 23 years old, had a height of 185 cm, weighed 85
kg, had a FL of 27 cm and a FC of 26 cm. His right forearm was
measured. Themotion tasks wereWF,WE,WP,WS, RD, UD, P, F,
and R. In each trial, the experiment protocol was the same as that
of Exp 1. After five trials of themeasurement, the recorded signals
were regulated and trained with the QDA classifier. With the
classifier model, the new data from the sixth trial went through
on-line recognition. The data for each new trial were also stored
with all the previously measured data as the training data set and
trained for a new classifier model. The accumulatively trained
model was used to recognize the data of the next trial. In the
experiment, we measured 15 trials for all of the motion patterns.

2.3. Recognition Methods
2.3.1. Data Preprocessing
The capacitance signals reflected the muscle shape changes
during motion. As shown in Figure 3, the absolute capacitance
values changed between several pFs. Using power spectrum
analysis, there were high frequency noises in the raw capacitance
signals. We used a 4-order Butterworth low-band-pass filter
to remove the noise. The cut-off frequency was 5 Hz. The
filtered signals clearly reflected the characteristics of the different
motions. In this study, we designed a machine learning based
method for discrete motion recognition. The filtered capacitance
signals had to go through the data segmentation procedure.
We used sliding windows to segment the data. In the method,
a fixed-length window slid from the beginning to the end of
the capacitance signals. The features were calculated on each
window. The upper-limb motions investigated in this study
involved the wrist joint motions of 3-DOF and two basic hand

gestures. As shown in Figure 3, the signals were non-periodic,
and the absolute values were correlated with the motion pattern
itself. In the initial attempts, we selected four time-domain
features that could characterize the capacitance signals. The
features were AVE(x), STD(x), TAN(x) and MAX(x), in which x

was the data of each sliding window of one channel. AVE(x) was
the average value, STD(x) was the standard deviation, MAX(x)
was the maximum value, and TAN(x)=[x(end)-x(1)]/WinLen,
represented when WinLen was the length of the sliding window,
x(end) and x(1) were the last and the first value of the sliding
window, respectively. The feature calculation was repeated on
all of the signal channels (six in total). The features of all the
channels were serially connected as a feature vector for the
subsequent analysis.

2.3.2. Automatic Labeling
The purpose of the automatic labeling was to automatically label
the experiment data to corresponding motion patterns. In each
experiment trial, the subject started with holding the relax (R)
position for a few seconds and performed the instructed motion
patterns. After continuing the motion pattern for about 10 s,
the subject moved back to the relaxed state. Therefore, in each
trial there were two motion transitions. We used a supervised
learning method in which the classes (i.e. motion patterns) of
the samples (feature vectors calculated from capacitance signals)
had to be labeled as actual classes during the training procedure.
Compared with manually labeling the experiment data, the
automatic labeling method could increase the efficiency of the
experiments.

The signals of an IMU were used as an input into the
automatic labeling algorithm. As shown in Figure 2, we placed
an IMU circuit on the back of the palm of each subject. The
IMU board integrated a gyroscope and an accelerometer. The
3-axis Eular angles (pitch, roll and yaw) were the output of
the IMU circuit and were input into the following algorithm.
The algorithm worked off-line after each experimental trial was
finished. During the experiment for each subject, 3-axis Eular
angles of the palm were recorded, as shown in the top plot of the
Figure 4A. There were three main procedures in the algorithm,
these were signal regulation (Procedure 1), extremum value
calculation (Procedure 2) and threshold detection (Procedure 3).
The goal of the method was to correctly identify the boundaries
(L1, L2, L3, L4) between relax (R) and the corresponding motion
pattern. As shown in the bottom plots of Figure 4, L1 and L2
indicated the time points that the motion transited from R to
the corresponding motion patterns, with L1 being the initiation
and L2 the termination. L3 and L4 indicated the motion switched
from the corresponding motion pattern to R, with L3 being the
initiation and L4 the termination.

