
ORIGINAL RESEARCH
published: 27 September 2018
doi: 10.3389/fnbot.2018.00061

Frontiers in Neurorobotics | www.frontiersin.org 1 September 2018 | Volume 12 | Article 61

Edited by:

Andrew Barto,

University of Massachusetts Amherst,

United States

Reviewed by:

Gerhard Neumann,

Technische Universität Darmstadt,

Germany

Luca Citi,

University of Essex, United Kingdom

*Correspondence:

Eiji Uchibe

uchibe@atr.jp

Received: 31 May 2018

Accepted: 06 September 2018

Published: 27 September 2018

Citation:

Uchibe E (2018) Cooperative and

Competitive Reinforcement and

Imitation Learning for a Mixture of

Heterogeneous Learning Modules.

Front. Neurorobot. 12:61.

doi: 10.3389/fnbot.2018.00061

Cooperative and Competitive
Reinforcement and Imitation
Learning for a Mixture of
Heterogeneous Learning Modules
Eiji Uchibe*

Advanced Telecommunications Research Computational Neuroscience Laboratories, Department of Brain Robot Interface,

Kyoto, Japan

This paper proposes Cooperative and competitive Reinforcement And Imitation Learning

(CRAIL) for selecting an appropriate policy from a set of multiple heterogeneous modules

and training all of them in parallel. Each learning module has its own network architecture

and improves the policy based on an off-policy reinforcement learning algorithm and

behavior cloning from samples collected by a behavior policy that is constructed by

a combination of all the policies. Since the mixing weights are determined by the

performance of the module, a better policy is automatically selected based on the

learning progress. Experimental results on a benchmark control task show that CRAIL

successfully achieves fast learning by allowing modules with complicated network

structures to exploit task-relevant samples for training.

Keywords: reinforcement learning, imitation learning, modular architecture, parallel learning,

entropy-regularization, multiple importance sampling

1. INTRODUCTION

Reinforcement Learning (RL) (Sutton and Barto, 1998; Kober et al., 2013) is an attractive learning
framework with a wide range of possible application areas. A learning agent attempts to find a
policy that maximizes its total amount of reward received during interaction with its environment.
Recently, such nonlinear function approximators as artificial neural networks are being used
to approximate a policy with the help of deep learning. Deep Reinforcement Learning (DRL),
which integrates both deep learning and reinforcement learning, has achieved several remarkable
successes in decision-making tasks, such as playing video games (Mnih et al., 2015) and the board
game Go (Silver et al., 2016, 2017).

However, DRL’s performance critically depends on its architectures, learning algorithms, and
meta-parameters (Henderson et al., 2018). On one hand, a shallow Neural Network (NN) with
fewer connection weights usually learns faster, but its performance may be limited. A deep and/or
wide NN with many network weights can represent any complex policy, but it usually needs
a huge amount of experiences to find an appropriate one. Since the motivation to use NNs is
to represent complicated nonlinear mapping from state to action, it is reasonable to select a
deep and wide NN as a function approximator. However, training data must be gathered by the
learning agent for reinforcement learning as opposed to the standard settings of the classification
problems of deep learning. Since a complicated NN policy whose many weights are initialized
randomly does not collect useful experiences to seek its goal, it is not promising to collect

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00061
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00061&domain=pdf&date_stamp=2018-09-27
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:uchibe@atr.jp
https://doi.org/10.3389/fnbot.2018.00061
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00061/full
http://loop.frontiersin.org/people/75175/overview

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

good experiences by itself, especially at the beginning of
the learning. Therefore, we have to find an appropriate
network architecture based on the task’s complexity. Although
an evolutionary method was applied to the problem of a
neural architecture search (Whiteson and Stone, 2006) for tiny
problems, experimenters usually manually prepare a learning
module with an appropriate network architecture depending on
the situation. Furthermore, it is crucial to select an appropriate
RL algorithm based on the given task. For instance, two
major types of algorithms exist: value-based reinforcement
learning and policy search methods, including policy gradient
reinforcement learning. Such value-based reinforcement learning
as Q-learning (Watkins andDayan, 1992) and SARSA (Rummery
and Niranjan, 1994) learns faster than vanilla policy search
methods such as REINFORCE (Williams, 1992) because value-
based reinforcement learning exploits the Bellman equation
under the Markovian assumption. The policy search methods
are robust and find a better stochastic policy even if the state
representation is deficient (Kalyanakrishnan and Stone, 2011).

In practice, experimenters test different combinations to select
the best one since their appropriate combination is unknown
in advance. Moreover, since the sequential testing of these
factors is very time-consuming, to eliminate the need for such
human hand-tuning, we proposed Cooperative and competitive
Learning with Importance Sampling (CLIS) (Uchibe and Doya,
2004, 2005). Here, the agent possesses multiple heterogeneous
learning modules and selects an appropriate module based
on the task and its experience. We consider a mechanism
by which an agent can best utilize its behavioral experiences
to train multiple learning modules with different network
architecture and learning algorithms. By exploiting task-relevant
experiences gathered by suboptimal but fast-learning modules, a
complicated module learns faster than when it was trained alone.
Unfortunately, CLIS is unstable in learning for several reasons.
One is the naive use of importance sampling to compensate for
the mismatch in the target and behavior policies. The other is
that the original CLIS adopts classical RL algorithms and linear
function approximators. In addition, the application of CLIS to
robot control is quite limited because it is implicitly assumed that
the action is discrete.

To overcome the problems raised by the study of CLIS, this
paper proposes Cooperative and competitive Reinforcement And
Imitation Learning (CRAIL), which extends CLIS to stabilize
learning processes and improve sampling efficiency. Similar
to CLIS, CRAIL maintains a set of multiple heterogeneous
policies, including hand-coded controllers, and collects samples
by a behavior policy constructed by the mixture distribution
of the policies. Because the mixing weights are computed
by the performance of the module, a better policy is
automatically selected based on the learning progress. Then
all the modules are trained simultaneously by two objective
functions. CRAIL introduces the following two components to
CLIS: (1) multiple importance sampling, and (2) policy learning
using a combination of temporal difference and behavior cloning
loss. Using multiple importance sampling stabilizes the learning
process of the policy search methods because the correction
factor, which is called the importance-sampling ratio, is

upper-bounded. One critical contribution of CRAIL is its
introduction of behavior cloning loss as well as temporal
difference learning. Based on the learning processes of multiple
modules, CRAIL dynamically updates the behavior policy that
will be used as the best expert policy. Unlike learning from
demonstrations, we can explicitly compute the behavior cloning
loss based on a behavior policy, which significantly improves
the policy updates. Furthermore, we use modern reinforcement
learning algorithms such as entropy-regularized RL because of
several advantages described later.

