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Background: Kinematic and muscle patterns underlying hand grasps have been widely

investigated in the literature. However, the identification of a reduced set of motor

modules, generalizing across subjects and grasps, may be valuable for increasing the

knowledge of hand motor control, and provide methods to be exploited in prosthesis

control and hand rehabilitation.

Methods: Motor muscle synergies were extracted from a publicly available database

including 28 subjects, executing 20 hand grasps selected for daily-life activities. The

spatial synergies and temporal components were analyzed with a clustering algorithm to

characterize the patterns underlying hand-grasps.

Results: Motor synergies were successfully extracted on all 28 subjects. Clustering

orders ranging from 2 to 50 were tested. A subset of ten clusters, each one represented

by a spatial motor module, approximates the original dataset with a mean maximum error

of 5% on reconstructed modules; however, each spatial synergy might be employed with

different timing and recruited at different grasp stages. Two temporal activation patterns

are often recognized, corresponding to the grasp/hold phase, and to the pre-shaping

and release phase.

Conclusions: This paper presents one of the biggest analysis of muscle synergies

of hand grasps currently available. The results of 28 subjects performing 20 different

grasps suggest that a limited number of time dependent motor modules (shared among

subjects), correctly elicited by a control activation signal, may underlie the execution of

a large variety of hand grasps. However, spatial synergies are not strongly related to

specific motor functions but may be recruited at different stages, depending on subject

and grasp. This result can lead to applications in rehabilitation and assistive robotics.

Keywords: muscle synergies, centroids, synergies clustering, hand grasps, spatial synergies, temporal

components, NinaPro Database
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INTRODUCTION

The use of the hands is one of the most crucial capabilities
for daily activities. The loss of a hand can substantially reduce
the quality of life of a person, since it strongly affects physical

capabilities in performing activities of daily living (ADL) and
it represents a relevant social problem considering that people
with a major upper limb loss were ∼41,000 in USA in 2005. The
number of amputees is expected to double by 2050 (Atkins et al.,
1996; Ziegler-Graham et al., 2008).

Hand grasps are mainly composed of two main stages: the
reach-to-object and the grasp itself. The first phase is divided
into two sub-phases, consisting of the transport of the hand

done by the arm, whose motion law is characterized by a bell-
shaped velocity (Fan et al., 2006), and the hand pre-shaping,
required for adapting the hand to the object to grasp, which
occurs after ∼60–70% of the reaching phase (Hu et al., 2005).
The grasp phase is determined by several parameters, including
the force closure (force needed to close the hand around the
object and to achieve a stable grasp), grasp stability (the ability
to resist external forces), and grasp security (resistance to
slippery objects, which is depending on the configuration of the
grasp; Cutkosky, 1989; Cipriani et al., 2008). A third phase is
reported in some articles (Liarokapis et al., 2013) and represent
the release of the object; a fourth phase can be considered

too, involving the return of the arm and hand to the rest
position.

Hand grasps have been investigated mainly in the domain
of finger joint kinematics and past studies have developed
qualitative taxonomies to describe and cluster different types of
grasps (Cutkosky, 1989). The main distinction among grasps
was between power grasps and precision grasps but many other
features can be taken into account for grasp characterization,
such as the limb configuration for the task execution or the
geometry of the object to grasp.

Considering the complexity of hand control, involving a
remarkable number of degrees of freedom and redundancy, both
at the muscle and skeletal levels, many studies in the literature
applied feature extraction methods to identify a subset of the
original data for an accurate description of hand functioning,
even if reduced in dimensionality.

A recent study (Jarrassé et al., 2014) investigated a set of hand
grasps by considering a 15-degree-of-freedom (dof) Cyberglove.
The study used a Principal Component Analysis (PCA)-based
technique for the extraction of kinematic motor synergies and
showed that no more than 4 PCs are needed to explain ∼95%
of the total variation. The first and second PCs accounted for
about 90% of data variation, leading the author to suggest that
these two components might be enough to control (or even
mechanically design) an upper-limb prosthesis, even if pattern
refinement can be achieved by adding further PCs. In Patel
et al. (2017), kinematic synergies were extracted by using a
PCA-based algorithm. While the first PC accounts for more
than half of the total variation, the rest is distributed across
many PCs, indicating that a quite large set of motor modules is
needed to reconstruct the original kinematics. Seven synergies
were extracted in Thakur et al. (2008) for the explanation of

>90% of the total variance of a set of hand-grasps and hand
motions. A comprehensive study on hand grasps by Santello et al.
(1998) suggests that the modules that underlie the control of the
hand are basically two. However, the study also remarks that
the remaining variation, accounted for by further synergies, is
not due to noise but to motor control modules needed for fine
tuning.