Procedure1: In this procedure, we regulated the raw IMU
signals to make them change in the same direction. If the absolute
values decreased when the subjects transited from R to the target
motion, the values of the channel would be flipped, based on the
average value of the trial. We then summed up the 3-axis flipped
signals and obtained the regulated IMU signal (as shown in the
middle plot of Figure 4A).
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FIGURE 3 | Raw capacitance signals of S6. In the subfigures, each column represents one signal channel, while each row represents one motion pattern. The blue

lines are the filtered capacitance signals. The black vertical lines denote the motion transition periods. The vertical axis represents the absolute capacitance signals.

The signals of all of the trials were plotted in the same sub-figure. The horizontal axis represents the normalized time.

Procedure2: In this procedure, we extracted the slope
information of the regulated IMU signal and calculated the
positions of the two-extremum values. There were two situations
in this procedure. In the first situation, for most of the motion
patterns investigated in this study, the slope of the regulated IMU
signal during the two motion transitions was obviously larger
than the other parts (as shown in the bottom plot of Figure 4A).
The two maximum values were calculated from the slope of the
regulated IMU signal (denoted by S). The extremum values were
calculated through the 2nd-order differentials. If d(i) > 0 and
d(i + 1) < 0, then i would be one maximum value, where d(i)
was the i − th point of differentials of S. In the second situation,
the changes in the Eular angles were not as obvious for motion
patterns such as palm (P) and fist (F). Themaximum values of the
samemotion transition periodmay not be as unique (as shown in
the bottom plot of Figure 4B). We designed an iterative method
to calculate the positions of the extremum values. Firstly, all of

the candidates of the maximal extremum values were calculated
using the 2nd-order differentials (mentioned above) and were
sorted by descending order. The sorted positions were expressed
asMj , with j denoting the j − thmaximum values. Secondly, we
defined a duration threshold (Duration) to determine whether
the extremum values were noises. The logic was expressed by
Algorithm1, where P1 and P2 were positions of the twomaximum
values for the two transition periods.

Procedure3: In this procedure, L1, L2, L3, and L4 were
identified by threshold detection. The threshold was extracted
from the slope of the regulated IMU signal (S), and it was set to be
the standard deviation of the middle 2 s of the trial, in which the
motion was static. The values that went across the threshold were
regarded as the candidates. To finally determine the boundaries,
the points that were closest to the positions of the maximum
values (P1 and P2 calculated from Procedure2) were selected as
the boundaries (as shown in the bottom plots of Figure 4).
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FIGURE 4 | Automatic labeling based on IMU signals. (A) shows the IMU signals of the first trial of wrist pronation, and (B) shows those of the first trial of fist (F). In

each subfigure, the top plot is the raw IMU signals with 3-axis Eular angles, the middle plot is the regulated IMU signals, and the bottom plot is the slope of the

regulated IMU signals and the automatic labels (red circles). In the figures, L1, L2, L3 and L4 denote the automatically calculated labels. Data were collected from S1.

Algorithm 1

Input: Duration,Mj

Output: P1, P2

1: P1 = M1

2: while |M1 −Mj| < Duration do

3: j = j+ 1

4: return j
5: P2 = Mj

2.3.3. Recognition
In this study, the supervised learning method was used for
motion recognition. Firstly, the feature vectors were input
into the classifier for training. After the model was fitted, the
tested features were used to evaluate the performance. We
used the quadratic discriminant analysis (QDA) method as the
classifier. In QDA, the data distribution in the feature space
was assumed to be a multivariate Gaussian distribution for
each motion pattern (class). A mean vector and a covariance
matrix were trained for each pattern based on the training
data. In our previous studies (Zheng et al., 2014; Zheng
and Wang, 2017), QDA was proved to be effective for the
processing of capacitance signals with a proper computational
load.