We compare CRAIL with CLIS on four benchmark control
tasks supported by the OpenAI gym (Brockman et al., 2016).
Experimental results indicate that by exploiting task-relevant
episodes generated by suboptimal, but fast-learning modules a
complex learning module trained with CRAIL actually learns
faster than when it is trained alone. Due to adding the behavior
cloning loss, CRAIL learns much faster than CLIS on all
the benchmark tasks. In addition, CRAIL effectively transfers
samples collected by the fixed hand-coded controller to train
policies implemented by neural networks.

2. RELATED WORK

Several reinforcement learning methods with multiple modules
have been proposed. Compositional Q-learning (Singh, 1992)
selects a learning module with the least TD-error, and
Selected Expert Reinforcement Learner (Ring and Schaul, 2011)
extends the value function to select a module with better
performance. Doya et al. (2002) proposed Multiple Model-based
Reinforcement Learning (MMRL), in which each module is
comprised of a state prediction model and the module with the
least prediction error is selected and trained. These approaches
are interpreted as the concept of “Mixture of Experts.” In
these approaches, the structure of each module is the same
and uses the same learning algorithm, while CRAIL enables
the use of heterogeneous learning modules that can be trained
concurrently. One interpretation is that the modules are spatially
distributed in their methods because they change the module
based on the current environmental state. On the other hand,
CRAIL temporarily distributes the modules because it switches
them due to the learning progress.

Some researchers integrated an RL algorithm with hand-
coded policies to improve the learning progress in its initial
stage. Smart and Kaelbling (2002) proposed an architecture
comprised of a supplied control policy and Q-learning. In the
first learning phase, a robot was controlled with the supplied
control policy developed by a designer. The second learning
phase begins to control the robot effectively when the value
function is approximated sufficiently. Xie et al. (2018) proposed
a similar approach to incorporate a prior knowledge, in which
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016) and a PID controller are used as off-policy learning and
a hand-coded policy, respectively. However, a limitation of their
approach is that it uses only one learning module. CRAIL is
a more general architecture for incorporating multiple prior
knowledge. In addition, it can automatically select an appropriate

Frontiers in Neurorobotics | www.frontiersin.org 2 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

module depending on the learning progress. Sutton et al. (1999)
described the advantages of off-policy learning and proposed a
novel framework to accelerate learning by representing policies
at multiple levels of temporal abstraction. Although their method
assumed a semi-Markov decision problem and AVRL, CLIS can
use different learning algorithms.

Our framework can be interpreted as learning from
demonstrations. Many previous studies can be found in this
field, and some recent studies such as (Gao et al., 2018; Hester
et al., 2018; Nair et al., 2018) integrated reinforcement learning
with learning from demonstrations by augmenting the objective
function. Our framework resembles those methods from the
viewpoint of the design of the objective function. The role of the
demonstrator is different because our framework’s demonstrator
is selected from multiple heterogeneous policies based on the
learning progress; previous studies assumed that it is stationary
and used it to generate a training dataset. Since CRAIL explicitly
represents the behavior policy, actions can be easily sampled from
it to evaluate the behavior cloning loss.

The most closely related study is Mix & Match (Czarnecki
et al., 2018), in which multiple heterogeneous modules are
trained in parallel. Mix & Match’s basic idea resembles CRAIL,
but it does not consider multiple reinforcement learning
algorithms; CRAIL adopts three learning algorithms for every
module. In addition, Mix & Match uses a mixture of policies
and optimizes the mixing weights by a kind of evolutionary
computation. Since Mix & Match needs multiple simulators,
it is sample-inefficient. The mixing weights are automatically
determined in the case of CRAIL.

3. METHODS

3.1. CRAIL’s Architecture
We investigate the standard Markov Decision Process (MDP)
framework, which is not known by an agent in the model-free
RL setting (Sutton and Barto, 1998). An MDP is formulated as
follows: (1) X is the state space and xt ∈ X denotes the state of
the environment at time t; (2) U is the action space and ut ∈ U

is the action executed by the agent at time t; (3) pe(x
′ | x, u) is

the state transition probability for x, x′ ∈ X and u ∈ U ; (4)
p0(x) is the initial state probability; and (5) r(x, u) is a reward
function. CRAIL has M learning modules as shown in Figure 1,
and each of which has state value function Vi(x;ψ i), state-action
value function Qi(x, u; θ i), and policy πi(u | x;φi), where ψ i, θ i,
and φi are the parameters, respectively. Vi and Qi are defined as
a discounted sum of the rewards given by

Vi(x) = E

[

∞
∑

t= 0

γ tr(xt , ut)

∣

∣

∣

∣

∣

x0 = x

]

,

Qi(x, u) = E

[

∞
∑

t= 0

γ tr(xt , ut)

∣

∣

∣

∣

∣

x0 = x, u0 = u

]

,

where γ ∈ [0, 1) is a discount factor that determines the relative
weighting of immediate versus later rewards. For simplicity, all
the modules share the same sensory-motor system.

FIGURE 1 | Architecture of Cooperative and Competitive Reinforcement And

Imitation Learning (CRAIL).

