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The activity of many biological and cognitive systems is not poised deep within a

specific regime of activity. Instead, they operate near points of critical behavior located

at the boundary between different phases. Certain authors link some of the properties

of criticality with the ability of living systems to generate autonomous or intrinsically

generated behavior. However, these claims remain highly speculative. In this paper,

we intend to explore the connection between criticality and autonomous behavior

through conceptual models that show how embodied agents may adapt themselves

toward critical points. We propose to exploit maximum entropy models and their

formal descriptions of indicators of criticality to present a learning model that drives

generic agents toward critical points. Specifically, we derive such a learning model in an

embodied Boltzmann machine by implementing a gradient ascent rule that maximizes

the heat capacity of the controller in order to make the network maximally sensitive to

external perturbations. We test and corroborate the model by implementing an embodied

agent in the Mountain Car benchmark test, which is controlled by a Boltzmann machine

that adjusts its weights according to the model. We find that the neural controller

reaches an apparent point of criticality, which coincides with a transition point of the

behavior of the agent between two regimes of behavior, maximizing the synergistic

information between its sensors and the combination of hidden and motor neurons.

Finally, we discuss the potential of our learning model to answer questions about the

connection between criticality and the capabilities of living systems to autonomously

generate intrinsic constraints on their behavior. We suggest that these “critical agents”

are able to acquire flexible behavioral patterns that are useful for the development of

successful strategies in different contexts.

Keywords: criticality, learning, boltzmann machine, Ising model, heat capacity

1. INTRODUCTION

In the field of cognitive science, the interest in developing models of intrinsic motivation is
unquestionable. The practical uses are related to the possibility of having more autonomous
artifacts. In recent years, a significant number of models and cognitive architectures have
been developed in the literature, pursuing various methods to get better intrinsically motivated
machines. However, most of these studies follow ad hoc rules or present many conceptual
weaknesses (Oudeyer and Kaplan, 2009). Therefore, it is a major research challenge to find new
methods for designing intrinsically motivated systems.
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One of the most intriguing intuitions in this field is the
one that considers that the best way for machines to acquire
skills completely on their own (and useful to pursue goals) is
by exploiting the sensorimotor patterns that they create during
their body-environment interactions. In this sense, they would be
able to quickly construct more complex behaviors using a second
level of learning from these patterns, so that they could combine
typical random exploration with goal-free exploration, handling
useful information obtained during their interactions with the
world.

This insight, initially proposed in Juarrero (1999), is the
complete opposite of the one that exists in artificial intelligence.
The traditional way of dealing with notions such as motivations,
autonomous goals, or intentional behavior implicitly assumes a
reductionist perspective about how the mind causes behaviors.
Engineers basically program “desires” within the artifacts as
specific instructions that are extrinsic to them. Considering
the fact that the actions generated from prior mental entities
imply the existence of a “homuncular assumption” underlying
every action. In this sense, intentional behavior and its causes
could be better understood as a dynamical process that takes
shape through the interactions between organisms and their
environments (Buhrmann et al., 2013). Thus, intentionality could
be described from a complex dynamical perspective that raises
profound implications in relation to the notions of causation and
intention in human action. This changes the view of how the
intentions that “one feels” exist as independent mental events,
proposing instead a new perspective where they result from the
self-organizing tendencies in the human-environment system.
Intentions to act, from this perspective, are best characterized
as dynamical processes that are embedded in the physical and
social history of a cognitive agent and are constrained to the set of
limited alternatives within the self-organized space that is defined
for particular agent-environment interactions. This idea has been
followed by several authors and has been exploited in the field of
autonomous robotics. In particular, some progresses have been
made in measuring how a robot could manage the information it
receives by applying information theory metrics (Der et al., 2008;
Martius et al., 2013; Wissner-Gross and Freer, 2013).

In this paper, we are interested in developing models with
intrinsic motivations that are generated through the exploitation
of the information in sensorimotor patterns. In particular, we
are interested in designing an embodied agent that generates
complex behavior by adapting to operate near critical points.
Criticality is a ubiquitous phenomenon in nature, both in
physical and biological systems. It refers to a distinctive set of
properties that are found at the boundary that separates regimes
with different dynamics: the transition between an ordered phase
and a disordered phase. Some of these properties include (i)
power-law divergences of some quantities that are described
by critical exponents and (ii) maximal sensitivity to external
perturbations (Salinas, 2001a,b). With regard to our interests,
it is known that self-organizing properties that allow us to
characterize “modes of critical behavior” are related to different
functional domains of cognitive activity (Van Orden et al., 2003,
2012; Dixon et al., 2012). This leads us to think that criticality
may be functionally useful in problem solving.

