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In reinforcement learning, reward is used to guide the learning process. The reward

is often designed to be task-dependent, and it may require significant domain

knowledge to design a good reward function. This paper proposes general reward

functions for maintenance, approach, avoidance, and achievement goal types. These

reward functions exploit the inherent property of each type of goal and are thus

task-independent. We also propose metrics to measure an agent’s performance for

learning each type of goal. We evaluate the intrinsic reward functions in a framework

that can autonomously generate goals and learn solutions to those goals using a

standard reinforcement learning algorithm. We show empirically how the proposed

reward functions lead to learning in a mobile robot application. Finally, using the proposed

reward functions as building blocks, we demonstrate how compound reward functions,

reward functions to generate sequences of tasks, can be created that allow the mobile

robot to learn more complex behaviors.

Keywords: intrinsic reward function, goal types, open-ended learning, autonomous goal generation, reinforcement

learning

INTRODUCTION

Open-ended learning, still an open research problem in robotics, is envisaged to provide learning
autonomy to robots such that they will require minimal human intervention to learn environment
specific skills. Several autonomous learning frameworks exist (Bonarini et al., 2006; Baranes and
Oudeyer, 2010a,b; Santucci et al., 2010, 2016), most of which have similar key modules that include:
(a) a goal generation mechanism that discovers the goals the robot can aim to achieve; and (b) a
learning algorithm that enables the robot to generate the skills required to achieve the goals. Many
of the autonomous learning frameworks use reinforcement learning (RL) as the learning module
(Bonarini et al., 2006; Santucci et al., 2010, 2016). In RL, an agent learns by trial and error. It is not
initially instructed which action it should take in a particular state but instead must compute the
most favorable action using the reward as feedback on its actions. Formany dynamic environments,
however, it is not always possible to know upfront which tasks the agent should learn. Hence,
sometimes, it is not possible to design the reward function in advance. Open-ended learning aims
to build systems that autonomously learn tasks as acquired skills that can later be used to learn user-
defined tasks more efficiently (Thrun andMitchell, 1995;Weng et al., 2001; Baldassarre andMirolli,
2013). Thus, for an open-ended learning system, autonomous reward function generation is an
essential component. This paper contributes to open-ended learning by proposing an approach to
reward function generation based on the building blocks of maintenance, achievement, approach
and avoidance goals.
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Existing literature reveals two common solutions to address
the problem of the autonomous reward function design or at least
provides a level of autonomy in designing a reward function: (1)
Intrinsic motivation (Singh et al., 2005) and (2) reward shaping
(Ng et al., 1999; Laud and DeJong, 2002). Intrinsic motivation
is a concept borrowed from the field of psychology. It can be
used to model reward that can lead to the emergence of task-
oriented performance, withoutmaking strong assumptions about
which specific tasks will be learned prior to the interaction
with the environment. Reward shaping, on the other hand,
provides a positive or negative bias encouraging the learning
process toward certain behaviors. Intrinsic motivation, although
promising, has not been validated on large-scale real-world
applications, and reward shaping requires a significant amount of
domain knowledge thus cannot be considered as an autonomous
approach. As an alternative to these solutions, we propose reward
functions based on the various types of goals identified in the
literature. Although the concept of creating a reward function
using goals is not new, this approach is often overlooked and has
not been the main focus of the RL community. In our approach,
different reward functions are generated based on the type of the
goal, and since the reward functions exploit the inherent property
of each type of goal, these reward functions are task-independent.

Goals have been the subject of much research within the
Beliefs, Desires, Intentions community (Rao and Georgeff, 1995),
and the agent community (Regev and Wegmann, 2005). A
goal is defined as an objective that a system should achieve
(Van Lamsweerde, 2001), put another way, a goal is the state
of affairs a plan of action is designed to achieve. Goals range
in abstraction from high-level to low-level, cover functional
as well as non-functional aspects and can be categorized into
hard goals that can be verified in a clear-cut way to soft goals
that are difficult to verify (Van Lamsweerde, 2001). Examples
of types of goals include achievement, maintenance, avoidance,
approach, optimization, test, query, and cease goals (Braubach
et al., 2005). Instead of classifying goals based on types, Van
Riemsdijk et al. (2008) classify them as declarative or state-
based where the goal is to reach specific desired situation and
procedural or action-based where the goal is to execute actions.
State-based goals are then sub-classified into the query, achieve
and maintain goals, and action-based goals are sub-classified
into perform goal. RL is already able to solve some problems
where some of these kinds of goals are present. For example,
well-known benchmark problems such as the cart-pole problem
are maintenance goals, while others such as maze navigation
are achievement goals. Likewise, problems solved with positive
reward have typically approach goal properties, while problems
solved from negative reward have avoidance goal properties. The
idea of generating reward signals for generic forms of these
goals thus seems promising. Based on this logic we propose
a domain-independent reward function for each of the goal
types. This approach can be applied to the goal irrespective of
its origin, i.e., whether the goal is intrinsic, extrinsic or of a
social origin. In this paper though, we use the output of an
existing goal generation module for a mobile robot (Merrick
et al., 2016) to validate the proposed reward functions. We show
how the intrinsic reward functions bridge the gap between goal

generation and learning by providing a task-independent reward.
We further demonstrate how these primitive reward functions
based on the goal types can be combined to form compound
reward functions that can be used to learn more complex
behaviors in agents. Thus, the contributions of this paper are: (1)
A proposal for task-independent intrinsic reward functions for
maintenance, approach, avoidance and achievement goal types;
(2) Metrics for the measurement of the performance of these
reward functions with respect to how effectively solutions to
them can be learned; and (3) A demonstration of how these
primitive reward functions can be combined to motivate learning
of more complex behaviors.

The remainder of the paper is organized as follows. In section
Background and Related Work, we present a background on
the design of reward functions and the solutions for task-
independent reward functions found in the literature. In section
Primitive Goal-based Motivated Reward Functions, we detail
the proposed reward functions based on the goal types, and
the metrics we use to measure the agents’ performance using
those reward functions. In section Experiments for Maintenance,
Approach, Avoidance and Achievement Goal Types, we detail
experiments to examine the performance of reward functions
for maintenance, approach, avoidance, and achievement goal
types on a mobile “e-puck” robot. In section Demonstration of
how Primitive Goal-based Reward Functions can be Combined,
we demonstrate complex behaviors learned from compound
reward functions constructed from the autonomously generated
primitive functions for each goal type. Finally, in section
Conclusion and Future Work, we provide concluding remarks
and discuss directions for future work.

BACKGROUND AND RELATED WORK

In RL, an agent perceives the state of its environment with its
sensors and takes action to change that state. The environment
may comprise variables such as the robot’s position, velocity,
sensor values, etc. These parameters collectively form the state
of the agent. With every action that the agent executes in the
environment, it moves to a new state. The state of the agent at
time t can be expressed as:

St =
[

s1t , s
2
t , s

3
t , . . . , s

n
t

]

where each attribute sit is typically a numerical value describing
some internal or external variable of the robot, and n is the
number of attributes of the state. The agent takes an action At

to change the state of the environment from the finite set of m
actions:

A = { A1, A2,A3, . . . ,Am}

This state change is denoted by event Et , formally denoted as:

Et =
[

e1t , e
2
t , e

3
t , . . . , e

n
t

]

where an event attribute eit = sit − sit−1. That is,

Et = St − St−1 =
[

1(s1t − s1t−1), 1(s2t − s2t−1), . . . ,1(snt − snt−1)
]
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Thus, an event, which is a vector of difference variables, models
the transition between the states. An action can cause a number
of different transitions, and an event is used to represent those
transitions. Since this representation does not make any task-
specific assumption about the values of the event attributes, it can
be used to represent the transition in a task-independent manner
(Merrick, 2007).