Algorithm 1 Stepwise CRAIL

1: Initialize all parameters of the learning modules.
2: Initialize empty replay buffer D.
3: repeat

4: x0 ∼ p0(·) ⊲ Draw an initial state.
5: for t = 0, . . . ,T − 1 do
6: ut ∼ π̄(· | xt), xt+1, rt ∼ pe(·, · | xt , ut).
7: Add batch data {xt , ut , rt , xt+1} to replay buffer D.
8: for i = 1, . . . ,M do ⊲ Update all the modules.
9: update the parameters by Algorithms 4 or 5.
10: end for

11: end for

12: until convergence

At each time step t, the agent selects an action based on the
following behavior policy:

π̄(ut | xt) =

M
∑

i= 1

α(i | xt)πi(ut | xt;φi). (1)

Because the state value function evaluates the policy’s
performance, we use it to determine the mixing weight:

α(i | xt) =
exp(βVi(xt;ψ i))

∑M
j= 1 exp(βVi(xt ,ψ j))

, (2)

where β is an inverse temperature. A low β value causes (most of)
the equiprobable selection of all the modules, while its high value
causes the selection of a module with the highest value when the
probability comes closest to one. Inverse temperature β plays an
important role at the early stage of learning concerning whether
to select optimistic modules that may have large initial values.
Algorithm 1 illustrates an overview of the learning process
of stepwise CRAIL. The agent maintains experience replay
buffer D to store state transition (x, u, r, x′) by behavior policy
π̄ .

As a special case for episodic tasks, we focus on episodic
CRAIL, which is basically identical to the original CLIS, as shown

Frontiers in Neurorobotics | www.frontiersin.org 3 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

Algorithm 2 Episodic CRAIL/CLIS

1: Initialize all parameters of the learning modules.
2: Initialize empty replay buffer D.
3: repeat

4: for k = 1, . . . ,K do ⊲ Collect K episodes
5: x0 ∼ p0(·) ⊲ Draw an initial state.
6: i ∼ α(· | x0) ⊲ Select a module.
7: for t = 0, . . . ,T − 1 do
8: ut ∼ πi(· | xt), xt+1, rt ∼ pe(·, · | xt , ut).
9: end for

10: Add batch data {i, x0 :T , u0 :T−1, r0 :T−1} to replay
buffer D.

11: for i = 1, . . . ,M do ⊲ Update all the modules.
12: update the parameters by Algorithms 3, 4, or 5.
13: end for

14: end for

15: until convergence

in Algorithm 2. At the beginning of every episode, a module is
chosen by Equation (2) to generate a sequence of states, actions,
and rewards denoted by

h , [x1, u1, r1, . . . , xT , uT , rT],

where T denotes the number of steps called the horizon length.
This modification is useful from the viewpoint of numerical
stability when a hand-coded deterministic policy is used as
domain knowledge. For example, a Central Pattern Generator
(CPG) is widely used to generate rhythmic motions like walking
without rhythmic sensory inputs (Ijspeert, 2008), but it cannot be
represented by policy πi(u | x) because CPG has internal states
that are not observable by other modules. In this case, the module
has to cope with partially observableMDP tasks if the experiences
generated by the CPG-based controller are used for training.

3.2. Learning Algorithm in Each Module
Similar to CLIS, all the modules learn an optimal policy in
parallel on the samples from D collected by the behavior policy.
The learning algorithms used by CRAIL should be able to learn
from the experiences gathered by other modules, and therefore,
we adopt the following three methods as an off-policy RL
algorithm: REINFORCE (Williams, 1992), Soft Actor-Critic (Soft
AC) (Haarnoja et al., 2018), and Deterministic Policy Gradient
(DPG) (Lillicrap et al., 2016). We modify these algorithms by
incorporating behavior loss to update the policy to improve their
learning efficiency.

3.2.1. REINFORCE With Importance Sampling
Policy search methods that do not rely on the Bellman optimality
equation such as REINFORCE (Williams, 1992) have been
reevaluated because of their simplicity and robust performance
with non-Markovian tasks (Meuleau et al., 1999). REINFORCE is
essentially an on-policy method (Sutton and Barto, 1998) because
it estimates the gradient at a particular point in the policy space
by acting precisely in the manner of its corresponding policy
during learning trials. To use samples collected by the behavior

policy, we introduce importance sampling to the REINFORCE
algorithm (Meuleau et al., 2001) as an off-policy learning
algorithm. Note that REINFORCE is applicable for the episodic
CRAIL because it requires a set of sequences as a dataset.

REINFORCE evaluates sequence h by

Jπi (φi, h) = R(h) =

T
∑

t= 1

γ t−1rt ,

where R(h) is called the return, which is defined as the discounted
sum of rewards along h. To update φi, REINFORCE adopts the
stochastic gradient ascent method with the gradient given by

∂Jπi (φi, h)

∂φi
= (R(h)− b)ρi(h)

T
∑

t= 1

∂ lnπi(ut | xt)

∂φi
, (3)

where b is a baseline parameter for variance reduction and ρi(h) is
the importance-sampling weight ratio to account for the change
in the distribution, defined by

ρi(h) =

T
∏

t=1

ρi(xt , ut) =

T
∏

t=1

πi(ut | xt)

π̄(ut | xt)
, (4)

under the Markovian assumption. Unlike CLIS, CRAIL uses
multiple importance sampling in which the denominator in (4) is
the mixture distribution (1) and therefore ρi is upper-bounded.
Note that Equation (3) is slightly different from the standard
expression because the expected value with respect to all possible
sequences should be considered to exploit the baseline and
importance sampling. We will take expectations later to clarify
how the gradient of our method is different from the original one.

Although the gradient estimator (3) is sample-efficient, it is
close to zero when πi is far from π̄ . This situation is often
observed at the early stage of learning. To overcome this problem,
we introduce the following additional objective function given by
the KL divergence between the learning and behavior policies:

JBCi (φi, xt) = DKL(π̄(· | xt) ‖ πi(· | xt)). (5)

Minimizing (5) is behavior cloning, which is also known as
supervised imitation learning. However, our method is more
computationally efficient because we can draw samples from π̄

without interacting through the environment. Consequently, the
gradient to train the policy parameter is given by

∂Jπi (φi)

∂φi
= Eh∼D

[

∂Jπ ,RLi (φi, ·)

∂φi

]

− ηEx∼D

[

∂Jπ ,BCi (φi, ·)

∂φi

]

,

(6)
where η is a positive meta-parameter. When η = 0, Equation (6)
is identical to the original gradient estimator of REINFORCE
with importance sampling.