The fact that a limited number of modules may account for
a large variety of grasps is thus commonly deduced from the
literature. A recent study by Prevete et al. (2018) investigated
the hypothesis of sparsity applied to kinematic synergies during
hand grasps. According to this study, sparsity might be found
both at the spatial synergy level (indicating that spatial modules
may incorporate only some joints or muscles) and in the
coordination of the synergies, in which only a reduced number
of overlapping modules contribute to the execution of an action.
A combination of the two conditions, called double sparsity
hypothesis, can happen as well. This concept fits well with
previous research on dimensionality reduction, with the addition
that sparsity could partially explain the different number of
synergies extracted in different studies (together with varying
study designs).

Despite the kinematic patterns being exploited more often for
hand analysis, some studies have investigated the dimensionality
reduction problem from the point of view of muscle synergies.
The muscle synergy approach is based on decomposition
algorithms that identify groups of co-activating muscles
(synergies) that are coordinated by time-varying activation
commands. The extracted patterns may be influenced by several
factors regarding sEMG, including fatigue, sweating, changes
in electrode or arm positioning (Farina et al., 2014), clinical
parameters of the subjects (e.g., level of the amputation, phantom
limb sensation intensity; Atzori et al., 2016), the BMI (Atzori
et al., 2014b), other anatomical characteristics of the subjects
(Farina et al., 2002) or training in using myoelectric prostheses
(Cipriani et al., 2011). Few studies addressed these effects
until now, and the effect on the resulting muscle synergies.
Considering upper limb synergies, Ortega et al. observed that
synergy structure was conserved with fatigue, but interestingly
synergy activation coefficients decreased on average by 24.5%
with fatigue development (Ortega-Auriol et al., 2018). In
Tagliabue et al. (2015) two-digit grasping is analyzed. A reduced
number of modules (2–3) is needed to explain the largest part
of the variation for each grasp and the correlation between
muscle and kinematic primitives is suggested, justifying synergy-
based analysis in both domains. Considering two arrays of
sEMG-electrodes, positioned distally and proximally on the
forearm, Castellini and van der Smagt (2013) found that the
combination of 3 muscle synergies could account for a set of 5
hand grasps, on both sets of the electrodes. The “main synergy”
represents a “global, indistinct” co-activation pattern, while the
other two synergies account for dorsal and ventral patterns,
respectively.

Overduin et al. (2008) used the time-varying muscle synergy
model to analyze a set of 25 grasps of twomonkeys and found that
three synergies could explain 71% of the total sEMG variation
for proximal muscles, 83% for the wrist and extrinsic hand
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muscles and 81% among intrinsic muscles. The first of the three
synergies was linked to the muscles involved in the reach phase
operated by proximal muscles and distal flexors, the second was
characterized by bimodal activation of distal muscles and the
third, more related to the transport of the object, featured by
proximal muscles and distal extensors.

The main challenge of using muscle synergies to analyze
hand grasps is represented by the impossibility to track all the
muscles involved in the grasps, as hand muscles are hard to
acquire due to their small size, which can easily produce cross-
talk, and due to encumbrance of probes/wires on the palm
of the hand that can prevent a physiological grasp execution.
Nevertheless, the reduction of the dimensionality is still a crucial
process for the comprehension of the patterns underlying hand
use and grasps. In fact, motor modules are considered to be the
basis of motor control organization at the neural level (Schmidt,
1975; d’Avella et al., 2006). Furthermore, once recognized,
the basic modules might be employed as references for the
study of motor control, to evaluate pathological conditions and
to control prosthetic devices. Dexterous, naturally controlled
surface electromyography (sSEMG) prostheses would better
allow amputees to perform personal needs such as eating or using
tools. Prosthetics companies and scientific research are advancing
toward this, but dexterous naturally controlled prosthetic hands
are not yet available, in the market as well as in scientific research
mainly due to control problems (Atzori and Muller, 2015)
related to robustness. Clinical parameters of the amputation
were demonstrated to affect control capabilities (Atzori et al.,
2016). In order to foster the improvement of control systems for
sEMG hand prostheses, a publicly available dataset for robotic
hand prosthesis control (the Ninapro database1) was released in
2014 (Atzori et al., 2014a), and extended with several additional
datasets afterwards (Krasoulis et al., 2017; Pizzolato et al., 2017).
Currently, the database includes over 120 subjects (including
11 trans-radial amputees), repeating as naturally as possible up
to 53 hand movements with several acquisition setups ranging
in price from a few hundred to several thousand dollars. The
aim of Ninapro is to foster the improvement of the field by
allowing the development and test of advanced machine learning
methods. However, the path to natural control of dexterous
prosthetic hands can also be paved by the simplification of the
problem, for instance via the identification of a set of motor
primitives sufficient to control a comprehensive set of hand
grasps.