Finally, the experience of the agent includes the states St it has
encountered, the events Et that have occurred and the actions
At that it has performed. Thus, the experience X is a trajectory
denoted as the following, and it provides the data from which the
goals can be constructed.

X = {S0, A0, S1, E1, A1, S2, E2, A2, S3, E3, . . .}

Design of Reward Functions
In RL, the reward is used to direct the learning process. A simple
example of a reward function is a pre-defined value assignment
for known states or transitions. For example:

r(St) =

{

1 if a paricular state St is reached
0 otherwise

(1)

A more specific, task-dependent example can be seen from the
canonical cart-pole domain in which a pole is attached to a cart
that moves along a frictionless track. The aim of the agent is to
maintain the pole balanced on the cart by moving the cart to the
right or left. The reward, in this case, depends on the attributes
specific to the task:

r(St) = −c2∗
(

G1 − s1t
)2

− c3∗(G2 − s2t )
2

(2)

where s1t is the position of the cart and s2t is the angle of the
pole with respect to the cart, G (with attributes G1–desired
position and G2–desired angle) is the goal state, and c2 and c3
are constants.

For an even more complex task like ball paddling, where a
table-tennis ball is attached to a paddle by an elastic string with
the goal to bounce the ball above the paddle, it is quite difficult
to design a reward function. Should the agent be rewarded for
bouncing the ball a maximum number of times? Should the agent
be rewarded for keeping the ball above the paddle? As detailed
in Amodei et al. (2016), the agent might find ways to “hack the
reward” resulting in unpredictable or unexpected behavior.

For some complex domains, it is only feasible to design “sparse
reward signals” which assign non-zero reward in only a small
proportion of circumstances. This makes learning difficult as the
agent gets very little information about what actions resulted in
the correct solution. Proposed alternatives for such environments
include “hallucinating” positive rewards (Andrychowicz et al.,
2017) or bootstrap with self-supervised learning to build a
good world model. Also, imitation learning and inverse RL
have shown reward functions can be implicitly defined by
human demonstrations, so they do not allow a fully autonomous
development of the agent.

“Reward engineering” is another area that has attracted the
attention of the RL community, which is concerned with the

principles of constructing reward signals that enable efficient
learning (Dewey, 2014). Dewey (2014) concluded that as artificial
intelligence becomes more general and autonomous, the design
of reward mechanisms that result in desired behaviors are
becoming more complex. Early artificial intelligence research
tended to ignore reward design altogether and focused on the
problem of efficient learning of an arbitrary given goal. However,
it is now acknowledged that reward design can enable or limit
autonomy, and there is a need for reward functions that can
motivate more open-ended learning beyond a single, fixed task.
The following sections review work that focus in this area.

Intrinsic Motivation
Reward modeled as intrinsic motivation is an example of an
engineered reward leading to open-ended learning (Baldassarre
and Mirolli, 2013). It may be computed online as a function
of experienced states, actions or events and is independent of a
priori knowledge of task-specific factors that will be present in
the environment. The signal may serve to drive acquisition of
knowledge or a skill that is not immediately useful but could be
useful later on (Singh et al., 2005). This signal may be generated
by an agent because a task is inherently “interesting,” leading
to further exploration of its environment, manipulation/play or
learning of the skill.

Intrinsic motivation can be used to model reward that can
lead to the emergence of task-oriented performance, without
making strong assumptions about which specific tasks will be
learned prior to the interaction with the environment. The
motivation signal may be used in addition to a task-specific
reward signal, aggregated based on a predefined formula, to
achieve more adaptive, and multitask learning. It can also be
used in the absence of a task-specific reward signal to reduce the
handcrafting and tuning of the task-specific reward thus moving
a step closer to creating a true task independent learner (Merrick
and Maher, 2009). Oudeyer and Kaplan (2007) proposed the
following categories for a computational model of motivation:
knowledge-based, and competence-based. In knowledge-based
motivation, the motivation signal is based on an internal
prediction error between the agent’s prediction of what is
supposed to happen and what actually happens when the agent
executes a particular action. In competence-based motivation,
the motivation signal is generated based on the appropriate level
of learning challenge. This competency motivation depends on
the task or the goal to accomplish. The activity at a correct level of
learnability given the agent’s current level of mastery of that skill
generates maximummotivation signal. Barto et al. (2013) further
differentiated between surprise (prediction error) and novelty
based motivation. Novelty motivation signal is computed based
on the experience of an event that was not experienced before
(Neto and Nehmzow, 2004; Nehmzow et al., 2013).

Intrinsically Motivated Reinforcement
Learning
Frameworks that combine intrinsic motivation with RL are
capable of autonomous learning, and they are commonly termed
intrinsically motivated reinforcement learning frameworks.
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Singh et al. (2005) and Oudeyer et al. (2007) state that
intrinsic motivation is essential to create machines capable of
lifelong learning in a task-independent manner as it favors the
development of competence and reduces reliance on externally
directed goals driving learning. When intrinsic motivation is
combined with RL, it creates a mechanism whereby the system
designer is no longer required to program a task-specific reward
(Singh et al., 2005). An intrinsically motivated reinforcement
learning agent can autonomously select a task to learn and
interact with the environment to learn the task. It results in
the development of an autonomous entity capable of resolving
a wide variety of activities, as compared to an agent capable of
resolving only a specific activity for which a task-specific reward
is provided.

Like in RL, in an intrinsically motivated reinforcement
learning framework, the agent senses the states, takes actions
and receives an external reward from the environment, however
as an additional element, the agent internally generates a
motivation signal that forms the basis for its actions. This
internal signal is independent of task-specific factors in the
environment. Incorporating intrinsic motivation with RL enables
agents to select which skills they will learn and to shift their
attention to learn different skills as required (Merrick, 2012).
Broadly speaking, intrinsically motivated reinforcement learning
introduces a meta-learning layer in which a motivation function
provides the learning algorithm with a motivation signal to focus
the learning (Singh et al., 2005).

Role of Goals to Direct the Learning
Where early work focused on generating reward directly from
environmental stimuli, more recent works have acknowledged
the advantages of using the intermediate concept of a goal to
motivate complexity and diversity of behavior (Merrick et al.,
2016; Santucci et al., 2016). It has been shown by Santucci
et al. (2012) that using intrinsic motivation (generated by
prediction error) directly for skill acquisition can be problematic
and a possible solution to that is to instead generate goals
using the intrinsic motivation which in turn can be used to
direct the learning. Further, it has been argued by Mirolli and
Baldassarre (2013) that a cumulative acquisition of skills requires
a hierarchical structure, in whichmultiple “expert” sub-structures
focus on acquiring different skills and a “selector” sub-structure
decides which expert to select. The expert substructure can be
implemented using knowledge-based intrinsic motivation that
decides what to learn (by forming goals), and the selector sub-
structure can be implemented using competence-based intrinsic
motivation that can be used to decide which skill to focus on.
Goal-directed learning is also shown to be a promising direction
for learning motor skills. Rolf et al. (2010) show how their system
auto-generates goals using inconsistencies during exploration to
learn inverse kinematics and that the approach can scale for a
high dimension problem.