Finally, state value function Vi(x,ψ i) is also trained with the
Monte Carlo method because it is used to construct the behavior

Frontiers in Neurorobotics | www.frontiersin.org 4 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

Algorithm 3 REINFORCE with importance sampling and
Imitation Learning

Require: dataset D
1: Sample a random minibatch of sequences h from D.
2: Evaluate gradient ∂Jπ ,RLi /∂φi.
3: Sample a random minibatch of states x from D and u from
π̄ , respectively.

4: Evaluate gradient ∂Jπ ,BCi /∂φi.
5: Update φi by the stochastic gradient ascent method with

Equation (6).
6: Update ψ i by minimizing Equation (7).

policy. When the number of sequences in D is denoted by K, the
loss function to optimize the state value function is given by

JVi (ψ i) =
1

2

K
∑

k=1

T
∑

t= 1

(

Vi(x
k
t)− Yk

t

)2
, (7)

where Yk
t is the target value defined as

Yk
t =

T
∏

t′=t

ρ(xkt , u
k
t)

T
∑

t′ = t

γ t′−trkt .

The update rule of the modified REINFORCE with importance
sampling is given in Algorithm (3).

3.2.2. Soft Actor-Critic and Imitation Learning
The original CLIS adopted SARSA (Rummery and Niranjan,
1994) with importance sampling (Precup et al., 2001) as an
off-policy value-based reinforcement learning algorithm. An
advantage is that the technique called eligibility traces (Sutton
and Barto, 1998) can be used to accelerate the speed of learning,
and it was experimentally shown that deep SARSA can achieve a
comparable performance to DQN even though it does not exploit
the method of experience replay and target network (Elfwing
et al., 2018). However, SARSA implicitly assumes that action
is discrete because the stochastic policy must be derived from
the state-action value function. Since we are interested in robot
control, action must be continuous. Therefore, we adopt Soft
Actor-Critic (Haarnoja et al., 2018) as an off-policy algorithm
using the value function. Soft Actor-Critic augments the reward
function to replace the max-operator with a differentiable one.
The reward function is assumed to be given by the following
form:

r̃(x, u) = r(x, u)+
1

α
H(πi(· | x)), (8)

where α is a positive meta-parameter and and H(π(· | x)) is the
(differential) entropy of policy πi. Assuming reward function (8),
an optimal state value function satisfies the following Bellman
optimality equation:

Vi(x) = max
πi

Eπi

[

r(x, u)−
1

α
lnπi(u | x)+ γEPT

[

Vi(x
′)
]

]

.

(9)

The right hand side of Equation (9) is a constrained optimization
problem given by

max
πi

∫

duπi(u | x)

[

r(x, u)−
1

α
lnπi(u | x)+ γEPT

[

Vi(x
′)
]

]

,

subject to
∫

duπi(u | x) = 1. In this case, we can analytically
maximize the right hand side of Equation (9) by a method
with Lagrange multipliers. Consequently, the optimal state value
function can be represented by

Vi(x) =
1

α
ln

∫

du
[

exp(αQi(x, u))
]

, (10)

and the corresponding optimal policy can be derived:

πi(u | x) =
exp

(

αQi(x, u)
)

exp(αVi(x))
, (11)

where state-action value function Q(x, u) is defined by

Qi(x, u) = r(x, u)+ γEPT

[

Vi(x
′)
]

. (12)

Note that the right hand side of Equation (10) uses the log-sum-
exp operator if the action is discrete, and it is characterized as the
“soft” max operator.

The learning algorithm of the Soft Actor-Critic is derived
from Equations (10)–(12). Since Equation (12) corresponds to
the Bellman optimality equation regarding the state-action value
function, it can be used to train parameter θ i by minimizing the
soft Bellman residual for all possible (x, u, x′) in buffer D:

JQi (θ i, x, u, r, x
′) =

1

2

{

Qi(x, u)−
(

r + γVi(x
′; ψ̄ i)

)}2
,

where Vi(x, ψ̄ i) and ψ̄ i respectively denote the target state value
network and an exponentially moving average of the parameter
vector, which stabilizes the learning used in DQN (Mnih et al.,
2015). Consequently, the loss function for training θ i is given by

J
Q
i (θ i) = E(x,u,r,x′)∼D

[

J
Q
i (θ i, ·, ·, ·, ·)

]

, (13)

where (x, u, r, x′) ∼ D means that the transition data are drawn
from D.

When the action is discrete, the optimal policy and the state
value function can be easily computed from the state-action value
function. However, it is intractable in the case of continuous
action because Equation (10) needs to evaluate the integral in
action space. Therefore, Haarnoja et al. (2018) recommended
that the state value function and policy also be separately
approximated. Based on the relation (11), the approximation
error of the state value function at state x is given by

JVi (ψ i, x) =
1

2

{

Vi(x)− Eu∼πi

[

Qi(x, ·)−
1

α
lnπ(· | x)

]}2

,

where the expectation is numerically computed through a Monte
Carlo simulation. The loss function for training ψ i is given by

JVi (ψ i) = Ex∼D

[

JVi (ψ i, ·)
]

. (14)

Frontiers in Neurorobotics | www.frontiersin.org 5 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

Algorithm 4 Soft Actor-Critic and Imitation Learning

Require: dataset D, inverse temperature η, decay rate τ .
1: Sample a random minibatch of transitions (x, u, r, x′) from

D.
2: Evaluate gradient ∂JQi /∂θ i and update θ i by stochastic

gradient descent.
3: Sample a random minibatch of states x from D and u from
πi, respectively.

4: Evaluate gradient ∂JVi /∂ψ i and update ψ i by the stochastic
gradient descent.

5: Sample a random minibatch of states x from D and u from
π̄ , respectively.

6: Evaluate gradient ∂Jπi /∂φi and update φi by the stochastic
gradient descent.

7: Update the parameter of the target network by ψ̄ i ← τ ψ̄ i +

(1− τ)ψ i.