The application of muscle and postural hand synergies
to myoelectric hand prostheses development and low level
control was recently suggested in literature and tested in
specific settings, while high level control strategies are still not
extensively explored. The application of postural hand synergies
to hand prostheses development is particularly evident in the
development of the PISA/IIT Softhand, a robotic hand actuated
by a single motor (Catalano et al., 2014). The application of
postural hand synergies to low level control approaches can be
defined as controlling a dexterous robotic hand with few (usually
4) independent input signals that modulate some of the first

1Ninapro database: http://ninapro.hevs.ch

synergies (usually the first one-two) in the robotic hand, leading
the robotic hand to reproduce several hand grasps (Matrone et al.,
2010, 2012; Segil and Weir, 2013).

In the literature, there are several open points regarding hand
grasp synergies that can be investigated in more detail. Some
of the more refined studies, providing state-of-the-art methods,
involve a large variety of grasps but a limited number of subjects,
or map a reduced number of grasps compared to the ones that are
needed for daily life activities, lacking generalization of results.
Furthermore, a limited number of studies focuses on muscle
patterns rather than on hand kinematics. Lastly, most studies
focused especially on the spatial organization of motor modules,
while the temporal components were less analyzed.

Following the previous considerations, the aim of this study
is threefold. First, to provide a set of benchmark muscle hand
synergies extracted from the publicly available NinaPro database,
that includes a considerable number of subjects while repeating
a comprehensive number of hand grasps; second, to evaluate the
effects of the reduction of dimensionality of the dataset on the
accurateness in reconstructing the original dataset of synergies;
third, to characterize the spatial and temporal features of the
subjects included in the dataset.

MATERIALS AND METHODS

Acquisition Set-Up
The flow-chart of the study is portrayaed in (Figure 1). The
acquisition setup included 12 surface EMG (sEMG) electrodes
and a data glove. The sSEMG electrodes were a double differential
Delsys Trigno wireless system, measuring the myoelectric
signals at 2 kHz with a baseline noise inferior to 750 nV
RMS. The Trigno integrated a 3-axes accelerometer sampled
at 148Hz. Electrode positioning was performed with the aim
of combining precise anatomical positioning (DeLuca, 1997)
and a dense sampling approach (e.g., Fukuda et al., 2003).
Eight electrodes were equally spaced around the forearm
at the height of the radio-humeral joint. Four electrodes
were placed on the main activity spots, respectively, of the
flexor and the extensor digitorum superficialis, the biceps and
the triceps brachii, which were identified by palpation by
trained researchers by trained researchers (Figure 2). The data
glove (CyberGlove II, CyberGlove Systems LLC 2) allowed
to measure hand kinematics using 22-sensors. Considering
that the primary objective of this study was to characterize
the hand grasps rather than the dynamics of the reaching
phase at proximal level, the choice of the NinaPro database
is reasonable, since it includes recordings from extrinsic hand
muscles.

Participants
The data used in this experiment were from the publicly available
NinaPro database that currently includes 7 datasets of sEMG
and kinematic data from over 120 subjects (including 11 trans-
radial amputees), performing (or imagining to perform) up to 53
different hand movement (Atzori et al., 2016). The datasets used
for this study were from the second dataset (DB2), which includes
40 intact subjects. A 28-subject subset of the original dataset was
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FIGURE 1 | Study flowchart. *Twelve subjects were excluded from analysis because noise was found on at least one of the SEMG channels in some grasps. The

decomposition algorithm applied to extract synergies would be influenced, even in case of removal of the affected channels from the analysis. Consequently, 12

subjects were discarded.

FIGURE 2 | sEMG electrode placement: an array of 8 equally spaced

electrodes was worn at the forearm level (labeled f1-f8), two probes on finger

flexors and extensors, and on biceps caput longus and triceps caput medialis,

according to the protocol introduced in the Ninapro database (Atzori et al.,

2014a).

used for this study. The subjects include 19 males, 9 females;
24 right handed, 4 left handed; average age 29.64 with standard
deviation 3.1 years (data summarized inTable 1). Twelve subjects
were excluded from the analysis because the proper extraction
of synergies was prevented by noise of the sEMG channels. The
decomposition algorithm applied to extract synergies would have
been influenced, even in case of removal of the affected channels
from the analysis.

Experimental Protocol for Acquisition
This section briefly describes the acquisition protocol. For more
details about the protocol, please refer to Atzori et al. (2014a).

TABLE 1 | Summary of the demographic data of the involved subjects.