Most of the systems near critical points exhibit a wide range
of time scales in their dynamics, being maximally responsive
to certain external signals. For a system facing a problem,
critical states leave open different courses of action (configured
within a global state that is acutely context sensitive) that can
be simultaneously constrained in only one course of action in
an effective way. Hoffmann and Payton (2018) showed that
this type of self-organizing critical processes can even be used
to solve optimization problems with many local minima, in
a more efficient way when compared to other random search
methods.

It has also been conjectured that systems that show intentional
behavior should self-organize into critical states (Van Orden and
Holden, 2002; Van Orden et al., 2003), but, nevertheless, the
connection between self-organized criticality and intrinsically
generated behavior remains highly speculative. In general,
although evidence of criticality has been found using different
experimental methods, the connection between these indicators
and the properties of mechanistic models of critical activity
is thin (Wagenmakers et al., 2012). This makes it difficult to
assess the connection between criticality and other cognitive
phenomena, other than at the level of pure analogy. Interestingly,
in the past few years, large sets of biological data have allowed
the characterization–using maximum entropy models–of how
the behaviors of different biological systems (e.g., networks
of neurons, antibody segments, or flocks of birds) are poised
near a critical point within their parameter space (Mora and
Bialek, 2011; Tkacik et al., 2015). This has been a great step
toward the development of deeper theoretical principles that
lie behind the behavior of biological and cognitive systems.
However, going beyond the importance of these models in
explaining the emergence of criticality in specific experimental
data, we propose a complementary perspective to address the
development of “conceptual models” to explain how organisms
are driven toward critical behavior at a more abstract level and
what the behavioral correlates are when the agent adapts to
critical points.

With all of the above information, in this paper, we seek
to develop a mechanism that combines these two concepts:
criticality and models of intrinsic motivation. In the study of
cognitive processes, criticality always appears to be entangled
with other features of adaptive behavior (e.g., perception,
prediction, learning) in agents that interact with complex
environments. Here, we use conceptual modeling that allows us
to study this relationship in a neutral and abstract way.

Therefore, the aim of this paper is to propose a model that is
able to drive synthetic agents toward critical points to potentially
clarify what the contribution of criticality is in different contexts.
Instead of making assumptions about the underlying dynamics
of the elements of the agent’s controller or a fine-tuning of the
parameters of the system, our approach makes use of concepts
from statistical mechanics to exploit macroscopic variables that
drive the system to transition points between qualitatively
different regimes of behavior. Some authors have studied the
computational capabilities of recurrent neural networks that
operate near the edge of chaos, that is, the transition from ordered
to chaotic dynamics (Bertschinger and Natschläger, 2004). Here,
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we propose a conceptual model (a Boltzmann machine) that
allows us to exploit its statistical properties to derive a learning
rule to drive an embodied agent toward critical points of its
parameter space. Maximum entropy models have the advantage
of providing a formal description of the statistical distribution
of the system, which we will exploit to characterize the indices
of criticality and to derive rules that maximize these indices.
An abstract mechanism that drives the agents to near critical
points in different scenarios may help in understanding what
the contributions of criticality “by itself ” are or how criticality
is related to other phenomena.

The paper is organized as follows. First, we introduce a
Boltzmann machine as the simplest statistical mechanics model
of pairwise correlations between elements of a network and, then,
derive a learning model for driving the system toward critical
points. The model exploits the heat capacity of the system, a
macroscopic measure that works as a proxy for criticality (when
the heat capacity diverges, a Boltzmann machine is at a critical
point). Consequently, we test our learning model in an embodied
agent that controls a Mountain Car (a classic reinforcement
learning test bed) by finding that it is able to drive both the neural
controller and the behavior of the agent to a transition point in
the parameter space between qualitatively different behavioral
regimes. Finally, we discuss the possible applications of our
model to contribute to the development of deeper principles that
govern biological and cognitive systems.

2. DRIVING A NEURAL CONTROLLER
TOWARD A CRITICAL POINT

We propose a learning model for adjusting the parameters of a
Boltzmann machine in order to drive the system near states of
criticality. We take advantage of the fact that, at critical points,
derivatives of thermodynamic quantities such as entropy may
diverge (Mora and Bialek, 2011). An example of this is heat
capacity, whose divergence is a sufficient condition for criticality
(though not a necessary one). As discussed below, the heat
capacity of a system is related to the derivative of the entropy
of the system. If the heat capacity of the system diverges at a
critical point, this means that the system is maximally sensitive
to external perturbations, since very small perturbations push
the system into order or disorder. We hypothesize that actively
seeking to poise a system near a critical point may constitute
an intrinsic mechanism to adapt to different environments and
generate complex behaviors in different contexts.