In the same way, policy parameter θ i is trained byminimizing the
Kullback-Leibler (KL) divergence between the left and right hand
sides of Equation (11):

Jπ ,RLi (φi, x) = DKL

(

πi(· | x) ‖
exp(αQi(x, ·))

exp(αVi(x))

)

, (15)

where we need samples drawn from πi to evaluate the KL
divergence. In addition to the KL divergence, we introduce the
behavior cloning loss defined as the KL divergence between the
learning and behavior policies:

Jπ ,BCi (φi, x) = DKL(π̄(· | x) ‖ πi(· | x)). (16)

Consequently, the loss function for training φi is given by

Jπi (φi) = Ex∼D

[

Jπ ,RLi (φi, ·)+ ηJ
π ,BC
i (φi, ·)

]

, (17)

where η is a positivemeta-parameter.When η = 0, Equation (17)
is identical to the original update rule of Soft Actor-Critic.
Note that Information projection (I-projection) is used in
Equation (15), and Moment projection (M-projection) is used
in Equation (16) (Kober et al., 2013). Although in principle
we can select any projection, we believe that Equation (16) is
appropriate for the behavior cloning loss because it is averaged
over several modes of the policy. In addition, Equation (15)
is appropriate because it concentrates on a single mode. πi
is usually implemented by a Gaussian policy with a single
mode, but exp(αQi(x, ·))/ exp(αVi(x)) may have multiple modes.
The update rule of the modified Soft Actor-Critic is given by
Algorithm 4.

3.2.3. Deterministic Policy Gradient and Imitation

Learning
Deterministic Policy Gradient (DPG) (Silver et al., 2014) and its
deep version (Lillicrap et al., 2016) are a well-known off-policy
reinforcement learning algorithm that can handle continuous
actions. Unlike Soft Actor-Critic, DPG does not approximate

Algorithm 5 Deterministic Policy Gradient and Imitation
Learning

Require: datasetD, inverse temperature η, decay rate τ .
1: Sample a random minibatch of transitions (x, u, r, x′) from

D.
2: Evaluate gradient ∂JQi /∂θ i and update θ i by the stochastic

gradient descent.
3: Sample a random minibatch of states x from D.
4: Evaluate gradient ∂Jπi /∂φi and update φi by the stochastic

gradient descent.
5: Update the parameter of the target network by θ̄ i ← τ θ̄ i +

(1− τ)θ i.

the state value function. The policy network can also be
simplified significantly because it does not need to approximate a
continuous probability density function.

The loss function to train Qi in DPG resembles that in Soft
Actor-Critic and is given by Equation (13) whose JQi (θ i, x, u, r, x

′)
is replaced with the following equation:

JQi (θ i, x, u, r, x
′) =

1

2

{

Qi(x, u)− (r + γQi(x
′,πi(x

′); θ̄ i))
}2

,

where θ̄ i denotes an exponentially moving average of the
parameter vector of the target state-action value network andπi is
a deterministic policy that maps x to u. DPG evaluates the policy
gradient at state x by

∂Jπ ,RLi (φi, x)

∂φi
=
∂Qi(x, u)

∂u

∣

∣

∣

∣

u=πi(x)

∂πi(x)

∂φi
.

As a result, the policy gradient with behavior cloning loss is
computed by

∂Jπi
∂φi
= Ex∼D

[

∂Jπ ,RLi (φi, ·)

∂φi
− η

∂Jπ ,BCi (φi, ·)

∂φi

]

,

where Jπ ,BCi is the same function used by the modified Soft
Actor-Critic explained in section 3.2.3. The state value function
is simply computed by

Vi(x) = Qi(x,πi(x)).

The update rule of the modified DPG is given by Algorithm 5.
One limitation of DPG is that it does not have an explicit
exploration mechanism because policy πi represents a
deterministic function. Therefore, DPG usually introduces
a behavior policy that is implemented by an Ornstein-Uhlenbech
process (Lillicrap et al., 2016). On the other hand, CRAIL’s
behavior policy is dynamically constructed by mixing all of
the component policies. When DPG is selected as a learning
algorithm of CRAIL, at least one learning module with a
stochastic policy should be added to promote exploration and
discourage premature convergence.

Frontiers in Neurorobotics | www.frontiersin.org 6 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

4. EXPERIMENTS

4.1. Comparison of CRAIL and CLIS
To investigate how CRAIL improves the learning speed, we
conducted several computer simulations with four MuJoCo-
simulated (Todorov et al., 2012) benchmark tasks: Hopper-
v2, Half-Cheetah-v2, Walker2d-v2, and Ant-v2, all of which
were provided by the OpenAI gym (Brockman et al., 2016)
(Figure 2). Hopper-v2 is a planar monopod, and Walker2d-
v2 and HalfCheetah-v2 are planar biped robots. Ant-v2 is a
quadruped robot that can move around a three-dimensional
environment. The observation and action spaces are shown in
Table 1, where the observation vector is used as a state vector.
The goal is to move forward as quickly as possible, and the
reward function is given by r(x, u) = vx − c‖u‖22, where vx is
the forward velocity and c is a robot-dependent constant. See
the supplementary materials of Duan et al. (2016) for the task
specifications.

We prepared two function approximators, Neural Network
(NN) and normalized Radial Basis Function (RBF), and Table 2

shows their network architectures. For example, the module
using the RBF networks represents Vi by 64 normalized radial

FIGURE 2 | MuJoCo-simulated environments: Hopper-v2, Walker2D-v2,

Half-Cheetah-v2, and Ant-v2.

TABLE 1 | Environments used in experiments and their state and action spaces.

Environment Observation space Action space

Ant-v2 R
111 [−1.0, 1.0]8

HalfCheetah-v2 R
17 [−1.0, 1.0]6

Hopper-v2 R
11 [−1.0, 1.0]3

Walker2d-v2 R
17 [−1.0, 1.0]6

basis functions by

Vi(x;ψ i) =

Ni
∑

j= 1

ψi,jbi,j(x),

where Ni and ψi,j respectively denote the number of basis
functions and the j-th element of ψ i and bi,j(x) is the basis
function defined by

bi,j(x) =
ai,j(x)

∑Ni

j′ = 1 ai,j′ (x)
, ai,j = exp

(

−‖s⊤i,j(x− ci,j)‖
2
2

)

,

where ai,j is a Gaussian activation function with parameters
si,j and ci,j. Since si,j and ci,j were determined by a heuristic

TABLE 2 | Network architectures of approximator in the first and the second

experiments: For example, RBF module approximates Qi by 64 basis functions,

and NN module approximates two-layer feed-forward neural network consisting of

(400, 300) hidden units.