Subjects Gender Age Laterality

DEMOGRAPHIC DATA

N = 28 19M-9F 29.64 ± 3.1 24R-4L

During the experiment, the subjects were asked to sit at a
desktop with the arms relaxed on the table and to repeat a set
of movements with their right hand as naturally as possible.
The entire experiment included 49 movements plus rest, divided
into three exercises and extracted from the ADL literature, thus
including movements from categories, such as personal needs,
eating or use of tools (Smurr et al., 2008). In this work, we
consider only the set of hand grasps, i.e., the first 20 movements
of the second exercise (Figure 3). The subjects were asked to
repeat the movements represented in short films that were
shown on the screen of a laptop with their right hand and they
were asked to concentrate on mimicking the movements rather
than on exerting high forces. Each movement was repeated 6
times, with each repetition lasting 5 s and separated by the other
movements by 3 s of rest. The experiment was approved by the
Ethics Commission of the CantonValais (Switzerland) and before
data acquisition, the subjects were given a thorough written and
oral explanation of the experiment itself and were asked to sign
an informed consent.

Data Analysis: Synergies Extraction
The Data Analysis was fully performed with Matlab 2014a
with custom-developed software. First, kinematic recordings
(“restimulus” signal of the NinaPro database) were used to
separate movement phases. Data from 12 sEMG channels
were bidirectionally high-pass filtered at 50Hz (Butterworth
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FIGURE 3 | The 20 grasps considered in this study are shown. They provide a comprehensive mapping of the repertoire of hand grasps available to human subjects,

and are stored in the publicly available Ninapro Database.

filter, 7th order) to remove motion artifacts, rectified, Hilbert-
transformed (Matlab hilbert), low-pass filtered with a cut-off
frequency of 10Hz (Butterworth filter, 7th order) to remove
noise with mono-directional filtering. sEMG data from each
subject and each trial were pooled in single aggregated matrices
and synergies were extracted using the non-negative matrix
factorization (NMF) algorithm (Cheung et al., 2005; Tresch
et al., 2006). The NMF decomposes the sEMG matrix into
the product of two matrices, the first one representing time-
invariant, neurally coded synergies (wi), and the second one
representing time-variant activation commands for each synergy
(ci), as in Equation (1):

EMG(t) =
∑N

i=1
ciwi (1)

where, for each of the recorded muscles, sEMG(t) represents the
sEMG data at time t and N is the total number of extracted
synergies.

The order of the factorization r was chosen, increasing from
1 to 50 (to limit the dimensionality for synthesis). For each r, the
NMF algorithm was applied 1,000 times in order to avoid local
minima. The repetition accounting for the highest variance of the
signal was chosen as the representative of order r. The number of
synergies was chosen as the minimum r explaining at least 90%
of the variance of the signal (Clark et al., 2010). Further synergies
were added only if the total amount of variation was increased of
at least 5% for each further synergy.

Synergy Clustering
In the literature of motor synergies, standard analysis methods
may include the definition of clusters to group synergies

according to their spatial composition. The set of extracted
synergies can be clustered to obtain a limited number of spatial
patterns, each one represented by a centroid (mean spatial
synergy).

In this work, the extracted synergies were included into a
single cluster analysis. Grouping all the modules could lead
to complex matching between each spatial component and the
corresponding motor function (Scano et al., 2017). In fact, it
was reported in Roh et al. (2013) that synergies related to the
same motor function may split into two or more clusters. As
a consequence, the correspondence between the phases of the
grasps and the motor synergy recruitment is not always clearly
identifiable. In fact, in the majority of the cases, the synergy
prevailing in terms of magnitude of the temporal components is
the one characterizing the moment of the grasp hold. However, a
relevant number of subjects may show patterns more complex to
identify.

However, performing the clustering procedure on
the whole dataset allowed to provide a comprehensive
overview of all the modules involved in hand grasping
tasks. Furthermore, a comprehensive mapping of hand
grasps is proposed by considering the whole dataset for
analysis.

The cluster analysis was conducted using the k-means
clustering algorithm. The algorithm was applied to an aggregated
matrix containing the whole dataset of muscle synergies extracted
from all subjects. Each clustering order, ranging from 1
(minimum) to 50 (maximum), was tested by repeating the
algorithm 200 times and selecting the best solution for each
order according to the metrics described in the following
section.
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Selection of the Number of Clusters
The selection of the appropriate number of clusters (mean spatial
synergies, each one represented by a cluster centroid) was made
by pondering the following metrics (Bora et al., 2014):

1) The Mean Euclidean Distance (MED) of the population
from the reference centroids, indicating the quality of the
clustering, as a synthetic index for each clustering order. The
lower the Mean Euclidean Distance, the better elements fit
into their cluster.