2.4. Evaluation Methods
In this study, N-fold cross-validation (LOOCV) was used to
evaluate the recognition method. In LOOCV, the data of one
fold served as the testing set, while the rest data were used for
training. The procedure was repeated for N times until all the
data were used for the testing set. In this study, we measured
five trials of data for each upper-limb motion pattern. N was
therefore set to be five. The recognition decision could be made
on each sliding window. The recognition accuracy (RA) was

defined as:

RA =
Ncorrect

Ntotal
× 100% (1)

in which Ncorrect was the number of correct motion recognition
decisions and Ntotal was the total number of testing data.
As mentioned above, with automatic labeling method,
there were four boundaries in each trial, i.e., L1, L2, L3
and L4. The data between L1 and L2 and between L3
and L4 were motion transition periods. Therefore, the
decisions of the periods were not calculated in RA. To
evaluate different upper-limb motion pattern , we used
confusion matrix to illustrate the recognition performance of
certain motion patterns. The confusion matrix was defined
as:

C =









c11 c12 ... c1M
c21 c22 ... c2M
... ... ... ...
cM1 cM2 ... cMM









(2)

where each element is defined
as:

cij =
nij

n̄i•
× 100%. (3)

nij is the number of testing data in class (motion pattern) i
recognized as class j and n̄i• is the total number of testing
data in class i. A higher value of cij (i 6= j) denotes that
it is easier for class i to be misclassified as class j. Therefore,
higher values on the diagonal indicates better recognition
results. M is the number of classes to be calculated. There
was difference of testing data sizes among the motion patterns.
To investigate the average recognition accuracy across all
the motion patterns RAc, we calculated the average value

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zheng et al. Motion Recognition With Capacitive Sensing

of the trace of the confusion matrix, which was expressed
as:

RAc =
1

M

M
∑

i = 1

cii. (4)

cii was the value of the diagonal in the confusion
matrix.

In addition to the recognition accuracy, we investigated the
delay of the recognition system during motion transitions. In
each trial of Exp 1, L1 and L3 were regarded as the time
points that initiated the motion transitions (Ti), while L2 and L4
were the termination of the transitions (Tt). We calculated the
difference between the recognized time points (Tr) of transitions
and the actual time points (labeled ones). The time points were
referred to as Tr , followed by ≥10 successive correct recognition
decisions for the upcoming motion pattern. We named the
differences as the prediction time (PT1 and PT2), which were
expressed as PT1 = Tr − Ti and PT2 = Tr − Tt . Positive
values indicated the recognized transitions lagged behind the
actual ones, while negative values indicated advanced decisions.

2.5. Confounding Factors
2.5.1. Sliding Window Length
Large sliding windows can extract more motion information but
lead to longer latency. The influence of the sliding window length
on recognition performance was evaluated. The window lengths
from 50 ms to 300 ms with a 50ms interval were investigated. For
each window length, the average recognition accuracies across
the subjects were calculated with a 5-fold LOOCV. To evaluate
the statistical significance, one-way repeated measure analysis
of variance (ANOVA) was used, and the significance value was
0.05 (α = 0.05). In the one-way repeated measure ANOVA,
the independent factor was a sliding window length and the
dependent factor was the average recognition accuracy.

2.5.2. Training Data Size
We evaluated the influence of the training data size on the
recognition accuracy. In each subject experiment there were five
trials.We used cross validation (CV) to evaluate the performance.
We calculated the recognition accuracy with 5-fold LOOCV,
3:2 CV and 2:3 CV. The 5-fold LOOCV was the same as that
mentioned above. In 3:2 CV, data from three of the trials was used
for training and the remaining two trials for testing. In 2:3 CV,
data from two of the trials were used for training and three trials
for testing. The procedure was repeated until all the combinations
were calculated. The average results across the combinations were
regarded as the recognition accuracy. The sliding window length
was used with the window selected in the procedure of the sliding
window length.

2.5.3. Motion Pattern
We evaluated the influence of the motion patterns on recognition
accuracy. Four combinations of motion patterns were taken into
consideration. Combination 1: all of the nine motions were
calculated (8 Motions + R for short). Combination 2: eight
motions were calculated with the data of R removed (8 Motions
for short). Combination 3: seven motion patterns were calculated

with P and F removed (Wrist motions + R). Combination 4:
seven motion patterns were calculated with RD and UD removed
(6 Motions + R). Combination 5: five motion patterns were
calculated including WF, WE, WP, WS, and R. The recognition
accuracies of Combination 1 were compared with the other three
combinations. A pair t-test was conducted for analysis of the
recognition accuracies. The significance value was 0.05 (α =

0.05).