Approximator V Q π

RBF (64) (64) (64)

NN (64, 64) (400, 300) (400, 300)

FIGURE 3 | Architectures of neural networks used by Soft Actor-Critic: (A)

State value function network. (B) State-action value function network. (C)

Gaussian-policy network. We approximate both V and Q with feed-forward

neural networks. π is approximated by a Gaussian policy:

π (u | x) =N (u | µ, σ2I), where the mean µ is given by a neural network and

the log-standard deviation ln σ is parameterized by a global vector

independent of the state.

Frontiers in Neurorobotics | www.frontiersin.org 7 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

FIGURE 4 | Training curves on continuous control benchmarks: Performance was evaluated by cumulative rewards in 10 episodes for each learning module.

rule (Morimoto and Doya, 2001), Vi is interpreted as a linear
neural network. Therefore, the module with the RBF networks
is expected to learn faster than that with the nonlinear neural
networks. Figure 3 represents the architectures that approximate
πi,Vi and Qi needed by the Soft Actor-Critic. Each was
implemented by a feed-forward neural network with a Rectified
Linear Unit (ReLU) as a nonlinear activation function of the
hidden layers. In the first experiment, we chose three learning
algorithms, Soft Actor-Critic, Deterministic Policy Gradient, and
REINFORCE with importance sampling. We prepared 2× 3 = 6
modules as a result. To apply Algorithm 3 to this non-episodic
task, the horizon length T is set to 300.

CRAIL was given the above six modules for parallel training.
We also tested the six modules separately in addition to
CLIS as baseline performances, where CLIS also used multiple
importance sampling instead of an independent type because
the original CLIS worked very poorly due to the unboundedness
of the importance-sampling weight ratio. Note that the original
CLIS selects one learning module at the beginning of each
episode, and utilizes a truncated importance sampling ratio given
by

ρ̂i(h) = min

(

T
∏

t=1

πi(ut | xt)

πselected(ut | xt)
,C

)

,

where πselected is the policy of the selected module and C is a
positive constant determined by the experimenters. Although
ρ̂i(h) is upper-bounded, it is not trivial to tune C in practice.
In addition, CLIS does not consider behavior cloning loss.
Therefore, CLIS evaluated in the experiments uses Equation (4)
as the importance weight. In this case, CLIS is identical to CRAIL
with η = 0. Each method was evaluated in ten simulation runs,
each of which was comprised of 2,000 episodes.

Figure 4 shows the learning performance of CRAIL, CLIS, and
the six component modules, and we found that CRAIL learned
faster than CLIS and the six modules trained separately on all the
benchmark tasks. On the other hand, the learning performance
of CLIS resembled that of the NN × SAC module. The RBF ×
SAC module showed the best learning curves on all the tasks
at the early stage of learning, but its performance saturated
before reaching a sufficient level because the normalized RBF
networks could not precisely approximate the value functions
and the policy as well as the neural networks. On the contrary,
the NN policies trained by SAC or DPG learned very slowly,
and their performance was much worse than RBF × SAC at the
early stage of learning. The modules trained by REINFORCE
needs a set of sequences, and therefore, they learned slower than
the actor-critic methods such as DPG and Soft AC. As a result,
the REINFORCE modules achieved worse performance, and
the probabilities remained low during learning. Figures 5A,B
respectively show the mixing weights {αi}

6
i=1 during the learning

of Ant-v2 computed by CRAIL and CLIS. The probability of
selecting the RBF × SAC module increased rapidly at the early
stage of learning in both cases. However, CRAIL tended to
gradually select the NN × SAC module after about four million
steps, and CLIS continued to choose the RBF × SAC module’s
policy most frequently until about six million steps.

4.2. Adaptation to Changes in the
Environment
Next, we experimentally tested the capability of adaptation to
changes in the environment by changing the mass of the body
of HalfCheetah-v2 from 6.36 (original) to 6.36 × 3 [kg] at the
5 millionth step. In this experiment, both CRAIL and CLIS
possessed the same six learning modules used in the previous
experiment. Each method was evaluated in ten simulation runs,
each of which was comprised of 2,000 episodes.

Frontiers in Neurorobotics | www.frontiersin.org 8 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

FIGURE 5 | Probabilities for changing learning modules during learning process: (A) Results obtained by CLIS architecture. (B) Results obtained by CL without

importance sampling.

FIGURE 6 | Training curves on episodic Half-Cheetah-v2 task, in which body’s mass was changed at 5 millionth step.

Figures 6A,B respectively show the cumulative rewards and
module selection probability in each step. Note that the first
half of Figure 6A is identical to Figure 4C. When the mass was
changed at 5 millionth steps, the performance of the CRAIL,
CLIS, and NN policies decreased significantly. However, the RBF
policies maintained the pole without considerable deterioration
in performance compared with the NN policies because the
number of weights was smaller. In other words, the performances
of the NN policies deteriorated drastically because their policies
were fine-tuned for a particular weight. Therefore, the probability
of selecting RBF× SAC increased temporarily from about 5 to 6.5
million steps. CRAIL prevented the body from falling and trained
NN × SAC and NN × DPG by appropriately selecting RBF ×
SAC, as shown in Figure 6B.

4.3. Introducing a Fixed Policy
To investigate how CRAIL exploits a deterministic stationary
policy, we added a CPG-based policy as prior knowledge
to control HalfCheetah-v2 because periodic motion is quite
useful to generate walking behaviors and many previous
studies exist (Ijspeert, 2008) in this field. Since CRAIL uses
multiple importance sampling, it is straightforward to use the
deterministic policy as one of the sampling policies. Note that
the CPG-based policy has internal states because the oscillator
is implemented by a differential equation. Therefore, we selected

TABLE 3 | Network architectures of approximator in the third experiments: We

denote the hidden layer sizes of a two-layer feedforward neural network as (N, M).