We define our model as a stochastic artificial neural network
(i.e., a Boltzmann machine) (Ackley et al., 1985) that follows a
maximum entropy distribution:

P(σ ) =
1

Z
exp

[

β
∑

i

hiσi +
∑

i<j

Jijσiσj

]

(1)

where the distribution follows an exponential family P(σ ) =
1
Z e
−βE(σ ), Z is a normalization value, the energy E(σ ) of each

state is defined in terms of the bias hi and symmetrical couplings

Jij between pairs of units, and β = 1/(TkB), kB is Boltzmann’s
constant and T is the temperature of the system.

Throughout the paper, we simulate the network that updates
its state by applying Glauber dynamics to all the units within the
network in a sequential random order at each simulation step.
Glauber dynamics define the probability of the next state of a
neuron i as

P(σ ′i |σ ) =
1

1+ e−2βσ ′iHi
, Hi = hi +

∑

j

Jijσj (2)

where s is the state of the system at time t and s′ is the state at time
t + 1.

In order to know if the system is near a critical point, typically,
the divergence of certain quantities is measured. One of these
quantities is the heat capacity of the system, which is generally
defined as

C(σ ) = −β
∂S(σ )

∂β
= β2

(

〈E(σ )2〉 − 〈E(σ )〉2
)

(3)

where S(σ ) = −
∑

σ P(σ ) log(P(σ )), and the heat capacity is
defined in terms of the global energy of the system E(σ ) =
−

∑

i hiσi−
∑

i<j Jijσiσj, making it impractical to derive learning

rules based on local information. This will be important for
applying our learning rule to an embodied agent, where the
energy of the states of the environment is not directly accessible
to the system. Instead, we can find a more tractable indicator
of criticality by defining the heat capacity of the system from
the conditional entropy of each neuron that depicts transitions
between states. We define conditional entropy of a neuron i as

S(σ ′i |σ ) = −
∑

σ

P(σ )
∑

σ ′i

log(P(σ ′i |σ )) · P(σ ′i |σ )

= −
∑

σ

P(σ )
(

βHi tanh(βHi)− log(2 cosh(βHi)
)

(4)

Thus, we define the heat capacity associated with the conditional
entropy of neuron i as

C(σ ′i |σ ) = −β
∂S(σ ′i |σ )

∂β
=

∑

σ

P(σ )

(

H2
i β

2

cosh(βHi)2

−β
(

E(σ )− 〈E(σ )〉)(βHi tanh(βHi)− log(2 cosh(βHi)
)

)

(5)

which still contains terms that are dependent on the global energy
of the system E(σ ). In order to derive a learning rule based only
on local information, we can introduce individual temperatures
Ti for each neuron, which are associated with an individual
inverse temperature βi. In other words, instead of modifying the
temperature of the system as a whole, we introduce the possibility
of modifying “individual temperatures.” We use these quantities
to derive a simplified version of the heat capacity that can be
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FIGURE 1 | Values of C(σ ′
i
|σ ) (solid line) and C′ (dashed line) for an 8 × 8

lattice Ising model at different temperatures. We find that both quantities show

a peak around the critical temperature at β = log(1+
√
2)/2 (dotted line).

computed as an average of a function that is defined only by local
variables,

C′i = −βi
∂S(σ ′|σ )

∂βi
=

∑

σ

P(σ )

(

H2
i β

2
i

cosh(βiHi)2
+ βi (σiHi

−〈σiHi〉)
(

βiHi tanh(βiHi)− log(2 cosh(βiHi)
)

)

(6)

and we compute the total approximated heat capacity as C′ =
∑

i C
′
i. Note that the properties ofC

′ andC(σ ′i |σ ) can be different,
since we are neglecting the terms that reflect global interactions,
retaining only local interactions. However, we argue that the
simplified C′ may be a suitable indicator for driving a system to a
critical point.

As an example, we can compute the values of C(σ ′i |σ ) and C′

for the well known Ising model in a rectangular lattice, for which
the critical temperature is known to be at T = 2kB/ log(1 +√
2) for an infinite-size system. Note that, since C and C′ can

be defined as an average of the terms by multiplying P(σ ) in
equations, in practice it can be approximated by running a system
for several steps and computing the mean value of these terms.
We simulate an 8 × 8 periodic square lattice during 100,000
simulation steps. As seen in Figure 1, both C(σ ′i |σ ) and C′ have a
peak around the critical temperature, although the peak is more
pronounced in the case of C(σ ′i |σ ), showing how, at least in some
cases, a peak in C′ can be an indicator of proximity to a critical
point.