Recently, using goals to direct the learning has even attracted
the attention of the deep learning community. Andrychowicz
et al. (2017) have proposed using auto-generated interim goals to
make learning possible even when the rewards are sparse. These
interim goals are used to train the deep learning network using

experience replay. It is shown that the RL agent is able to learn
to achieve the end goal even if it has never been observed during
the training of the network. Similarly, in a framework proposed
by Held et al. (2017), they auto-generate interim tasks/goals at
an appropriate level of difficulty. This curriculum of tasks then
directs the learning enabling the agent to learn a wide set of skills
without any prior knowledge of its environment.

Regardless of whether the goals are intrinsic, extrinsic, of
social origin, whether they are created to direct the learning or
generated by an autonomous learning framework, the approach
of using goal-based reward functions detailed in the next section
can be applied to them.

PRIMITIVE GOAL-BASED MOTIVATED
REWARD FUNCTIONS

The basis of our approach in this paper is a generic view of the
function in Equation (1) as follows:

r(St) =

{

1 if the goal is reached
1− ε otherwise

(3)

where ε is a non-negative constant. The remainder of this section
defines different representations of “goal” in Equation (3) and
representation of the meaning of “reached.”

Reward Function for the Maintenance Goal
Type
A maintenance goal monitors the environment for some desired
world state and motivates the agent to actively try to re-establish
that state if the distance between the desired state and the current
state goes beyond a set limit. For a maintenance goal, an agent’s
action selection should consider both triggering conditions as
well as the constraining nature of the goal (Hindriks and Van
Riemsdijk, 2007). The act of maintaining a goal can be never-
ending thus making the process continuous or non-episodic.

Consider G is the state that the agent desires to maintain.
The state is considered as maintained if the distance between the
current state and desired state is sufficiently small. The reward at
time step t can then be expressed as:

r(St) =

{

σ if d (St , G) < ρ

ϕ otherwise
(4)

where d(.) is a distance function, St is the current state, G is
the desired goal state and ρ is a defined distance threshold. The
reward for when the goal is maintained is σ and the reward for
other time steps is ϕ, with ϕ < σ in order to incentivize the agent
to find a shorter path to reach the goal state. σ is generally 0 or a
positive number to provide positive reinforcement.

We hypothesize that there are various ways in which an agent’s
performance can be measured with respect to a maintenance
goal. For example, the following metrics M evaluate the reward
function for the maintenance goal type. Each metric is assumed
to be measured over a fixed period T of the agent’s life.

• Number of Steps for Which the Goal is Maintained (M1).

This metric counts the total number of times the agent
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maintains the state for two or more consecutive steps during
a period T. Note that since the process of maintaining a
goal is continuous, we do not assume the end of a learning
episode at the first occurrence of the goal being maintained.
For such non-episodic processes, there may be a reason why
the maintained state is lost. Thus, this metric provides the
measurement of the agent’s ability to learn to regain the
maintenance goal.

M1 = count(t)
t=2...T

such that rt = 1 and rt−1 = 1

• Number of Steps the Goal is Accomplished (M2). This metric
provides an alternative to M1 and counts the total number
of steps for which the agent receives a positive reward. This
metric provides the measurement of the number of time
steps the agent managed to maintain the goal. A higher value
indicates ease of maintainability of a particular goal.

M2 = count(t)
t=1...T

such that rt = 1

• Average Number of Steps of Consecutive Goal Maintenance

(M3). This measures the length of time (on average) that
positive consecutive positive reward is received. This metric
also provides an indication of the ease of maintainability of a
particular goal. It is calculated by first calculating how many
times J a goal was reacquired (that is, how many times rt =

1 and rt−1 6= 1) and dividingM2 as follows:

M3 =
M2

J

• Longest Period of Goal Maintenance (M4). This metric finds
the length of the longest stretch for which the agent was able
to maintain the goal. This metric indicates the final ability
accomplished by the agent in maintaining the goal. Longer
stretches indicate better progress in learning to maintain the
desired goal state.

M4 = max
j=1...J

(length of maintenance period j)

Reward Function for the Approach Goal
Type
An approach goal represents the agent’s act of attempting to get
closer to the desired world state. The main difference between
an approach and maintenance goal lies in the condition of
fulfillment. An approach goal is fulfilled when the agent is
getting closer to the desired state whereas a maintenance state is
fulfilled when the desired state is maintained and not violated. An
approach attempt leads to a behavior that functions to shorten the
distance, either physically or psychologically between the agent
and the desired outcome (Elliot, 2008).

The reward function for the approach goal can be expressed
as:

r(St) =

{

σ if d (St , G) < d (St−1, G) and d (St , G) > ρ

ϕ otherwise
(5)

where d(.), the distance function is used to check the approach
attempt by comparing the distance between the current state
St and the desired goal state G with the distance between the
previous state St−1 and G. The second condition of the equation
ensures that the distance is more than the defined distance
threshold ρ so that “reached” means an approach attempt and
not “approach and achieve”. Same as in Equation (4), the reward
for when the goal is not reached is ϕ with ϕ < σ in order to
incentivize the agent to find a shorter path to the goal state.

The following metrics may thus be used to evaluate this
reward function for the approach goal type. Each metric is again
assumed to be measured over a fixed period T of the agent’s
life. Since the approach and avoidance functions (detailed in
section Reward Function for the Avoidance Goal Type) reward
the approach and the avoidance attempts irrespective of the
distance between the current and the goal state, the cumulative
reward for the agent is very high. In order to get a better sense of
the proportion of the reward gained per trial, we use percentage
in the following metrics.

• Number of Steps the Goal is Approached as a Percentage of

T (M5). This metric indicates the approachability of the goal,
i.e., how easy is it to approach the goal state?

M5 =
M2 × 100

T

• Number of Approach Attempts as a Percentage of T (M6).

The agent is considered to have made an approach attempt if
it receives a positive reward for two or more consecutive steps,
i.e., signifying that the agent attempted to approach the goal
state.

M6 =
M1 × 100

T

Reward Function for the Avoidance Goal
Type
An avoidance goal type is the opposite of the approach goal type.
Avoidance is a behavior where an agent stays away or moves
away from an undesirable stimulus, object or event (Elliot, 2008).
An avoidance goal is considered fulfilled as long as the agent
is away from the state that it wants to avoid, and it increases
the distance from the state that it wants to avoid. Considering
those definitions, the reward function for avoidance goal has two
expressions, one that fulfills the condition of moving away from
the goal state and other that fulfills the condition of staying away
from the goal state, however, in the applications either of the
other expressions can be used on their own.

r(St) =

{

σ if d (St , G) > d (St−1, G) and d (St−1, G) > ρ

ϕ otherwise

(6)
Similar to Equation (5), there are two conditions in Equation
(6). The first condition checks for the avoidance attempt, while
the second checks that the distance between the previous state
St−1 and the desired goal state G is above the defined distance
threshold ρ, i.e., the current state is not G. Same as in Equation
(4), the reward for when the goal is not avoided is ϕ with ϕ < σ.
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Both the metricsM5 andM6 are applicable to avoidance goals.
In addition, it is also possible to measure:

• Number of Times Goal Not Avoided (M7). This is a count of
a number of times the agent fails to avoid the goal state.

M7 = count(t)
t=1...T

such that d (St , G) < ρ

Reward Function for the Achievement Goal
Type
An achievement goal is a state of the world that the agent strives
to fulfill (Duff et al., 2006), i.e., the state that the agent wants
to bring about in the future. When this target state is reached,
the goal is considered as succeeded. The learning process can be
restarted with a same/different initial starting state making the
process episodic if required.