Approximator V π

BASE (64, 64) (64, 64)

WIDE (64, 64) (400, 300)

DEEP (64, 64) (100, 50, 25)

For example, the WIDE module approximates Vi and πi by (64, 64) and (400, 300),

respectively.

the REINFORCE algorithm with importance sampling described
in section 3.2.1 and Algorithm 2 in this experiment because the
evaluation of deterministic policies with internal states is difficult
in stepwise update rules.

As learning modules, we prepared three network architectures
that are commonly seen in the literature (Henderson et al., 2018)
as shown in Table 3 to implement a stochastic policy. We used a
ReLU nonlinear activation function. Note that the REINFORCE
algorithm does not need Qi. In addition, a deterministic
stationary policy based on central pattern generators was
prepared as prior knowledge, which was implemented by the
modified Hopf oscillator (Uchibe and Doya, 2014). Since CRAIL
uses multiple importance sampling, it is straightforward to use
the deterministic policy as one of the sampling policies.

Frontiers in Neurorobotics | www.frontiersin.org 9 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

FIGURE 7 | Training curves on Half-Cheetah-v2 task, in which fixed stationary policy was used as prior knowledge.

In addition to evaluate the CRAIL’s performance, we tested the

four modules separately. Figure 7A shows that CRAIL learned

much faster than the component modules trained alone. Since

REINFORCE learns very slowly due to its simplicity (Duan et al.,

2016), 500 iterations were insufficient to overcome the CPG-

based controller. Figure 7B shows the mixing weights during the

learning computed by CRAIL. The probability of selecting the

CPG-controller module increased rapidly at the early stage of

learning. Then, CRAIL tended to select the BASEmodule and the

probability of selecting it was the highest among the NNmodules
from about 90 to 170 iterations. Finally, the WIDE module was
frequently selected at the later stage of learning. The DEEP
module trained alone achieved the highest performance among
the three neural network policies. However, the probability
of selecting it remained low during learning. Note that the
original CLIS cannot utilize the deterministic policy because the
importance weight ratio becomes infinity.

5. DISCUSSION

This paper proposed modular reinforcement learning
(CRAIL), which collects task-relevant samples using multiple
heterogeneous policies. One interesting feature of CRAIL is that
a complex RL system can learn faster with the help of a simple RL
system that cannot achieve the best performance. Experimental
results also suggested that CRAIL efficiently adapted to changes
in the learning conditions because it automatically selected
simple modules with fewer parameters.

CRAIL implicitly assumes that state value functions are not
initialized optimistically. Suppose that the reward function is
always non-positive, and the state value functions are initialized
to zero. In this case, some modules that are not selected by
Equation (1) may have V values that are consistently higher
than the selected modules. In this case, CRAIL selects the worst
module if the inverse temperature is not tuned appropriately. As
one possible extension to overcome this difficulty, the mixing
weights are also trained by reinforcement learning in which the
value functions are used as priors.

In the current implementation, since all the learning modules
are prepared in advance CRAIL cannot obtain good performance
if all of them are inappropriate for the given task. To design
appropriate learning modules, we need to develop a mechanism

to add or delete learning modules based on the selection
probabilities calculated by Equation (1). If a simple learning
module has a low probability for a long time, it can be replaced
by a complicated module. This allows CRAIL to flexibly test
heterogeneous modules without increasing computational costs.
To overcome this problem, we consider an asynchronous version
of the algorithms.

We did not address the effects of computational costs on the
learning modules. Updating the parameters of the RBF networks
was accomplished considerably faster than for the deep neural
networks, but the modules with the RBF networks had to wait
until the modules with deep neural networks completed their
computations. In general, the sampling rate significantly affects
the original performance of a robot. For example, the robot
should reduce its moving speed when it uses a complex module.
However, the effects of the differences in sampling rates have not
been scrutinized.

One interesting future topic is the use of multiple meta-
parameters. CRAIL has some meta-parameters used in an
RL system, and their settings, such as the learning rate, the
inverse temperature that controls the randomness in action
selection, and the discount factor for future reward prediction,
are crucial to perform a task successfully. A possible scenario
is that when a small discount factor can be used in the
initial learning process, a module with a larger discount factor
can be selected as the learning progresses. We have not yet
identified the tasks and situations in which different discount
factors play an important role for accelerating the learning
speed, but in the future we will seek good examples for this
topic.

AUTHOR CONTRIBUTIONS

EU conceived, designed the research, performed the experiment,
analyzed its results, and wrote the paper.

FUNDING

This work is based on results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO) and JSPS KAKENHI Grant
Numbers JP16K12504 and JP17H06042.

Frontiers in Neurorobotics | www.frontiersin.org 10 September 2018 | Volume 12 | Article 61

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Uchibe Cooperative and Competitive Reinforcement and Imitation Learning

REFERENCES

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.

(2016). OpenAI Gym [preprint]. arXiv:1606.01540.

Czarnecki, M. W., Jayakumar, S. M., Jaderberg, M., Hasenclever, L., Teh, Y. W.,

Osindero, S., et al. (2018). “Mix & match - Agent curricula for reinforcement

learning,” in Proceedings of the 35th International Conference on Machine

Learning (Stockholm), 1087–1095.

Doya, K., Samejima, K., Katagiri, K., and Kawato, M. (2002). Multiple

model-based reinforcement learning. Neural Comput. 14, 1347–1369.

doi: 10.1162/089976602753712972

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016).

“Benchmarking deep reinforcement learning for continuous control,” in

Proceedings of the 33rd International Conference on Machine Learning

(New York, NY), 1329–1338.

Elfwing, S., Uchibe, E., and Doya, K. (2018). Sigmoid-weighted linear units for

neural network function approximation in reinforcement learning. Neural

Netw. doi: 10.1016/j.neunet.2017.12.012. [Epub ahead of print].

Gao, Y., Xu, H., Lin, J., Yu, F., Levine, S., and Darrell, T. (2018). “Reinforcement

learning from imperfect demonstrations,” in ICLR 2018 Workshop (Vancouver,

BC).