An earlier study (Aguilera and Bedia, 2018) used indirect
indicators as the distribution of correlations of the system to find
points of divergence of the heat capacity. Here, we try to directly
maximize the heat capacity by obtaining the relation between
parameter changes and the heat capacity. We define a learning
rule that adjusts the values of hi and Jij by using a gradient ascent
rule that maximizes the value of the simplified heat capacity C′,
with the intention of driving the system to critical points that are
depicted by a singularity of the heat capacity.

In order to simplify the notation, we define the quantities

Fi = Hi tanh(Hi) − log(2 cosh(Hi), Gi =
H2
i

cosh(Hi)2
+ σiHiFi, and

Ki = 〈σiHi〉. Using the derivatives of the probability distribution
in Equation 1, ∂P(σ )

∂hi
= (σi − 〈σi〉)P(σ ) and ∂P(σ )

∂Jij
= (σiσj −

〈σiσj〉)P(σ ), and the derivatives of Fi, Gi, and Ki, we derive the

learning rule that ascends the gradient ofC′i and drives the system
toward critical points as

∂C′i
∂hi
= 〈

∂Gi

∂hi
〉 + 〈σiGi〉 − 〈σi〉〈Gi〉 −

∂Ki

∂hi
〈Fi〉 − Ki(〈

∂Fi

∂hi
〉

+〈σiFi〉 − 〈σi〉〈Fi〉)
∂C′i
∂Jij
= 〈

∂Gi

∂Jij
〉 + 〈σiσjGi〉 − 〈σiσj〉〈Gi〉 −

∂Ki

∂Jij
〈Fi〉 − Ki(〈

∂Fi

∂Jij
〉

+〈σiσjFi〉 − 〈σiσj〉〈Fi〉) (7)

where

∂Fi

∂hi
=

Hi

cosh(Hi)2
,

∂Fi

∂Jij
=

Hiσj

cosh(Hi)2
,

∂Gi

∂hi
=

2Hi(1−Hi tanh(Hi))

cosh(Hi)2
+ σiFi + σiHi

∂Fi

∂hi
,

∂Gi

∂Jij
=

2Hiσj(1−Hi tanh(Hi))

cosh(Hi)2
+ σiσjFi + σiHi

∂Fi

∂Jij
,

∂Ki

∂hi
= 〈σi〉 + 〈σ 2

i Hi〉 − 〈σi〉Ki

∂Ki

∂Jij
= 〈σiσj〉 + 〈σ 2

i σjHi〉 − 〈σiσj〉Ki (8)

In the following section, we use this learning rule to drive the
neural controller of an embodied agent toward a critical point. In
order to do so, we need to take into account the environment
at the time of learning. If we consider two interconnected
Boltzmann machines (one being the neural controller and the
other being the environment), Equation 7 holds perfectly, and
we could design an adaptive controller that applies the rule to
the values of i and j that correspond to units of the neural
controller. In our case, the environment is not composed
of units of a Boltzmann machine. Instead, we connect the
Boltzmann machine of the neural controller to an environment
that is defined as a classic example from reinforcement learning.
Therefore, our learning rule will be valid as long as the statistics of
the environment can be approximated by a Boltzmann machine
with a sufficiently large number of units. Luckily, Boltzmann
machines are universal approximators (Montúfar, 2014).

3. EMBODIED MODEL: MOUNTAIN CAR

In order to evaluate the behavior of the proposed learning model,
we tested it in the Mountain Car environment (Moore, 1990).
This environment is a classical test bed in reinforcement learning
that depicts an underpowered car that must drive up a steep hill
(Figure 2). Since gravity is stronger than the car’s engine, the
vehicle must learn to leverage its potential energy by driving to
the opposite hill before the car is able to make it to the goal at
the top. We simulated the environment by using the OpenAI
Gym toolkit (Brockman et al., 2016). In this environment, the
horizontal position x of the car is limited to an interval of
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FIGURE 2 | (A) Mountain Car environment test from the OpenAI Gym toolkit. An underpowered car that must drive up a steep hill by balancing itself to gain

momentum. (B) Success rates of the Mountain Car environment with different kinds of sensors.

[−1.5π/3, 0.5π/3], and the vertical position of the car is defined
as y = 0.5(1 + sin(3x)). The velocity in the horizontal axis is
updated at each time step as vx(t + 1) = vx(t) + 0.001a −
0.0025 cos(3x), where a is the action of the motor, which can be
either −1, 0, or 1. The maximum velocity of the car is limited to
an absolute value of vmax.