2) When the k-means clustering procedure is applied, the
number of desired clusters N must be specified. Defining as
M the number of elements to be clustered (in this case, the
number of spatial synergies), N can range between 1 and the
total number of the clustered elements (1<=N<=M).
When N = 1, the clustering procedure classifies a population
within a single group: thus, the cluster solution 1 is (implicitly)
the mean of a population, and corresponds to the lowest
level of precision in approximating a population with a
clustering procedure. Following the previous considerations,
the Normalized Euclidean Distance (NED) was computed by
considering the cluster solution 1 as the source of maximum
clustering error, which was set to 1. Thus, the NED for each
clustering order i was computed as:

NED(i) =
MED(i)

MED(1)
(2)

3) The slope of the Normalized Euclidean Distance (NED’) is
NED derivative. NED indicates how the precision of the
cluster analysis increases when increasing the order of the
clustering.

Each of the previous three metrics can be considered for the
choice of the clustering order, by imposing a threshold on the
reconstruction accuracy.

Whatever metric is selected, the choice is driven by the
principle of using a parsimonious number of clusters for
synthesis power (the lowest possible number of clusters, given a
reasonable descriptive precision). The threshold selected by the
experimenters in this work was 5%. Consequently, the number of
clusters was selected as the minimum number needed to have the
NED < 0.05.

The hypothesis that justifies the use of cluster analysis is
that the dataset can be represented with a chosen number of
cluster centroids depending on the maximum error that the
experimenter is willing to accept. Depending on the application,
the tolerance can be increased or reduced, describing the original
dataset of motor modules with a specific level of precision (and a
choice of dimensionality).

Spatial and Temporal Components
Analysis
The characterization of the obtained mean spatial synergies was
furtherly specified by considering all the pairwise dot products
between their compositions. Each temporal component, initially
associated with its respective spatial synergy, was matched to
its relative centroid after cluster identification. Then, all the

temporal components were averaged to extract a mean temporal
component for each cluster, representing a mean activation of the
spatial synergy in time. Finally, the characterization of temporal
components was concluded by considering the correlations
between the mean temporal components.

Summary of Outcome Measures and
Statistics
Given the aims of the study (see Introduction): “First, to provide
a set of benchmark muscle hand synergies extracted from
publicly available data1 including a considerable number of
subjects that perform a comprehensive number of hand grasps;
second, to evaluate the effects of the reduction of dimensionality
of the dataset on the accurateness in reconstructing the
original dataset of synergies; third, to characterize the spatial
and temporal features of the sample of subjects included
in the dataset,” the following outcome measures were
defined:

Outcome 1: Definition of the complete dataset of extracted
muscle synergies of healthy subjects in freely executed grasps;
methods and statistics: NMF algorithm for factorization; 90%
of the VAF + minimum slope 0.05 for each further extracted
synergy.
Outcome 2:Definition of cluster centroids for muscle synergies
in freely executed grasps; methods and statistics: k-means
clustering; lowest normalized Euclidean distance to define the
number of centroids.
Outcome 3a: Characterization of the spatial composition
of the centroids; methods and statistics: dot products
between pairwise centroids to assess their difference in
composition.
Outcome 3b: Characterization of the temporal features of the
centroids;methods and statistics: Pearson correlations between
temporal components.

RESULTS

Extracted Synergies
The extracted synergy dataset is summarized in Figure 4

by portraying the mean spatial synergy compositions and
cumulated temporal component profiles. Synergies were grouped
within grasps, and matched according to the similarity of
their temporal components, computed with the Pearson’s
correlation coefficient. For compactness of the representation,
only the first two synergies of each extracted dataset were
portrayed (while, three modules were extracted in some
grasps).

K-Means Cluster Order Selection
The whole dataset of spatial synergies, which is composed
of 966 extracted modules, was clustered according to
the k-means algorithm, with a clustering order ranging
from 1 to 50. Figure 5 shows the graphs with the metrics
used for the choice of a reasonable number of clusters
as synthetic representation of the spatial synergies of the
dataset. Increasing the order of the clustering leads to a
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FIGURE 4 | The whole dataset of synergies extracted for each grasp is synthetically reported, coupled with the corresponding cumulated temporal components. For

each grasp (numbered 1–20 as in the order shown in Figure 2), the mean spatial synergies are reported. The mean spatial synergies are computed by averaging the

spatial synergies grouped by matching each subject’s spatial synergies according to the Pearson’s Correlation coefficient computed on the temporal components.