Similar to Merrick et al. (2016), we use the concept of an event
detailed in section Background and RelatedWork to represent an
achievement task. An event (given as Et = St −St−1) allows the
agent to represent a change in its environment. An achievement
goal defines changes in the event attributes eit that the agent
should bring about. Thus, the reward for the achievement goal
can be generated in response to the experience of event Et as:

r(St , St−1) =

{

σ if d (Et , G) < ρ

ϕ otherwise
(7)

where similar to Equations (4–6), ρ is the distance threshold,
σ is generally 0 or a positive number to provide positive
reinforcement and ϕ < σ in order to incentivize the agent to find a
shorter path to reach the goal state. The metricM2 is most useful
for measuring the performance of this goal type.

The next section uses the metrics proposed in this section to
evaluate the goal-based reward functions detailed by Equations
(4)–(7).

EXPERIMENTS FOR MAINTENANCE,
APPROACH, AVOIDANCE, AND
ACHIEVEMENT GOAL TYPES

We used Webots software to simulate an e-puck mobile robot.
E-puck is a small differential wheeled mobile robot with eight
proximity sensors, of which we used 6. The sensors are labeled
in a clockwise direction as Front-Right, Right, Rear-Right, Rear-
Left, Left, and Front-Left. The red lines in Figure 1A show the
direction in which the sensors detect an obstacle. A high sensor
reading indicates that an object is close to that sensor. Figure 1B
shows a 5 × 5m square flat walled arena that we use for our
experimentation with primitive goal-based reward functions.

The arena, the state, and the action space of the robot are the
same as detailed by Merrick et al. (2016). The state of the mobile
robot comprises nine parameters: left wheel speed, right wheel
speed, orientation, left sensor value, right sensor value, front-left
sensor value, front-right sensor value, rear-left sensor value, and
rear right sensor value, i.e., the state vector is [ωR ωL θ sL sR sFL

sFR sRL sRR]. ωR and ωL are the rotational velocities of the right

and the left wheels. Their range is –π to π radians per second.
θ is the orientation angle of the mobile robot. Its value ranges
from –π to π. For our experiments, we use binary values for the
proximity sensors with 0 indicating that there is no object in the
proximity of the sensor, and 1 indicates that the object is near.
The rotational velocities and orientation are discretized into nine
values making the state space quite large.

The action space comprises five actions: 1–increase the left
wheel speed by δ, 2–increase the right wheel speed by δ, 3–
decrease the left wheel speed by δ, 4–decrease the right wheel
speed by δ, and 5–no change to any of the wheel speeds. A fixed
value of π/2 was used as δ.

In this paper, we use the goals generated for the mobile robot
based experiment by Merrick et al. (2016). The main concept
of the experience based goal generation detailed in Merrick
et al. (2016) is that the agent must explore its environment
and determine if the experience is novel enough to be termed
a potential goal. Goal generation phase is divided into two
stages: experience gathering stage and the goal clustering stage. In
the experience gathering stage, the mobile robot moves around
randomly in its environment. The states experienced by the
robot are recorded. These recorded states form an input to the
goal clustering stage which uses simplified adaptive resonance
theory (SART) network (Baraldi, 1998). SART is a neural network
based clustering technique. It is capable of handling a continuous
stream of data thus solving the stability-plasticity dilemma. The
network layer takes a vector input and identifies its best match in
the network. Initially, the network starts with no clusters. As the
data is read, its similarity is checked with any existing clusters.
If there is close enough match, it is clustered together else a new
cluster is created. As the clusters are created, they are connected
to the input nodes (i.e., the recorded experience). The number
of clusters created will depend on the vigilance parameter of
the SART network. Higher vigilance produces many fine-grained
clusters whereas a low vigilance parameter produces a coarser
level of clusters. The goals generated by this phase form input
for the goal learning phase.

In the learning phase, the robot learns the skills to accomplish
the goals. For the goal learning, we use an RL algorithm called
Dyna-Q. Dyna-Q (Sutton and Barto, 1998) is a combination
of Dyna architecture with RL’s Q Learning algorithm. With
Dyna-Q, the Q-Learning is augmented with model learning,
thus combining both model-based and model-free learning. The
RL agent improves its Q value function using both the real
experiences with its environment and imaginary experiences
(also called planning process) generated by the model of the
environment. During the planning process, that is typically run
several times for every real interaction with the environment;
the algorithm randomly selects the samples from the model
(continuously updated using the real experiences) and updates
the Q value function. This reduces the number of interactions
required with the environment which are typically expensive,
especially for robotic applications. Themodel of the environment
for our experiments keeps track of the state s’ that the mobile
robot lands in when it takes a particular action a in the current
state s. The model also keeps track of the reward that the robot
receives during that transition. The state transitions for our
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FIGURE 1 | (A) e-puck proximity sensors (shown by the red directional lines). (B) A sample walled arena.

experiments are deterministic in nature, i.e., when the robot takes
action a in state s, it will always land in a state s’. The number of
iterations for model learning can be varied as required. We set
this parameter to 25, i.e., the algorithmwill attempt 25 actions for
model learning (using imaginary experiences) before attempting
one action with the real environment.

Maintenance Goal Learning Results
Merrick et al. (2016) used SART based clustering to generate
two sets of goals, namely, maintenance and achievement goals.
Table 1 lists the set of maintenance goals described by the ID,
goal attributes and the meaning of the goal as detailed byMerrick
et al. (2016). These goals are the actual states experienced by the
mobile robot. This same set of goals are used in section Approach
Goal Results and Avoidance Goal Results treated as approach
and avoidance type, respectively. Table 4 in section Achievement
Goals, lists the set of achievement goals generated by Merrick
et al. (2016).

Table 1 also shows the results of the experiments for these
goals treated as maintenance goals. The columns M1, M2, M3,

and M4 are the metrics detailed in section Reward Function for
the Maintenance Goal Type. The goals are states experienced
by the mobile robot treated as maintenance goal for these
experiments, i.e., the aim of the robot is to maintain these
goal states. The e-puck mobile robot simulation was run for
10 trials each of 25,000 steps for each of the 12 goals. Results
were averaged over 10 trials, and the standard deviation is
also shown in the table. Values of the parameters of Equation
(4) were as follows: ρ was 0.9, σ was 1, ϕ was −1 and
d was the Euclidian distance. The RL exploration parameter
epsilon was set to 0.15, and the decay schedule was linear.
When a trial ended, the end position and orientation of the e-
puck mobile robot became the start position and orientation
for the next trial. However, the RL Q table was reset after
each trial, so no learning was carried forward between the
trials.

Once the robot reaches the goal state, it maintains it until it
comes across adverse conditions, i.e., for G1 (move forward at
high speed), once the goal state is reached, the robot will maintain
that state while it is in the open space. However, once it reaches

a wall, it is not able to maintain the state. We consider that the
robot has learnt to attain the goal if the robot is able to reach
the goal state over and over again and remain in that state for
two time-steps or more. This is indicated by the column for
M1. This measure is high for G1, G2, G3, G4, G6, G7, G10, and
G12 indicating that the robot is able to maintain those goals.
However, that measure is very low for goal G5 and zero for
G8 which shows that the robot is not able to learn to maintain
those goal states. This is due to the lack of opportunity, i.e.,
the robot has to be in a specific situation to be able to learn to
maintain those goals. Those goals require the robot to be close to
a wall, the likelihood of which is small because of the size of the
arena.