2.5.4. External Disturbances
For Exp 2, we used two cross validation (CV) methods to
evaluate the recognition accuracy. In the 1:1 CV, the data of
one experimental session was used for training and the other
for testing. The procedure was repeated two times and averaged.
The second method was 6:4 CV. In this method, data of one
session plus one trial of the other session were used for training.
The rest of the data from the session was used for testing. The
procedure was repeated 10 times until all the combinations were
tested. For Exp 3, recognition accuracy of the 5-fold LOOCV was
investigated. For Exp 4, after 5 trials of measurement, the data
of the new trial was on-line recognized. The QDA model was
accumulatively trained with all of the previously measured data.
As we measured 15 trials for nine motion patterns, there were 10
groups of recognition accuracies in total.

3. RESULTS

3.1. Sliding Window Length and Training
Data Size
The average recognition accuracies (mean ± std) across the
subjects with different sliding window lengths (from 50 to 300
ms) were 92.30 ± 4.54%, 92.32 ± 4.53%, 92.27 ± 4.57%, 92.14
± 4.63%, 92.05 ± 4.67%, and 92.03 ± 4.66%. The highest
recognition accuracy occurred at the 100 ms window length.
The accuracies began to decrease with the increase of window
length after 100 ms. We conducted one-way repeated measure
ANOVA to test the influence of the sliding window length on the
recognition accuracy. Mauchly’s Test of Sphericity indicated that
the assumption of sphericity had been violated, χ

2
(14)

= 49.303,

p < 0.0005, and therefore, a Greenhouse-Geisser correction was
used. There was a significant effect of sliding window length on
average recognition accuracies, F(1.556, 9.337) = 7.172, p = 0.017.
We therefore chose 100-ms window length for the subsequent
analysis.

The results of the training data size were calculated with
different CV folds and a sliding window length of 100 ms. The
average recognition accuracies decreased to 81.01 ± 9.72% and
60.89 ± 12.76% for 3:2 and 2:3 CV, respectively. We therefore
used the 5-fold LOOCV for the subsequent evaluation.

3.2. Overall Recognition Accuracy
The overall recognition accuracy is shown in Figure 5. Nine
motions were measured on seven subjects. The sliding window
length was 100ms, and four time-domain features were selected
for the feature set (as mentioned in section 2.3). The classifier was
QDA, and 5-fold LOOCV was used to evaluate the performance.
The average recognition accuracies (averaged across the diagonal
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FIGURE 5 | The confusion matrices for seven subjects. Each matrix represents the results of one subject, from S1 to S7, respectively. The matrix with the title AVE is

the averaged results across the subjects. In the matrix, the darker color represents a higher value. All of the recognition accuracies and the mis-classification error

rates are marked in the corresponding positions of the matrices.

of the confusion matrix) for each subject were 86.18, 86.16, 92.10,
94.16, 94.78, 97.85, and 95.04% from S1 to S7, respectively. By
comparing the recognition accuracy in each confusion matrix,
most of the errors were mis-classified as R. In the average results
(using the confusion matrix with the title AVE in Figure 5), RD
produced the lowest recognition accuracy (77.33%). During the
experiments, the motion range of RD was much smaller than
the other motions, and the signal changes were also small with
respect to the relaxed state. Apart from RD, the system also
produced lower recognition accuracies in UD, P, and F than the
other motion patterns.