Only the first two modules are reported for each grasp (module 1, reported in blue, exploited during the grasp phase, and module 2, depicted in green, used mainly in

the pre-shaping and release phases). Mean spatial synergies are also coupled with the cumulated mean temporal components that modulate in time the mean spatial

synergies, plotted as percentage of the normalized duration of each movement.
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A

B

C

FIGURE 5 | Metrics for the selection of the correct number of clusters for the description of the dataset. Panel (A) describes the mean Euclidean distance between

the centroids identified with the k-means algorithm and the synergies that belong to that centroids. Increasing the number of clusters, the mean Euclidean error

decreases. Panel (B) reports the normalized error, considering the solution of order 1 as the maximum approximation error (when the dataset of spatial synergies is

approximated with its mean—SSm). Increasing the order of the clustering, the mean error is progressively reduced. Panel (C) shows the derivative of the error (slope),

indicating the entity of the reduction of the error in relation to the increase of the number of clusters. Right panels show a zoomed view of left panels. They show that,

by imposing a threshold of a maximum tolerable mean error, the solution corresponding to a lower number of clusters can be selected. In the present study, the

maximum normalized Euclidean error was reasonably set at 0.05*SSm, corresponding to a 10-cluster solution.

monotonic decrease of the NED. Thresholding the NED
(at 0.05, as explained in the methods), only 10 clusters are
needed to approximate the original dataset. It can also be
observed that a further increase of the order of the clustering
provides only slightly increased precision in describing the
dataset.

Clustering on Spatial Synergies and
Temporal Components Analysis
The results of the clustering procedure are shown in Figure 6.
The 10 identified centroids (mean spatial synergies) are portrayed
(composition coefficients), along with the number of synergies
of the original dataset that are addressed to each centroid,
expressed as percentage of the original dataset. It can be seen
that the extracted synergies are quite uniformly distributed
on the centroids, each one representing between 7 and 15%
of the original dataset of motor modules. Figure 7 depicts
a polar and histogram-based representation of the extracted
mean spatial synergies, along with the associated mean temporal
components. The temporal components are shown for each of
the spatial modules referring to each of the centroids, along
with their mean. Analysis of temporal components shows that
some centroids are found mostly in the central phase of the
grasp (e.g., centroid 3 and centroid 6), while others mainly in
the pre-shaping and release phases (e.g., centroid 1 and centroid

2). Following these results, in order to provide characterization
of the summarized groups of motor modules, the similarity of
mean spatial synergies and temporal components was assessed
as well. Figure 8 shows the similarity, expressed as the dot
product, among all the pairwise mean spatial synergies. It
can be seen that the mean spatial centroids have a pairwise
dot product ranging from 0.65 to 1, indicating that some
muscle groups are shared between several patterns. Similarly,
Figure 9 shows the correlation matrix between each temporal
component, expressing the temporal relation that links each
spatial synergy to the others. In this case, results show high
variability, and indicate that some mean temporal components
are very closely related to others (e.g., temporal components 5
and 6), while others are very different (e.g., temporal components
1 and 6). These results are critically analyzed in the following
paragraphs.

DISCUSSION

On the Extracted Synergies
An interesting result of this study is that, with the used method
for synergy extraction, a number of modules ranging from 1
to 3 is sufficient for reconstructing the majority of the original
sEMG in each grasp. As a consequence, a limited number
of patterns is needed to achieve a grasp, which is a relevant
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FIGURE 6 | The identified centroids (mean spatial synergies). Hypothesizing a desired maximum error of 0.05 (normalized in respect to the solution of order 1), a

solution of 10 clusters is found. Ten motor modules are thus enough to describe with good level of precision the original dataset. The 10 clusters composition are

reported in (A), along with the number of elements belonging to each cluster, expressed as percentage of the original dataset, in (B).

result considering the availability of high redundancy at the
muscle and kinematic level. This is seen in some patterns that
are often repeated and especially in the co-activating group
composed of f1-f8-finger flexors that are very often grouped
together, especially in the hold phase. In most of the cases,
two activation patterns are recognizable: a strong co-activation,
often (but not always) corresponding to the grasp/hold phase,
and two minor co-activating patterns in the pre-shaping and
release phases that are often grouped in a single synergy.
This result is particularly interesting considering that only two
electrodes were not positioned on the forearm (respectively,
biceps and triceps) and comparing the results with the results
obtained by d’Avella et al. (2006) and Liarokapis et al. (2013).
In these studies, the biceps is activated during the reaching
phase in confirming that it is indeed an active reaching
component, being active in the pre-shaping and release phase.
This result suggests that the pre-shaping and release synergies
may represent hand opening, before (pre-shaping) and after
grasping. The number of phases seems to be in accordance
with those proposed by Liarokapis et al. (2013) and seems
to reproduce on the hand part of the results obtained in
previous studies in terms of time varying muscular synergies for
shoulder and arm. Furthermore, it should be remarked that the
movements considered in this study were not performed against
gravity, reducing consistently the involvement of shoulder
muscles.