The measure M1 for goal G9, which is a valid goal, is zero.
The mobile robot was not able to achieve that goal because of
the lack of opportunity. The required situation to learn that
goal would be that the robot should find itself in the bottom
left corner at a particular orientation. The measure M1 is zero
for G11 as well. The reason for that is because goal G11 is an
unreasonable goal. According to that state, the wall is close to
the Right and Front Left sensors but not Front Right. It is hard
to imagine a position of the mobile robot that represents such
state. The goals created by SART are the cluster centers. It appears
that this is an example of the clustering algorithm creating a
hybrid, unreasonable goal which could be either because the
granularity of the clusters is coarser than it should be, resulting
in the cluster centroid not being a correct representative of
the cluster or that invalid states experienced by the robot due
to noise. The column “Is Goal Valid?” is marked “No” in this
case.

Figure 2A shows a sample trajectory of the mobile robot for
G1. The trajectory is a two-dimensional plot of the path followed
by the mobile robot in the arena during the trial. The goal is
attained by maintaining a high speed at a particular orientation.
The robot receives a positive reward for the time steps that it
maintains the goal. It is only possible for the robot to attain G1

when it is in the open area of the arena. When it reaches the
wall, it is no longer able to maintain goal G1. The robot has to
learn to turn around and attain the goal again. This is evident
in Figure 2A that shows multiple straight stretches where the

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2018 | Volume 12 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Dhakan et al. Intrinsic Rewards Based on Goal Types

Table 1 | Experiments and results for maintenance goals.

ID Goal attributes Meaning of the goal M1 M2 M3 M4 Is goal valid?

G1 (2.5, 2.5, 1.8, 0, 0, 0, 0, 0, 0) Move forward at high speed 37 ± 8 493 ± 91 14 ± 4 154 ± 7 Yes

G2 (0.4, 0.4, 1.2, 0, 0, 0, 0, 0, 0) Move forward at low speed 121 ± 25 568 ± 124 4 ± 1 88 ± 0 Yes

G3 (−2.4, −2.4, 1.4, 0, 0, 0, 0, 0, 0) Move backward at high speed 88 ± 8 888 ± 179 10 ± 2 188 ± 9 Yes

G4 (−0.4, −0.4, −1.3, 0, 0, 0, 0, 0, 0) Move backward at low speed 192 ± 28 866 ± 110 4 ± 0 71 ± 0 Yes

G5 (0.0, 0.0, −2.8, 0, 1, 0, 0, 0, 0) Stop for obstacle in front 1 ± 1 3 ± 3 1 ± 0 5 ± 0 Yes

G6 (−0.4, −0.4, 2.9, 0, 0, 0, 0, 0, 0) Move backward at low speed 142 ± 24 601 ± 106 4 ± 0 37 ± 1 Yes

G7 (−0.8, −0.8, 1.6, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 157 ± 26 848 ± 127 5 ± 0 53 ± 2 Yes

G8 (0.2, 0.0, 2.4, 1, 0, 0, 0, 0, 1) Stop for obstacle behind 0 ± 0 0 ± 0 0 ± 0 0 ± 0 Yes

G9 (0.0, −0.3, 2.1, 1, 0, 0, 0, 1, 0) Stop for obstacle at left and back 0 ± 0 0 ± 0 0 ± 0 2 ± 0 Yes

G10 (−1.9, −1.9, −2.2, 0, 0, 0, 0, 0, 0) Move backward at moderate speed 162 ± 23 763 ± 105 4 ± 0 52 ± 2 Yes

G11 (0.0, 0.0, 3.0, 0, 1, 1, 0, 0, 0) Stop for obstacle in front 0 ± 0 0 ± 0 0 ± 0 0 ± 0 No

G12 (1.2, 1.2, −2.7, 0, 0, 0, 0, 0, 0) Move forward at moderate speed 100 ± 18 427 ± 85 4 ± 0 36 ± 1 Yes

FIGURE 2 | (A) Mobile robot trajectory for G1. (B) Mobile robot trajectory for G3. (C) Likelihood of the reward for G1, G3, and G12.

FIGURE 3 | (A) Trajectory for G12. (B) Simultation for a G12 run for 100,000 steps.

robot attainsG1, reaches the wall, tries to turn around and attains
the goal again. Figure 2B shows the trajectory of the mobile
robot for G3 (move backward at high speed) and Figure 3A

shows the trajectory for goal G12 (move forward at moderate
speed).

For goals G1, G3, and G12 the robot is only able to attain the
goals when it is in the open area of the arena. Figure 2C shows
the likelihood diagramwith the wall shown in orange. In the open
area of the arena shown in green, the robot is more likely to attain

the goal, i.e., to receive a positive reward. In the area close to the
wall (shown in yellow) the likelihood reduces. The probability of
the mobile robot to be in the green zone can be calculated as
follows for the environment with the size of the board 5 × 5m
and sensor range of e-puck 0.06m. If we were to discretize the
environment into squares of 0.06m, then there would be 83 ×

83, i.e., 6,889 squares in the grid. Green zone for G1, G3, and G12

will consist of 81× 81, i.e., 6,561 squares. If we were to randomly
select a square in the green zone, the probability would be (81
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× 81)/(83 × 83) = 95.23%. The orientation and wheel speeds
are divided into nine buckets each. Hence the probability of the
robot to be in a particular square with particular wheel speed and
orientation will be (81× 81)/(83× 83× 9× 9× 9)= 0.13%.

For G12 we let the simulation for one of the trials continue
for 100,000 steps, the trajectory of which is shown in Figure 3B.
The straight-line trajectory shows that the robot is maintaining
the goal of moving forward at a moderate speed, i.e., it is in the
region of opportunity (Figure 2C). When the robot reaches the
wall, it experiences states that it may not have experienced in the
past. However, it eventually learns to attain the goal of moving
forward at a moderate speed.

Figures 4A,B shows the trajectory for goal G5 (stop for an
obstacle in front) and G8 (stop for obstacle behind), respectively.
The robot does not learn to attain these goals. The obstacles in the
arena are the four walls hence the likelihood of the reward are the
areas closer to the wall. Considering the orientation for goals G5

andG8, the mobile robot has to be beside the top wall as shown in
green in Figure 4C. The probability of the mobile robot to be in
a particular square with the orientation required for G5 or G8 is
(81)/(83× 83× 9× 9× 9)= 0.002%. This lack of opportunity is
the reason why the robot does not learnG5 andG8 goals. In order
to confirm this hypothesis, we continued the experiments with
these two goals with the reduced arena size. The size of the arena
was reduced to 0.25 × 0.25m to increase the opportunity for the
mobile robot to be near a wall. In that arena, the probability of the
mobile robot to find itself in the required situation is increased by
the factor of 400 (20 × 20) to 0.65%, thus increasing its ability to
attain G5 and G8 goals.

Approach Goal Results
Table 2 shows the results of the experiments for the approach
goals. The 12 goals and their corresponding goal IDs, goal
attributes and the meaning of the goal, are the same as the goals
detailed in Table 1. The goals for these set of experiments will be
treated as approach goals, i.e., the aim of the robot is to approach
those goal states. Values of the parameters of Equation (5) and the
method in which experiments were conducted for the approach
goals were the same as detailed in section Maintenance Goal
Learning Results.