3.3. Prediction Time of Motion Transitions
The prediction time of the system on motion transition
recognition is shown in Tables 2, 3. In the tables, AVE_t was the
average prediction time across themotion transitions, and AVE_s
was the average prediction time across the subjects. The average
PT1 across the subjects and the motion transitions was 480.29
ms and the average PT2 was -253.05 ms. The system produced

around a 480-ms delay to the initiation of the transition, while
it could successfully recognize the upcoming motion pattern
at around 253 ms before the transition finished. The motion
transitions took place between R and the corresponding motion
patterns. The transitions can be categorized into two types, these
are: Type 1: R → corresponding motion pattern; and Type 2:
corresponding motion pattern→ R. For the two transition types,
the average PT1s were 346.67 ms and 613.89 ms for Type 1 and
Type 2, respectively. The average PT2s were -333.32 ms and -
172.79 ms for Type1 and Type2, respectively. We conducted a
pair t-test (α = 0.05) to compare the difference in the prediction
times between the two types of transitions. The values of PT1 and
PT2 for all the subjects were used. t(111) = −5.892, p < 0.0005.
The results showed that the transition type had a significant effect
on the prediction time.

3.4. Motion Patterns
In this study, nine motions (including relax) were investigated.
We found that the recognition accuracies were influenced by the
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TABLE 2 | PT1 of the motion transitions (ms).

R→WF R→WE R→WP R→WS R→RD R→UD R→P R→F WF→R WE→R WP→R WS→R RD→R UD→R P→R F→R AVE_t

S1 372 318 390 356 296 268 212 284 408 642 468 580 330 728 738 850 452.50

S2 618 336 260 290 372 350 368 210 248 602 490 764 300 208 208 954 411.13

S3 268 184 288 288 1492 258 154 228 794 840 686 724 118 578 774 810 530.25

S4 202 222 238 298 794 228 594 212 774 496 420 648 522 578 534 648 463.00

S5 232 422 292 506 292 254 228 192 824 562 684 756 262 596 934 886 495.13

S6 716 330 248 552 228 252 134 298 706 724 826 720 700 854 1120 912 582.50

S7 438 332 492 364 598 380 228 158 546 344 360 656 262 400 658 624 427.50

AVE_s 406.57 306.29 315.43 379.14 581.71 284.29 274.00 226.00 614.29 601.43 562.00 692.57 356.29 563.14 709.43 812.00 480.29

TABLE 3 | PT2 of the motion transitions (ms).

R→WF R→WE R→WP R→WS R→RD R→UD R→P R→F WF→R WE→R WP→R WS→R RD→R UD→R P→R F→R AVE_t

S1 -404 -386 -256 -284 -498 -708 -574 -456 -580 -350 -286 -376 -428 -298 -294 26 -384.50

S2 -182 -298 -324 -288 -222 -376 -518 -510 -466 -266 -194 -162 -404 -570 -708 -104 -349.50

S3 -372 -384 -254 -220 832 -358 -396 -462 -64 98 76 20 -962 -278 78 100 -159.13

S4 -302 -196 -126 -322 138 -480 -18 -588 -46 44 -38 -4 -460 -230 -104 44 -168.00

S5 -462 -358 -268 -246 -326 -436 -408 -776 50 -194 10 14 -602 -74 220 -36 -243.25

S6 -184 -360 -308 -80 -444 -484 -594 -480 -86 -82 150 10 -192 184 102 -50 -181.13

S7 -240 -454 -264 -332 -172 -312 -440 -446 -260 -542 -384 18 -480 -296 64 -34 -285.88

AVE_s -306.57 -348.00 -257.14 -253.14 -98.86 -450.57 -421.14 -531.14 -207.43 -184.57 -95.14 -68.57 -504.00 -223.14 -91.71 -7.71 -253.05

FIGURE 6 | The recognition errors with different combinations of motion patterns. The bar charts were mean±std across seven subjects. The result of each

combination was shown in different color, as shown in the legend. The asterisks indicate statistical significance. The signal asterisk indicates that p < 0.05, while the

double asterisks indicate p < 0.01.