While not extensively discussed in this paper, the remarkable
repeatability of the temporal components might be a
further motor-control feature aimed at simplifying muscle
coordination, as a strategy exploited by the CNS to perform

hand grasps. These results are in accordance with the previous
findings in the literature, that showed that, in respect to
the original dimensionality of the control, the number of
modules underlying grasps is probably strongly reduced
(Santello et al., 1998; Overduin et al., 2008; Jarrassé et al.,
2014).

Cluster Analysis and Control of Precision
On a comprehensive dataset of 20 grasp types, performed by
28 healthy subjects, 10 spatial motor modules, properly elicited
in time, are enough to describe the whole dataset with good
accuracy, generalizing through subjects. Such results are coherent
with the notion that the central nervous system may embed a
modular structure that relies on a limited number of predefined
co-activation patterns to produce motor outcome at the hand
level. These findings are in accordance with previous results that
demonstrated that a small subset of synergies can generalize
across tasks and suggest that they represent basic building
blocks underlying natural human hand motions (Thakur et al.,
2008).

The main spatial synergies were not directly linkable to
specific grasp types or motor functions, suggesting that the
spatial modules that can be employed for the execution of
different grasp types. Furthermore, each spatial module can be
elicited at different stages. Together with previous findings, these
results suggest that grasp types and muscle synergies may not
be univocally related: some muscle patterns may be used for
different grasp types or, vice versa, the same grasp might be
controlled with slightly different muscle synergies depending on
the subject.
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FIGURE 7 | Summary of the extracted spatial synergies and mean temporal components associated with each spatial synergy. Spatial synergies are represented in a

polar plot (A) and with histograms (B). Temporal components are depicted in (C), and mean temporal components are shown in light gray.
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FIGURE 8 | Mean spatial synergy correlation matrix. The matrix identifies the variability between all the pairs of spatial modules, assessed with the dot product. The

paired similarity is always >0.60, indicating that the some muscle components are shared between centroid pairs.

These results also reflect some intrinsic features of the
human grasping related to proximal forearm and hand muscles
control. This study suggests that a large variety of hand
grasp types can be performed with a limited number of
patterns. However, it should be considered that the proposed
protocol was meant for applications related to control of
prosthesis for trans-radial amputees, measuring the activity of
proximal muscles. Coherently, previous studies sharing proximal
muscle based protocols showed that a few basic patterns
are responsible for a variety of grasp types (Castellini and
van der Smagt, 2013). On the contrary, considering a fine
recording of the muscles of the hand more differentiated
patterns may be observed, even if due to the difficulty of
recording muscle activity directly on the hand the motor
primitives related to the hand are computed and analyzed
in a kinematic domain (Jarrassé et al., 2014; Prevete et al.,
2018).

Temporal Components
The analysis of temporal components underlines that spatial
patterns may be recruited at different stages of a grasp,
with variability related both to the subject who executes
the grasp and the type of grasp. This result is confirmed
by the high correlation of the temporal components of
many clusters. However, mean temporal components suggest
that some patterns are more often used during the grasp
phase with a monophasic, bell-shaped activation profile, while
other patterns are biphasic and usually activate when the
hand opens, so in the approaching/pre-shaping phase and
in the release phase rather than in the middle of the
grasp. Such findings can be taken into account for several
applications related to high level robotic hand and prosthesis

control, as described in section Impact of the Muscle Synergy
Dataset.

Impact of the Muscle Synergy Dataset
A limited number of motor modules (e.g., 10), properly elicited
in time can approximate the entire dataset for all subjects
with high accuracy (5% error in respect to approximating the
dataset with its mean, in the case of 10 motor modules). Ideally,
each movement considered in the experiment can potentially
be reproduced as a combination of spatial synergies, thus
providing prostheses with higher dexterity (a higher number
of movements that can be controlled) starting from a set
of a few robustly controlled modules. Hand muscle synergies
may be applied to high level control approaches, consisting
of training subjects to reproduce and modulate the sEMG
patterns that correspond to the muscular hand synergies (or
combinations of them) and apply pattern recognition algorithms
to recognize the results. This strategy may be an alternative to
the control systems currently described in literature. As said in
the introduction, robotic hands that reproduce hand movements
by modulating the main postural hand synergies have already
been presented in literature (Matrone et al., 2010, 2012; Segil
and Weir, 2013). However, high level control systems have not
been extensively studied. Developing high level control systems
based on time dependent muscle-hand synergies and training
subjects to perform them may link the subjects’ intentions with
the movement of a robotic hand naturally, by exploiting the same
synergies. Such result may lead to natural myoelectric control of
robotic hands, a challenge currently not yet achieved in literature.
If replicated on hand amputees, this result can potentially
have applications in rehabilitation and assistive robotics in
order to improve the control of dexterous prosthetic hands,
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FIGURE 9 | Temporal components correlation matrix. The matrix identifies the variability between all the pairs of temporal components associated to the mean spatial

synergies, assessed with the Pearson’s Correlation coefficient. The paired correlation ranges from 0.30 to 1, indicating that some modules are exploited with very

similar (shared) control signals, while other modules are controlled with different timing.

by joining robotics and neuroscience findings (Santello et al.,
2016).