We defined the neural controller of the car as a fully-
connected Boltzmann machine (without hidden neurons) that
contains six sensors and six neurons. Initially, we tested different
options of input: position, speed, and acceleration. For each
input, the value is separated into its horizontal and vertical
components, each input is discretized as arrays of three bits. Each
sensor unit is assigned a value of 1 if its corresponding bit is
active and a value of −1 otherwise. Two of the car neurons are
connected to the motors, defined as a = 1 if both neurons are
active, a = −1 if both neurons are inactive, and a = 0 otherwise.

In order to find critical points with maximum heat capacity,
we propose a learning rule intended to climb the gradient defined
by Equation 7 at a rate µ. Also, in order to avoid overfitting,
we add an L2 regularization term λ penalizing large values of hi
and Jij the parameters of the system. Finally, the learning rule is
described as:

hi ← hi + µ
∂C′i
∂hi
− λhi

Jij ← Jij + µ
∂C′i
∂Jij
− λJij

(9)

where µ = 0.02, λ = 0.002, and
∂C′i
∂hi

and
∂C′i
∂Jij

are the result of

Equation 7. The rule is applied to 20 different agents. Agents are
initialized in the starting random position of the environment.
Hidden and motor neurons are randomized, and the initial
parameters h and J are sampled from a uniform random interval
[−0.01, 0.01]. The agents are simulated for 1, 000 trials of 5, 000
steps, applying Equation 7 at the end of the trial for computing

the values of
∂C′i
∂hi

and
∂C′i
∂Jij

. Note that the agents are not reset at

the end of the trial. After training, the values of hi and Jij are kept
fixed for the rest of the analysis described in the paper.

We tested different types of inputs and values of vmax. The
inputs tested were 1) the horizontal position and vertical position

of the car I = {x, y}, 2) the horizontal speed and vertical speed of
the car I = {vx, vy}, and 3) the horizontal acceleration and vertical
acceleration of the car I = {ax, ay}. In all cases, horizontal and
vertical values are discretized as arrays of three bits and are fed to
the six sensor units. We tested seven values of vmax in the range
[0.04, 0.07] for the three types of inputs and the 20 agents, and we
measured the success of the agents as their ability to reach the top
of the agents in a trial of 50,000 steps after training (Figure 2B).
In order to select a case where the task is feasible but not too easy,
we chose I = {ax, ay} and vmax = 0.045 for the experiments
described below. The experimental results correspond to the 20
agents trained for this configuration.

4. RESULTS

In this section, we analyze the neural controller and the
behavioral patterns of the agents in relation to the possibilities
of their parameter space. In order to compare the agents with
other behavioral possibilities, we explore the parameter space
by changing the parameter β . Since the temperature of the
model has no physical significance, modifying the value of β is
equivalent to a global rescaling of the parameters of the agent
that transforms hi ← β · hj and Jij ← β · Jij, thus, exploring
the parameter space along one specific direction. For 21 values of
β that are logarithmically distributed in the interval [10−1, 101],
we compute 20 agents for a trial of 106 simulation steps, after
starting the agents from a random initial position (i.e., x in an
interval [0.4, 0.6]) and a run of 104 simulation steps to avoid the
initial transient. We use the results of these simulations for all the
calculations in this section.

4.1. Signatures of Criticality in the Neural
Controller
Firstly, we test whether the trained agents show signatures of
critical behavior, looking for a Zipf ’s law in the probability
distribution of the states of the neural controller and a peak
in its heat capacity. In order to test that the criticality arises
from the agent’s configuration and not just from dynamics of the
task, we compared the results of the trained agents with the 20
agents trained for maximizing the success in the task. In order
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to do so, we trained agents with a similar network by using a
microbial genetic algorithm (Harvey, 2009) that maximizes the
number of times an agent is able to climb the mountain during
the 5,000 steps (reseting the agent after each climb). By counting
the occurrence of each possible state of the 12 neurons of the
agents (including sensor, hidden, and motor neurons), we can
compute the probability distribution of the Boltzmann machine
P(σ ).

We observed that all agents approximately follow a Zipf ’s
law at β = 1 (Figure 3A) for almost three decades, which is
a good agreement for the limited size of the system (note that
the possible states of the system are limited to 212 states). All
trained agents showed a similar distribution close to Zipf ’s law.
In comparison, agents maximized to solve the task failed to show
a distribution that is consistent with Zipf ’s law.

Secondly, given that another indicator of critical points is
the divergence of the heat capacity of the system, we estimated
the heat capacity of hidden and motor neurons. From the data
generated from the simulation, we can estimate C(σ ′i |σ ) by
computing entropy S(σ ′i |σ ) from Equation 4. We use cubic
interpolation for estimating the function of S(σ ′i |σ ) with respect
to β and for estimating its derivative to compute C(σ ′i |σ ). We
observe in Figure 3B that the heat capacity peaks at around
the operating temperature (i.e., the temperature used during
training, β = 1). This, together with the Zipf ’s distribution,
suggests that the system is operating near a critical point. In
comparison, agents maximized to solve the task fail to present
a clear peak of the heat capacity at a specific temperature,
indicating that no significant transitions are taking place.