motion types (as shown in Figure 6). The average recognition
accuracy across the subjects of all the motion patterns used was
92.32 ± 4.53%. The highest recognition accuracy occurred when
the data for R was removed. The accuracy was 99.98 ± 0.04%.
For the rest of the three combinations, the accuracies were 94.51
± 4.48%, 95.54 ± 2.19%, and 98.7 ± 1.94% for Combination 3,
Combination 4 and Combination 5, respectively. We conducted
a pair t-test to evaluate the influence of the motion patterns. The

recognition accuracy of “8 Motions + R” was paired with that of
the other four combinations. For the pair of “8 Motions+ R” and
“8 Motions,” t(6) = −4.456, p = 0.004. For the pair of “8 Motions
+ R” and “Wrist motions + R,” t(6) = −1.822, p = 0.118. For
the pair of “8 Motions + R” and “6 Motions + R,” t(6) = −2.29,
p = 0.062. For the pair of “8 Motions + R” and “4 Motions + R,”
t(6) = −3.665, p = 0.011. Statistical significance of the motion
patterns on recognition accuracies was found when the data of
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R were removed (Combination 2) and only the data of WF, WE,
WP, WS, and R were recognized (Combination 5).

3.5. Results With External Disturbances
The external disturbances investigated in this study seriously
affected the recognition performances. For the results of Exp
2 (re-wearing of the sensing band inter-day), the recognition
accuracies were 30.9% (1:1 CV) and 67.0% (6:4 CV). For the
results of Exp 3 (different postures in relax), although trained
with different postures in R, the recognition accuracy was
still low (59.7% across nine motions). With R excluded, the
average recognition accuracy increased to 94.8%. For Exp 4
(accumulated training test), we measured 15 trials of data for
each motion pattern. The QDA model was trained after five
trials of the experiment and the accumulated training and testing
procedure was carried out from the sixth trial. The average
recognition accuracies from the sixth trial to the 15th trial
were: 23.01, 44.37, 63.98, 87.58, 98.89, 67.60, 96.50, 84.61, 93.28,
and 99.64%. The recognition accuracies rapidly increased from
the beginning to 98.89% (tenth trial). After the tenth trial,
the low recognition accuracy also occurred in the 11th trial
(67.60%). When we compared the detailed results, most of the
errors were mis-recognized as R. For Exp 4, we investigated
the computational cost of the recognition system. As mentioned
above, we calculated four features for each signal channel. With
the QDA classifier, nine 24× 24 matrices and nine 24× 1 vectors
were trained with the sample data. There were three procedures
for training, these were signal preprocessing, feature calculation
and QDA model training. The training time was determined by
the size of the training data set. We ran the training procedure
ten times to show the worst case scenario (15 trials of data for
training) for this study. The algorithms were implemented with
MATLAB2016b on a computer with a CPU of Inter(R) Core(TM)
i7-6500U (2.5 GHz frequency) and a RAM of 7.89 G. The average
times were 17.54, 61.58, and 3.44 s for signal preprocessing,
feature calculation and QDA model training, respectively.

4. DISCUSSION AND CONCLUSION

In this study, we proved the feasibility of noncontact capacitive
sensing for human upper-limb motion recognition. One obvious
merit of the capacitive sensing method over sEMG sensing
methods was that it produced accurate motion recognition
results with the metal electrodes not being in contact with
human skin. During the experiment, the sensing front-ends were
worn on the outside of the subjects clothes, which relieved the
difficulty of configuration before the measurements were taken.
In the capacitive sensing system of this study, an equivalent plate
capacitor was made up of the metal electrode (fixed on the inner
surface of the sensing band), the human body and the cloth
between them. The muscle deformations caused a change in the
thickness of the cloth. According to the basic equations for the
plate capacitor, if there are pressures between the human body
and the sensing band, the capacitance signals will be positively
correlated to the pressure of that spot within a proper range.
However, as the capacitance signal changes were determined by
the distance between the human body and the metal electrodes,

not just the pressure, measuring the capacitance signals can
obtain more sensitive information than only pressure signals
(Honda et al., 2007).