The design of the reward function for the approach goal type
is such that it rewards an approach attempt. Hence if the agent
is getting closer to the goal, it receives a positive reward. Goals,
when treated as approach goals, are relatively straightforward to
attain as seen in the M5 column in Table 2 (average number of
steps positive reward received as a percentage). In the case of
the goal G1, for instance, the agent receives a positive reward for
32.49% of the time steps. This is because the attempt to approach
the goal is rewarded irrespective of the distance between the
current state and the goal state. Results also show that all the
goals, when treated as approach type, are attainable (even the
invalid goals) indicating that it is possible to approach the goal
states of each of the 12 goals.

Avoidance Goal Results
Table 3 shows the results of the experiments for the avoidance
goals. The 12 goals and their corresponding goal IDs, goal
attributes, and the meaning of the goal, are the same as the goals
detailed in Table 1. The goal states for these experiments are
treated as avoidance goals, i.e., the aim of the robot is to avoid
those goal states. Values of the parameters of Equation (6) and the
method in which experiments were conducted for the avoidance
goals were the same as detailed in section Maintenance Goal
Learning Results.

The reward function for the avoidance goal type rewards the
attempt to avoid the goal, i.e., the agent is moving away from the
goal state. As it can be seen in the table, the goals, when treated as
avoidance goals, are relatively easy to attain. This is because the
attempt to avoid the desired goal state is rewarded irrespective of
the distance between the current state and the goal state. Based
on the M7 column (average number of times the goal state was
not avoided), it can be said that even the goals that are difficult to
attain due to lack of opportunity, when treated as maintenance
goals (for example, G5, G8, and G9), are easier to avoid when
treated as avoidance goals.

Achievement Goal Results
Table 4 lists the set of achievement goals generated by Merrick
et al. (2016). The goal ID, goal attributes, and the meaning of
the goal are the output of the SART based clustering as detailed
by Merrick et al. (2016). The goal state is not the actual state

FIGURE 4 | (A) Trajectory for G5. (B) Simultation for a G8. (C) Likelihood of the reward for G5 and G8.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2018 | Volume 12 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Dhakan et al. Intrinsic Rewards Based on Goal Types

Table 2 | Experiments and results for approach goals.

ID M5 M6

G1 32.49% ± 0.64 7.56% ± 0.16

G2 34.66% ± 0.62 8.00% ± 0.21

G3 36.58% ± 0.41 8.39% ± 0.14

G4 35.88% ± 0.43 8.52% ± 0.11

G5 37.27% ± 0.88 8.84% ± 0.34

G6 37.25% ± 0.38 8.74% ± 0.19

G7 36.77% ± 0.57 8.76% ± 0.22

G8 37.15% ± 0.64 8.73% ± 0.22

G9 36.71% ± 0.98 8.60% ± 0.26

G10 36.12% ± 0.60 8.24% ± 0.23

G11 36.89% ± 0.86 8.74% ± 0.26

G12 33.58% ± 0.58 7.40% ± 0.17

experienced by the mobile robot but is an event as described by
eit = sit− sit−1. Thus, for an achievement goal type, the aim of the
mobile robot is to learn to achieve the transition described by that
event, for example, to learn to achieve goal aG5 listed in Table 4,
which is to increase speed of both wheels, the robot must learn to
increase its right wheel speed by 0.9 and left wheel speed by 0.6 in
a single transition of state. The goal is considered achieved when
the transition eit is reached regardless of what the state sit−1is.

Table 4 also shows the results of the experiments (with a
95% confidence interval) for the achievement goals. The e-puck
mobile robot simulation was run for 10 trials for each goal with
25,000 steps in each trial. Parameters of Equation (7) were same
as in the above experiments, i.e., ρ was set to 0.9, σ set to 1, ϕ set
to −1 and d was the Euclidian distance. Also, the RL exploration
parameter epsilon was set to 0.15 with a linear decay schedule.
For achievement goals too, when a trial was finished the next trial
started at the same position and orientation of the e-puck mobile
robot at which the previous trial ended. TheQ table, however, was
reset after each trial thus there was no learning carried forward
between the trials.

While the robot easily achieved goals aG1 and aG5, it could
either achieve other valid goals only a few times or not able to
achieve them at all. Goals aG2, aG8, aG10, aG11, aG13, and aG17

could be achieved only a few times whereas goals aG4, aG9, aG14,
aG16, and aG21 could not be achieved at all. The reason for that
is due to the lack of opportunity. For example, the mobile robot
must be near a wall for the event of detecting an obstacle at the
front or turning right to avoid an obstacle behind. The argument
made in section Maintenance Goal Learning Results regarding
reducing the size of the arena to increase the opportunity for
learning is valid here too.

Goals aG3, aG6, aG7, and aG15 could not be achieved due
to the granularity of discretization. For the experiments in this
paper, the wheel speed and orientation are discretized into nine
values ranging from –π to π. The wheel speed difference for the
events for those goals was too small hence when discretized; the
values returned are 0 resulting in no change to the wheel speed,
i.e., the event of the robot turning left, or right is not detected.
For example, consider aG7 where the goal is to turn right by

Table 3 | Experiments and results for avoidance goals.

ID M5 M6 M7

G1 36.67% ± 0.32 8.63% ± 0.14 45

G2 34.88% ± 0.67 8.05% ± 0.25 14

G3 32.61% ± 0.41 7.53% ± 0.16 12

G4 33.16% ± 0.53 7.62% ± 0.14 12

G5 35.60% ± 1.01 8.21% ± 0.30 1

G6 34.22% ± 0.94 7.95% ± 0.25 16

G7 33.46% ± 0.55 7.75% ± 0.22 13

G8 34.90% ± 0.84 8.11% ± 0.18 0

G9 35.54% ± 0.64 8.31% ± 0.17 0

G10 32.74% ± 0.75 7.52% ± 0.16 6

G11 35.46% ± 0.97 8.26% ± 0.33 0

G12 37.00% ± 0.77 8.56% ± 0.20 7

increasing the right wheel speed by 0.1 (also achieving the change
in orientation of −0.1). Discretization of the range of 2π radians
into 9 buckets gives the granularity of 0.7 radians, thus making
the change of 0.1 radians difficult to detect. This, however, does
not mean that the goal is invalid. It is a valid goal, just that, for the
robot to be able to learn a goal of such precise transition would
require experiments to be run with lower granularity values of
wheel speed and orientation, which in turn increases the state
space and the size of the Q table and drastically increases the time
to learn to achieve those goals.

Figure 5A shows the trajectory for aG5 (increase speed of both
wheels) for one of the trials. The robot learns to attain this goal.
In effect, this goal means that the robot has to keep increasing
the speed of its wheels. Attaining the maximum speed for both
wheels results in the robot not able to achieve the goal anymore
and thus receives a negative reward. The robot, however, is again
able to attain the goal. This continues until the end of the trial.

Figure 5B shows the trajectory for aG22 (turn left) for 25,000
steps. The robot is not able to learn to achieve that goal. The
trajectory, however, is surprising, showing long stretches of
straight line. We let that trial continue for 100,000 steps, the
trajectory for which is shown in Figure 5C. The robot still does
not learn to achieve the goal. This is because the change in the
wheel speed, due to the event (2.0 radians per second for the
left wheel speed), is too large for one-time step. In a single step,
the maximum change can only be π/2 radians as per the design
of the action set. Hence, the goal appears to be unreasonable.
The goals aG19 and aG20 too appear to be unreasonable for the
same reason, and as can be seen from Table 4, they too could
not be achieved. aG12 is unreasonable because goal attributes are
showing transition for Right and Front-Left sensors without any
transition for Front-Right. It is hard to imagine the location of the
mobile robot in the arena that will result in such an event. aG18

too appears unreasonable because considering the change to the
wheel speeds (1.2 and 0.5 radians per second), the transition in
the orientation (−0.1 radians) is too small.