4.2. Behavioral Transitions in the
Parameter Space
What is implied when the agent drives its neural controller
near a critical point? It should be remarked here that our
agents are given no explicit goal. Instead, they only tend toward
behavioral patterns that maximize the heat capacity of their
neurons, independently of whether this behavior enables them
to reach the top of the mountain or not (in fact, only 12 of the
20 trained agents are able to climb to the top of the mountain).
In relation to this, we explore the effects of transiting the critical
point by observing the different behavioral modes of the agent in
the parameter space. The behavior of the car can be described just
by the position x and the speed v at different moments of time.

In Figures 4A–C, we can observe the behavior of the car for
β = {0.25, 1, 4} for a specific agent, for an interval of 4, 000
simulation steps, after an initial run of 10, 000 steps to remove the
initial transient. In this particular example, there is an asymmetry
in the behavior of the car, which only climbs the left mountain.
This asymmetry is provoked by the sign of the offset value hi of
motor units. If we compute the median and quartile values of y at
the trial for each value of β (Figure 4D) we observe that, slightly
below the operating temperature, there is a transition from not
being able to reach the top of the mountains to those that are able
to do so. Moreover, in all agents that are able to reach the top
of the mountain, the results are similar. Out of the agents that
are not able to reach the top, five display similar transitions in

the median value of height y and the median absolute velocity v
of the car. The remaining three agents fail to show a transition
in median values of basic behavioral variables, although this
does not preclude the possibility of another type of less evident
behavioral transition.

What has changed in this behavioral transition? We are
interested in knowing how these behavioral regimes are
qualitatively different.We explore this issue by using information
theory to characterize how different variables of the agent interact
at different points of the parameter space. Specifically, we are
interested in the relation between sensor, hidden, and motor
neurons, which determines the behavior of the agent in its
environment.

Are agents merely reactive to sensory inputs or is there a more
complex interplay between sensor, hidden, and motor units? In
order to answer this, we characterize the interaction between
variables by using measures from information theory. First, we
measured the values of entropy and mutual information between
S(X) and I(X;Y), where

S(X) = −
∑

x∈X
P(x) log(P(x)) (10)

I(X;Y) =
∑

x∈X

∑

y∈Y
P(x, y) log(

P(x, y)

P(x)P(y)
) (11)

and X and Y are random discrete variables. Entropy S(X)
measures the amount of information of each variable, whereas
mutual information I(X,Y) measures the amount of information
that overlaps between two variables due to their mutual
dependence. In Figures 5A,B, we observe the entropy and
mutual information for the variables S, H, and M for different
values of β .

By defining S, H, and M as the joint distributions of
sensor, hidden, and motor neurons, respectively, we analyze how
information is distributed among the three groups of variables.
We observe how the entropy of the hidden neuron H decreases
significantly in the transition around β = 1. Similarly, all
values of mutual information, especially between motors M and
sensors S, increase around β = 1. This suggests a transition
from independent variables showing unconstrained information
to highly correlated variables with high mutual dependencies.

We suspect that it is just in this transition point where
an agent can maximize its interactive capacities, combining
integration and segregation between variables. To check this, we
use information decomposition (Timme et al., 2014) to compute
synergies between variables X1 and X2 with respect to a third one
Y , defined as

9(Y;X1,X2) = I(Y;X1,X2)− I(Y;X1)− I(Y;X2)+ Imin(Y;X1,X2)

(12)
where Imin(Y;X1,X2), defined in Williams and Beer (2011), is
the redundant information that X1 and X2 share about Y . The
resulting synergy 9(Y;X1,X2) is able to capture information
about Y that is not available from eitherX1 andX2 alone but from
their interaction (the classical example is the relation between
the output and inputs of an XOR gate). In other words, the
intention is to measure howmuch information emerges from the
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FIGURE 3 | Signatures of criticality. (A) Ranked probability distribution function of the neural controllers of trained agents (solid line) vs. a distribution that follows a

Zipf’s law, (i.e., P(σ ) = 1/rank, dotted line) and the distribution of an agent optimized to solve the task (dashed line). We observe a good agreement between the

model and the Zipf’s law, suggesting critical scaling. (B) Heat capacity C(σ ′
i
|σ ) vs. β of trained agents (solid line), computed using Equation 4 for calculating the

entropy and deriving a cubic interpolation of the entropy function with respect to β. The heat capacity of trained agents is compared with the heat capacity of agents

tuned to maximize the ability to climb the mountain (dashed lines) The gray areas represent the error bars of the 20 agents for each value of β. The vertical dotted line

specifies the value of β = 1 where agents operate during training.