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). “Soft actor-critic:

off-policy maximum entropy deep reinforcement learning with a stochastic

actor,” in Proceedings of the 35th International Conference on Machine Learning

(Stockholm), 1861–1870.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., andMeger, D. (2018).

“Deep reinforcement learning that matters,” in Proceedings of the 32nd AAAI

Conference on Artificial Intelligence (New Orleans, LA).

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., et al. (2018).

“Deep Q-learning from demonstrations,” in Proceedings of the 32nd AAAI

Conference on Artificial Intelligence (New Orleans, LA).

Ijspeert, A. J. (2008). Central pattern generators for locomotion

control in animals and robots: a review. Neural Netw. 21, 642–653.

doi: 10.1016/j.neunet.2008.03.014.

Kalyanakrishnan, S., and Stone, P. (2011). Characterizing reinforcement learning

methods through parameterized learning problems.Mach. Learn. 84, 205–247.

doi: 10.1007/s10994-011-5251-x

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: a

survey. Int. J. Robot. Res. 32, 1238–1274. doi: 10.1177/0278364913495721

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in Proceedings of

International Conference on Learning Representations (San Juan).

Meuleau, N., Kim, K.-E., Kaelbling, L. P., and Cassandra, A. R. (1999). “Solving

POMDPs by searching the space of finite policies,” in Proceedings of the 15th

Conference on Uncertainty in Artificial Intelligence (Stockholm), 417–426.

Meuleau, N., Peshkin, L., and Kim, K.-E. (2001). Exploration in Gradient-

Based Reinforcement Learning. Technical report, Technical Report 2001-003,

Cambridge, MA: MIT.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Morimoto, J., and Doya, K. (2001). Acquisition of stand-up behavior by a real

robot using hierarchical reinforcement learning. Robot. Auton. Syst. 36, 37–51.

doi: 10.1016/S0921-8890(01)00113-0

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018).

“Overcoming exploration in reinforcement learning with demonstrations,” in

Proceedings of IEEE International Conference on Robotics and Automation

(Brisbane, QLD).

Precup, D., Sutton, R. S., and Dasgupta, S. (2001). “Off-policy temporal-difference

learning with function approximation,” in Proceedings of the 18th International

Conference on Machine Learning (Williamstown, MA).

Ring, M., and Schaul, T. (2011). “Q-error as a selection mechanism in modular

reinforcement-learning systems,” in Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (Barcelona), 1452–1457.

Rummery, G., and Niranjan, M. (1994). On-Line Q-Learning Using Connectionist

Systems. Technical report, Technical Report CUED/F-INFENG/TR 166,

Engineering Department Cambridge University.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

et al. (2016). Mastering the game of go with deep neural networks and tree

search. Nature 529, 484–489. doi: 10.1038/nature1696

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.

(2014). “Deterministic policy gradient algorithms,” in Proceedings of the 31st

International Conference on Machine Learning (Bejing), 387–395.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

et al. (2017). Mastering the game of Go without human knowledge.Nature 550,

354–359. doi: 10.1038/nature24270

Singh, S. P. (1992). Transfer of learning by composing solution of elemental

sequential tasks.Mach. Learn. 8, 323–340.

Smart, W. D., and Kaelbling, L. P. (2002). “Effective reinforcement learning for

mobile robots,” in Proceedings of the IEEE International Conference on Robotics

and Automation (Washington, DC), 3404–3410.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning. Cambridge, MA:

MIT Press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs:

a framework for temporal abstraction in reinforcement learning. Artif. Intell.

112, 181–211.

Todorov, E., Erez, T., and Tassa, Y. (2012). “MuJoCo: a physics engine for

model-based control,” in Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems (Vilamoura), 5026–5033.

Uchibe, E., and Doya, K. (2004). “Competitive-cooperative-concurrent

reinforcement learning with importance sampling,” in Proceedings of the

Eighth International Conference on Simulation of Adaptive Behavior: From

Animals to Animats 8 (Los Angeles, CA), 287–296.

Uchibe, E., and Doya, K. (2005). “Reinforcement learning with multiple

heterogeneous modules: a framework for developmental robot learning,” in

Proceedings of the 4th IEEE International Conference on Development and

Learning (Osaka), 87–92.

Uchibe, E., and Doya, K. (2014). “Combining learned controllers to achieve

new goals based on linearly solvable MDPs,” in Proceedings of the

IEEE International Conference on Robotics and Automation (Hong Kong),

5252–5259.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.Machine Learn. 8, 279–292.

Whiteson, S., and Stone, P. (2006). Evolutionary function approximation for

reinforcement learning. J. Mach. Learn. Res. 7, 877–917. Available online at:

http://www.jmlr.org/papers/v7/whiteson06a.html

Williams, R. J. (1992). Simple statistical gradient-following algorithms for

connectionist reinforcement learning.Mach. Learn. 8, 229–256.

Xie, L., Wang, S., Rosa, S., Markham, A., and Trigoni, N. (2018). “Learning

with training wheels : speeding up training with a simple controller for deep

reinforcement learning,” in Proceedings of IEEE International Conference on

Robotics and Automation (Brisbane, QLD).

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Uchibe. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 September 2018 | Volume 12 | Article 61

https://doi.org/10.1162/089976602753712972
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1016/j.neunet.2008.03.014.
https://doi.org/10.1007/s10994-011-5251-x
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/S0921-8890(01)00113-0
https://doi.org/10.1038/nature1696
https://doi.org/10.1038/nature24270
http://www.jmlr.org/papers/v7/whiteson06a.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Cooperative and Competitive Reinforcement and Imitation Learning for a Mixture of Heterogeneous Learning Modules
	1. Introduction
	2. Related Work
	3. MethodS
	3.1. CRAIL's Architecture
	3.2. Learning Algorithm in Each Module
	3.2.1. REINFORCE With Importance Sampling
	3.2.2. Soft Actor-Critic and Imitation Learning
	3.2.3. Deterministic Policy Gradient and Imitation Learning

	4. Experiments
	4.1. Comparison of CRAIL and CLIS
	4.2. Adaptation to Changes in the Environment
	4.3. Introducing a Fixed Policy

	5. Discussion
	Author Contributions
	Funding
	References