Usually, in machine learning the training data (used to train a
model) and the test data (used to test it) are taken from the same
distribution. However, this is not always easy, in particular when
using deep learning approaches that require large amounts of
data for training. To overcome distribution mismatches, transfer
learning and domain adaptation approaches have been used
in several domains, including computer vision (Saenko et al.,
2010; Tommasi et al., 2010), and natural language processing
(Ben-David et al., 2010; Daumé et al., 2010). In myoelectric
control, several studies explored the use of previous models
from different subjects to reduce the amount of required
training data (Farina et al., 2002; Tommasi et al., 2013; Patricia
et al., 2014), but performance increase was not confirmed
after proper model optimization (Gregori et al., 2017). The
fact that the motor modules are common to the subjects
can provide physiological foundations to include within the
prosthesis a subject-independent motor memory. Prosthesis
control could then be produced as “plug and play,” improve
control robustness for a specific subject through successive
calibration, and improve its adaptability to other subjects
too. In this context, properly choosing the motor modules
and the movements to be reproduced (in order to maximize
dexterity, robustness and correspondence to ADLs) is potentially
interesting to improve the rehabilitation capabilities of hand
prostheses. However, it is an open question in the field of how
exactly extracted synergies are mapped into motor functions:
previous studies employing clustering procedures or synergy
combination theories (Prevete et al., 2018) showed that the
mapping between “physical space” of the end effector and the

extracted muscle synergies may be due to different exploitation
mechanisms.

In this study, it is proposed that a linear combination of
centroids, properly activated by their temporal components, can
be enough to reconstruct the physical space of the end effector
in a large variety of grasp types with high accuracy. However,
the authors are aware that the noticeable reduction of the
original dataset implies that the original sEMGs are reconstructed
with a pre-determined level of precision. The proper tradeoff
between accuracy and synthesis needs to be tested in future
work where the reduced dataset is integrated into a real control
system.

Despite the potential provided by the muscle synergy analysis,
several limitations and issues related to the method should
be considered. Recent studies reported that pre-processing,
including filtering and normalization techniques, might lead to
different results and interpretation of the data (Shuman et al.,
2017; Kieliba et al., 2018). While it is commonly accepted to
normalize the duration of the tasks to a common phase axis,
as it was done in this study, uniform guidelines for EMG
pre-processing for synergies extraction are still missing in the
literature. Consequently, pre-processing could be a source of data
misinterpretation. Furthermore, the insurgence of fatigue was
not inspected in this study, while it was demonstrated in the
literature that fatigue may influence the recruitment of synergies,
even if their spatial composition is preserved (Ortega-Auriol
et al., 2018). As described in the section Introduction, several
factors may have an effect on sEMG signal and make synergies
tough to be generalized. Those may include fatigue, despite the
acquisition protocol was carefully designed to induce low fatigue
on subjects, even in the case of patients (Atzori et al., 2014a), and
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future developments should also consider these variables for a
complete assessment.

Lastly, the model of human grasps described in this paper
can potentially provide insights for calibrated interventions
of rehabilitation robotics. Several implications can be found
considering neurological or orthopedic rehabilitation of the hand
(Bissolotti et al., 2016; Vanoglio et al., 2017). In recent studies, the
exploitation of devices for hand rehabilitation has shown to lead
to promising, therapeutic results that can be further enhanced by
training muscle synergy-oriented exercises, based on a detailed
knowledge of motor synergies (Scano et al., 2018).

CONCLUSION

In this paper, muscle synergies were extracted from the
recordings of a publicly available dataset. The extracted synergies
were clustered from a cohort of 28 subjects executing a
variety of hand grasps. The synergies are often characterized
by two temporal activation patterns: a strong co-activation
corresponding to the grasp/hold phase, and two minor co-
activating patterns related to hand opening (visible in the pre-
shaping and release phase). The conclusions of this article
suggest that a limited number of time-dependent motor modules,

correctly elicited by a control activation signal, may underlie
the execution of a large variety of hand grasps. However, spatial
synergies are not strongly related to a specific motor functions
but have a sparse recruiting timing.
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