FIGURE 4 | Transition in behavioral regime of the agent. We show the behavior of an agent for an interval of 4, 000 steps with values of β of 0.25 (A), 1 (B), and 4 (C),

depicting the trajectories of the car in its phase space (x vs. v, top) and the evolution of the values of x (bottom). We observe that β = 1 is a transition point between

two modes of behavior. (D) Median vertical position of the car ỹ (solid line) and its upper and lower quartiles (gray area). We observe a transition near β = 1 where the

agent reaches the top of the mountain. Similar transitions are identified in 12 of the 20 simulated agents. The vertical dotted line specifies the value of β = 1 where the

agents operate during training.
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FIGURE 5 | Values of (A) entropy, (B) mutual information, and (C) synergistic information for variables S, H, and M. The gray areas represent the error bars of the 20

agents for each value of β. The vertical dotted line specifies the value of β = 1 where the agents operate during training.

interaction between variables instead of being contained in the
variables alone.

As we observe in Figure 5C, the synergy 9(S;H,M) between
motor and hidden neurons about sensor information and the
synergy 9(M; S,H) between sensor and hidden neurons about
sensor information peak at values of β lower than 1, while the
synergies of motor neurons with sensor neurons, 9(H; S,M)
peak at larger values of β . Since the environment of the agent
is completely deterministic, it seems adequate that larger values
of β (i.e., less random behavior) more effectively transmit
information from sensors to motors, while maximum interaction
between hidden and other neurons occurs at a point with a
lower β .

In conclusion, we propose a learning model that is designed
to drive an embodied agent close to critical points in its
parameter space, poising both the neural controller and the
behavioral patterns of the agent near a transition point between
qualitatively different regimes of operation. In the case of the
neural controller, we find that the Boltzmann machine shows
its peak capacity at a point around β = 1. Moreover, by
measuring entropy and mutual information between groups of
neural units, we find that the agent is poised at a transition
point between a regime with high entropy but low coordination
between units and a regime of high mutual entropy but low
entropy. By analyzing the synergistic interaction between sensor,
hidden, and motor units of the system, we find that interactions
between groups of neural units are maximized for the operating
temperature (although synergistic measures need to be taken
into account carefully, since there is an ongoing debate around
their formulation, Olbrich et al., 2015). We find a transition
at a point slightly under β = 1, which also coincides with a
point of transition between behavioral regimes in 12 of the 20
agents. These results suggest that the system may be exploiting
a critical point for maximizing the interaction between the
components of its neural controller, its sensory input, and its
motor behavior.

5. DISCUSSION

The rule described here has some similarities and differences
with respect to other work onmaximizing information quantities
in neural networks. Several measures have recently been

introduced and have been demonstrated to be viable and
powerful tools to express principles for driving autonomous
systems. They are measures that are independent of the specific
realization and domain invariants. We highlight, for example,
predictive information measures (also called excess entropy or
effective measure complexity) or methods that maximize entropy
reinforcement learning (optimizing policies that maximize both
the expected return and the expected entropy of the policy).
With respect to the above mentioned measures, our idea differs
in some aspects. On the one hand, predictive information is
applied at the behavioral level of the whole system (Martius
et al., 2013), whereas the learning rule that we propose is defined
at the neuronal level (similar to local learning principles like
the Hebb rule). Although our rule acts on the internal level, it
is linked to information theoretic quantities on the behavioral
level. On the other hand, the basic goal in conventional
reinforcement learning algorithms is to maximize the expected
sum of rewards combined with amore general maximum entropy
objective (Ziebart et al., 2008). By contrast, in our method
there is no reward that is maximized. Though such algorithms
have been successfully used in a number of approaches, our
method does not seek to optimize future rewards or maximize
behaviors.