Either such unreasonable events experienced by the robot
during the experience gathering stage in the experiments run by
Merrick et al. (2016) could be due to noise, delay in sensing or
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Table 4 | Experiments and results for achievement goals.

ID Goal attributes Meaning of goal M2 Is goal valid?

aG1 (0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0) Achieve no change 25000 ± 0 Yes

aG2 (0.0, 0.0, 0.0, 0, 0, 1, 0, 0, 0) Detect obstacle in front 43 ± 21 Yes

aG3 (−0.1, 0.0, 0.0, 0, 0, −1, 0, 0, 0) Turn left to avoid obstacle on the right 0 ± 0 Yes

aG4 (−0.6, 0.0, −0.1, 0, 0, 0, −1, 0, 0) Turn left to avoid obstacle on the right 0 ± 0 Yes

aG5 (0.9, 0.6, 0.0, 0, 0, 0, 0, 0, 0) Increase speed of both wheels 6521 ± 268 Yes

aG6 (−0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0) Turn left 0 ± 0 Yes

aG7 (0.1, 0.0, −0.1, 0, 0, 0, 0, 0, 0) Turn right 0 ± 0 Yes

aG8 (0.1, −0.4, 0.0, 0, 0, 0, 0, −1, −1) Turn right to avoid obstacle behind 54 ± 17 Yes

aG9 (−0.3, 0.4, −0.3, 0, 0, −1, −1, 0, 0) Turn left to avoid obstacle on the right 0 ± 0 Yes

aG10 (0.0, 0.5, 0.2, 0, 0, 1, 0, 0, 0) Turn left to detect obstacle on the right 29 ± 16 Yes

aG11 (−0.6, −0.8, −0.2, 0, 0, −1, 0, 0, 0) Turn right to avoid obstacle 10 ± 4 Yes

aG12 (0.0, 0.7, 0.3, 0, −1, 1, 0, 0, 0) Turn left to sense obstacle on right 0 ± 0 No

aG13 (0.2, −0.8, −0.4, 0, 0, 0, 0, 1, 0) Turn right to sense obstacle on left 12 ± 4 Yes

aG14 (0.0, 0.6, 0.1, 0, 0, 0, 0, 1, 1) Turn to detect obstacle behind 0 ± 0 Yes

aG15 (0.0, −0.1, 0.0, 0, 1, 1, 0, 0, 0) Turn right to sense obstacle in front 0 ± 0 Yes

aG16 (1.0, 0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn right to sense obstacle on left 0 ± 0 Yes

aG17 (0.7, 0.9, 0.3, 0.0, −1, 0, 0, 0, 0) Turn left to sense obstacle on left 18 ± 3 Yes

aG18 (1.2, 0.5, −0.1, 0, −1, 0, 0, 0, 0) Turn to avoid obstacle on left 0 ± 0 No

aG19 (0.2, 2.7, −0.2, 0, −1, 0, 0, 0, 0) Turn to avoid obstacle on left 0 ± 0 No

aG20 (−1.7, −0.5, 0.1, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on right 0 ± 0 No

aG21 (−0.7, −1.2, −0.3, 0, 1, 0, 0, 0, 0) Turn to detect obstacle on left 0 ± 0 Yes

aG22 (1.4, 2.0, 0.2, 0, 0, 0, 0, 0, 0) Turn left 0 ± 0 No

FIGURE 5 | (A) Trajectory for aG5. (B) Trajectory for aG22 (run for 25,000 steps). (C) Simultation for a aG22 run for 100,000 steps.

that the mobile robot might have got stuck and then unstuck
to the wall resulting in an invalid event (et = st − st−1) or
that the unreasonable events were due to an error in clustering,
resulting in cluster centroid not being a correct representative of
the cluster. If latter was the case, then it requires reanalysis of
the generated clusters. Possible solutions to rectify the incorrect
representation of the cluster centroid could be to place a
minimum threshold on the cluster size or to shift the cluster
centroids to the nearest valid attribute value. In any case, those
goals appear unreasonable and are marked as invalid in the
table. Based on the findings of the above experiments, for the
experiments in the next section, we have removed the orientation
attribute from the RL state vector, reduced the size of the arenas
and, not used any of the invalid goals.

DEMONSTRATION OF HOW PRIMITIVE
GOAL-BASED REWARD FUNCTIONS CAN
BE COMBINED

Not all tasks can be represented as a single goal type. Consider
an example detailed in Dastani and Winikoff (2011), if the task
for a personal assistant agent that manages a user’s calendar is
to book a meeting, it can be represented as an achievement goal,
however people’s schedules change and hence to ensure that the
meeting invite remains in the calendar of all the participants, the
task is better modeled by a combination of goal types. The goal
can be represented as “achieve then maintain” where the aim is
to achieve the goal and then maintain it. As another example,
consider a wall following mobile robot. The robot has to first
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approach a wall and then maintain a set distance from the wall
either to its left or to its right side. This goal can be represented
as “approach then maintain” where the aim of the mobile robot is
to first approach the goal state (i.e., a wall to its left or right) and
then maintain it. We term this as a compound goal-based reward
function, as it can be built from multiple primitive goal-based
reward functions.

In this section, we demonstrate compound goal-based reward
functions constructed using if-then rules to trigger different
primitive reward functions in different states. In this paper,
the if-then rules are hand-crafted as we aim to demonstrate
that primitive reward functions can be combined to motivate
learning of complex behaviors. The question of how to do
this autonomously is discussed as an avenue for future work
in Section Autonomous Generation of Compound Reward
Functions and Conditions for Goal Accomplishment.

Experimental Setup
To demonstrate compound goal-based reward functions, we use
the e-puck robot in three new environments. The environments
are as shown in Figures 6A–C. The maze environment, shown
in Figure 6A, has walls to form a simple maze. In this
environment, the goal of the robot is to follow a wall.
That goal is actually a compound goal. In order to achieve
the goal, the robot has to learn primitive goals detailed
in Tables 1–4. The compound Function 1 details the if-then
rules to achieve this goal. The environment with obstacles,
shown in Figure 6B, has cylindrical and cuboid objects that
act as obstacles. The goal of the robot is to learn to avoid
obstacles. The compound Function 2 details the if-then rules
to achieve that goal. The third environment is shown in
Figure 6C is a circular arena with tracks. The goal of the
robot is to learn to follow a track which is detailed by
compound Function 3. Experiments were run for the following
goals expressed using compound goal-based reward functions.
The primitive reward functions shown in the if-then rules
(Function 1, Function 2 and Function 3) are the same as in
Tables 1–4.

We use the same Dyna-Q algorithm that is detailed in
section Experiments forMaintenance, Approach, Avoidance, and
Achievement Goal Types. Action selection was using the epsilon-
greedy method with epsilon parameter set to 0.1 throughout the
learning process. 10 trials were run for each of the experiment
with each trial consisting of 25,000 steps.