Compared with the existing sEMG-based studies on
upper-limb motion recognition, the recognition performances
produced by noncontact capacitive sensing were at the same
level. The first important performance was the recognition
accuracy. Due to the difference in the motivation and processing
methods, it is difficult to directly compare the recognition
accuracy. One confounding factor accepted in many studies
(Atzori et al., 2015, 2016) is the number of classes (motion
patterns) to be analyzed. In our study, the average recognition
accuracy was 92.32% with nine motion patterns. The accuracy
increased to 95.54% with seven motion patterns and 98.70% with
five motion patterns. According to a recent study (Atzori et al.,
2016), the sEMG-based studies reached about 90–95% accuracy
with 4–12 classes. The study suggested that the recognition
accuracy of the noncontact capacitive sensing method was at
the same level as that of sEMG-based studies. In addition to
the recognition accuracy, we also investigated the prediction
time of the transition periods. The average time delay to the
initiation of the transitions, from R to the corresponding motion
patterns was 346.67 ms. In the sEMG-based study performed
by (Smith et al., 2011), the controller delay was referred to as
the sliding window length and the authors reported that the
optimal window length was between 150–250ms. A more recent
study (Wurth and Hargrove, 2014) reported a reaction time
of around 600 ms on four forearm motion tasks. The time
was defined as the duration between the target appearance to
the user and the first successful recognition decision. Another
important factor was the computational load during recognition
which also affected the time response of the system. In this
study, the dimension of the feature vector was 1× 24. In on-line
recognition, multiplications of around 1.25 × 106 were needed
before one decision was made. The computational load was
acceptable for the current micro control units (MCU). With
the MCU (STM32F767VGT6, STMicroelectronics, Co., Ltd.,)
we used in the measurement system, the calculation could
be finished within 6 ms. It enabled the system to update the
recognition decisions in each sample interval (10ms).

On the other hand, the limitations of the study should
be noted. First, the capacitance signals were sensitive to the
postures of the wrist joint during the relax position, which
decreased the recognition accuracies. Although trained with
varying postures (Exp 3), the recognition accuracy was still
low (59.7%). The recognition accuracy increased to 94.8%
when the R data was removed. The results suggested that the
reduction of the recognition accuracy was caused by the feature
distribution of the capacitance signals. The significant influence
of the orientation of the forearm on recognition accuracies was
also reported in sEMG-based studies (Khushaba et al., 2016).
Secondly, current setups of the noncontact capacitive sensing
approach cannot produce a stable recognition performance
against the disturbances of re-wearing the sensing front-ends on
different days. The cross validations between the two experiment
sessions (with the re-wearing procedure between them) showed
low recognition accuracies. Thirdly, the on-line recognition with
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accumulated training was initially tested in this study. It showed
a trend that when more data was used in the training set, a
higher recognition accuracy would be obtained. However, factors
including the feature distribution changes over time, individual
differences on multiple subjects, and so forth still need to be
addressed. Future systematic studies are required for on-line
recognition with the capacitive sensing method.

Despite the limitations, the capacitive sensing method is
still a promising tool that is worth exploring. Future studies
will be carried out in the following areas. Firstly, continuous
estimation of upper-limb motion information with noncontact
capacitive sensing will be explored. The recognition results in
this study has proven the feasibility of the noncontact capacitive
sensing approach on human upper-limb motion sensing. The
results from varying the position during the relaxed state (Exp
3) also suggested that the capacitance signals are correlated
to wrist joint positions. In continuous motion estimation, the
physical significance (such as the correlations of the capacitance
signals to the pressures and to the muscle morphological
parameters) of the capacitance signals will be studied. Secondly,
more extensive experiments will be carried out on real-time

recognition. Methods that fuse capacitive sensing methods with
other sensors (inertial sensors and force sensors) will be designed
and evaluated. Robotic control based on capacitance signals will
also be carried out. Thirdly, new materials will be used in the
manufacture of the sensing front-ends. A soft elastic sensing
band will be studied to cope with the individual differences in
upper-limb shapes. We plan to address the problems of the re-
wearing procedure on different days by using a softer material,
to make the sensing front-end more stable on the human upper
limb.
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