At this point, we can reflect on our original questions.
Why do biological systems behave near criticality? What are
the benefits for a biological system to move toward this
special type of point? Also, more importantly, how can our
learning model help answer these questions? By reviewing the
relevant literature, one finds that interpretations of criticality
are too speculative in general. For example, Beggs (2008)
hypothesizes that neural systems that operate at a critical point
can optimize information processing and its computational
power. Mora and Bialek (2011) discuss the experimental evidence
of criticality in a wide variety of systems and propose that
criticality could provide better defense mechanisms against
predators (in animals), gain selectivity in response to stimuli
(in auditory systems, or improved mechanisms to anticipate
attacks (in immunological systems). Nevertheless, the reasoning
that gives support to these hypotheses is based more on
generic suggestions than on scientifically rigorous statements.
More detailed analyses are needed to test speculations, and
our opinion is that conceptual models of embodied criticality
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in natural systems can usefully demonstrate how transition
points in the parameter space of behavioral regimes can be
found and exploited to obtain functional advantages such as
those mentioned above. For this purpose, rather than citing
specific biological instances of critical phenomena, we used
an abstract framework for driving embodied agents to critical
points. Our model approaches a critical point as well but
remains at the disordered phase. Similar phenomena have been
observed in biological neural networks (Priesemann et al., 2014).
It has been proposed that information flow, generally, peaks
on the disordered side of critical phase transitions (Barnett
et al., 2013). More detailed studies of general mechanisms
that drive a system to criticality may help shed light on these
issues.

From the results obtained, what would be themain advantages
of using an abstract model to study criticality? On the one
hand, criticality generally appears to be entangled with other
capabilities that are developed by biological systems, and
interpretations about the advantages of criticality typically refer
to tangible benefits for the system (e.g., at an evolutionary
level, as the source of a new range of capabilities or better
mechanisms for surviving in open environments, etc.); it is
difficult to distinguish whether criticality is the cause or the
consequence of such effects. On the other hand, we believe that
the use of conceptual models such as those presented here allows
a more intriguing hypothesis to be tested. For example, our
general mechanism that drives an embodied neural controller
to criticality has the potential to capture the contribution of
criticality “by itself ” to the behavior of adaptive agents in different
scenarios, as well as the relationship between criticality and
other biological and cognitive phenomena. Furthermore, the
present model could be implemented in more complex embodied
setups, for example, involving specific tasks of adaptive behavior
that add environmental constraints (e.g., exploration, decision-
making, categorical perception) or biological requirements (e.g.,
an internal metabolism or other biological drives such as hunger
or thirst), and it could be used to observe how compliance with
these biological and cognitive requirements interplays with the
drive toward critical points in the neural controller of the agent.
We could, thus, explore how criticality can contribute to the
capabilities observed in natural organisms.

Finally, one of the most important conclusions we highlight
is that systems at critical points can solve problems for which
they were not programmed. This approach can be further linked
to the analysis of particular features in animal behavior that are
commonly interpreted without assuming a necessary pragmatic
perspective of analysis. For example, the role of “play” in humans
and other species. We observe certain similarities in the behavior
of the developed embodied agent and the notion of play. In
general, it is assumed that “solving a problem” is “being able
to find a solution.” In computational views of cognition, this
requires handling representations of the world between which
there is a configuration (the one in which the objective is reached)
that the systemmust find. On the contrary, “play” is precisely not

a problem requiring a solution. “Play” does not intend to solve a
specific problem. Over time, “play” self-structures processes that
are governed by the dialectics of expansion and contraction of
possibilities. Its freedom lies in the capability of players to acquire
and create novel nonarbitrary constraints during the processes
involved (Di Paolo et al., 2010). We think that this may be a good
metaphor for how the Mountain Car agent reaches the problem
solution.

There are also other studies in the field of “play” that
relate creativity, intrinsic motivations, and maximum entropy
measurements. For example, Schmidhuber (2010) addresses the
problem of how to model aspects of human player behavior
that are not explained by either rational or goal-driven decision
making behavior and without extrinsic reinforcement such as
game score. The author focuses on analyzing the relationship
between intrinsic motivation and creativity based on maximizing
intrinsic reward for the active creation and the discovery of
surprising patterns. In other exploratory studies (Guckelsberger
et al., 2017), it is found that metrics such as empowerment
can be useful to create specific models of intrinsic motivation
in game design. Empowerment (Klyubin et al., 2005, 2008)
quantifies the capacity of the agent to influence the world in a
way that this influence is perceivable via the agent’s sensors. These
types of analyses (Roohi et al., 2018) identify the correlations
between empowerment and challenge, attention, or engagement,
by hypothesizing that maximum entropy measurements can also
be used to create support tools for game designers.

In conclusion, we present, here, a model that does not address
any particular task but solves a problem. It is interesting to note
that it seems to exhibit intrinsic motivations but without being
externally imposed, since its behavior is reduced to exploiting
the criticality regime in which the system operates. Until now,
the traditional study of criticality in living systems has rested
on largely speculative grounds. The study of formal models
and the increasing amount of high quality data together with
advances in statistical mechanics models will make it possible to
link experimental evidence and data-driven models with general
conceptual models, paving the way for a rigorous exploration of
the governing that lie behind the behavior of biological organisms
in complex environments.
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