The state space for this robot is different from that in
section Experiments for Maintenance, Approach, Avoidance,
and Achievement Goal Types. In addition to the six distance
sensors as detailed in the experiments in section Experiments
for Maintenance, Approach, Avoidance, and Achievement Goal
Types, we also use the ground sensors for these experiments.
We label the three ground sensors as Ground-Left, Ground-
Centre, Ground-Right. The state of the mobile robot comprises of
following parameters: left wheel direction, right wheel direction,
left sensor value, right sensor value, front-left sensor value,
front-right sensor value, rear-left sensor value, rear right sensor
value, ground left sensor value, ground center sensor value and
ground right sensor value. The state is a vector represented

Function 1 | Wall following goal in the maze arena.

if obstacle on the left

aG17 – achieve turning left

elseif obstacle close on the left

G1 – maintain moving forward

elseif obstacle on the right

aG11 - achieve turning right

elseif obstacle close on the right

G1 – maintain moving forward

elseif obstacle at the front and left /*i.e,corner on the left */

achieve turning right

elseif obstacle at the front and right /*i.e,corner on the right */

achieve turning left

elseif obstacle at the front

aG11 - achieve turning right

elseif no obstacle nearby

G1 – maintain moving forward

end

Function 2 | Obstacle avoidance goal in the arena with obstacles.

if obstacle on the left

aG13 – achieve turning right

elseif obstacle on the right

aG4 - achieve turning left

elseif obstacle at the front and/or side

aG11 - achieve turning right

elseif obstacle at the back

G1 – maintain moving forward

elseif no obstacle anywhere nearby

G1 – maintain moving forward

end

Function 3 | Track following goal in the circular arena with tracks.

if the obstacle anywhere nearby

aG11 - achieve turning right

elseif track to the left

achieve turning left

elseif track to the right

achieve turning right

elseif on the track

G1 – maintain moving forward

end

by [ωR ωL sL sR sFL sFR sRL sRR sGL sGC sGR]. ωR and ωL

are the rotational velocities of the right and the left wheels
that are discretized to binary values with 1 indicating that the
wheel is moving forward and 0 indicating that it is moving
backwards. For the proximity sensors, we use binary values with
0 indicating that there is no object in the proximity of the sensor
and 1 indicates that the object is near. For ground sensors as
well, we use binary values with 0 indicating that the sensor is
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FIGURE 6 | (A) Maze arena. (B) Arena with obstacles. (C) A circular arena with tracks.

Table 5 | Results for compound goals.

ID Goal Description M1 M2 M3 M4

G1 Wall following 1373 ± 29 16833 ± 115 10 ± 0 78 ± 6

G2 Avoiding obstacles 747 ± 24 13613 ± 109 11 ± 0 81 ± 8

G3 Following a track 992 ± 24 14634 ± 127 9 ± 0 74 ± 8

detecting light color and 1 indicating that it is indicating dark
color.

The action space comprises of three values: 1–turn left, 2–
move forward, and 3–turn right.

Results
Table 5 shows the results of the wall following, obstacle
avoidance, and track following goals. Results were averaged
over 10 trials, and its standard deviation is shown. The metrics
used to measure agent’s performance are the same as the
ones defined in section Primitive Goal-based Motivated Reward
Functions however here themetricsM1,M2,M3 andM4 measure
cumulative reward gained by the agent for all the primitive goals
combined, i.e., the measurement for the compound goal-based
reward.

Figure 7 shows the trajectory for one of the trials of the
mobile robot learning to follow the wall using compound goal-
based reward function (Function 1). The function comprises of
a combination of achievement and maintenance goal types each
of which are triggered in a specific situation. When there is no
wall in the proximity, the robot is learning to move forward.
Once it is near the wall (either to the left or the right), it learns
to follow the wall on that side. When it reaches the edge of the
wall, it is not able to follow it around for the initial two or three
attempts however eventually learns to follow the wall around and
continues to follow the wall as shown in the zoomed-in section
of Figure 7. Trajectory labeled 4 in the zoomed-in section of
Figure 7 is the one where the agent follows the wall all the way
around.

Figure 8A shows the trajectory for one of the trials of the
mobile robot learning to avoid obstacles using the compound

goal-based reward function (Function 2). This function too
comprises a combination of achievement and maintenance goal
types each of which are triggered in a specific situation. When
there is no obstacle nearby, the robot has to learn to move
forward. When it is close to an obstacle, it has to learn to
turn right and when it has the obstacle at its back it has to
learn to move forward, thus moving away from the obstacle.
Figure 8B shows the trajectory for one of the trials of the mobile
robot learning to follow a track using the compound goal-based
reward function (Function 3). When the robot has a wall in
its proximity, it has to learn to turn right. When near the
track, it has to learn to turn toward the track such that it is
entirely on the track. Once on the track, it has to learn to move
forward.

CONCLUSION AND FUTURE WORK

This paper proposed reward functions for reinforcement
learning based on the type of goal as categorized by the
Belief Desire Intension community. The reward functions for
the maintenance, approach, avoidance, and achievement
goal types exploit the inherent property of its type,
making them task-independent. Using simulated e-puck
mobile robot experiments, we show how these intrinsic
reward functions bridge the gap between autonomous goal
generation and goal learning thus endowing the robot with
the capability to learn in an autonomous and open-ended
manner.

We present metrics to measure the agent’s performance.
The measurements show that using the proposed reward
functions; all the valid goals will be learnt, some slower than
the others due to the lack of opportunity. The goals that
are not learnt are either very difficult to learn, unreasonable
or invalid. The results also highlight the importance of
attributes used in the design of the state vector as it can
severely limit the learning opportunity, for example, usage
of orientation attribute in the state vector. Although, this
paper does not make any claim whether for or against any
goal generation techniques, in the future work, the findings
from this paper could be used to tune the goal generation
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FIGURE 7 | Trajectory for wall following goal in the maze arena.

FIGURE 8 | (A) Trajectory for obstacle avoidance goal in the arena with obstacles. (B) Trajectory for track following goal in the arena with tracks.

technique used by Merrick et al. (2016). We also show that
the maintenance goals are easier to learn than the achievement
goals. Approach and avoidance goals are even easier due to
their inherent nature. This is because, for the maintenance
goal, the agent is rewarded only when it can maintain the
distance below a certain threshold, whereas, for approach and
avoidance goals, the agent is rewarded for the approach or
the avoidance attempt irrespective of its distance from the
goal.

We further show how rather than treating the goal of
a single type, the agent can decide whether it wants to
maintain, approach, avoid or achieve the goal based on
the situation it is experiencing. This situation specific
goal type usage means the agent now knows what it
has to learn in a specific situation thus directing the
learning. A compound goal-based reward function can
be designed by chaining any number of primitive reward
functions. This raises following directions for future
work.

Autonomous Generation of Compound
Reward Functions
This paper demonstrated that primitive goal-based reward
functions could be combined using if-then rules to create
learnable compound reward functions. However, this raises a
question whether it is possible for an agent to self-generate
such rules or some other means of combining the primitive
reward functions. One potential solution could be for the agent
to autonomously determine the structure or regions in its state
space each of which relates to a primitive goal. Merrick et al.
(2016) have shown how the history of experienced states can be
used to generate the goals. In a similar fashion, a coarse level
clustering can be run on the experienced states to form these
regions in the state space. Once those regions are known, one
can then map the regions (primitive goal) with the goal state
(compound goal) to enable the generation of the if-then rules.
A formal framework is required for identifying complementary
or conflicting goals so that complementary goals can be formed
into compound reward functions and conflicting goals avoided.
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Conditions for Goal Accomplishment
We also saw in this work that the agents learn solutions to some
goals more effectively when they are in certain situations where
the conditions support learning of that particular goal. This
suggests that there is a role for concepts such as opportunistic
learning (Graham et al., 2012) to maximize the efficiency of
learning such that the agent only attempts goals that are feasible
in a given situation.
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