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Learning (inverse) kinematics and dynamics models of dexterous robots for the entire

action or observation space is challenging and costly. Sampling the entire space is

usually intractable in terms of time, tear, and wear. We propose an efficient approach

to learn inverse statics models—primarily for gravity compensation—by exploring only

a small part of the configuration space and exploiting the symmetry properties of

the inverse statics mapping. In particular, there exist symmetric configurations that

require the same absolute motor torques to be maintained. We show that those

symmetric configurations can be discovered, the functional relations between them

can be successfully learned and exploited to generate multiple training samples from

one sampled configuration-torque pair. This strategy drastically reduces the number of

samples required for learning inverse statics models. Moreover, we demonstrate that

exploiting symmetries for learning inverse statics models is a generally applicable strategy

for online and offline learning algorithms. We exemplify this by two different learning

approaches. First, we modify the Direction Sampling approach for learning inverse

statics models online, in a plain exploratory fashion, from scratch and without using a

closed-loop controller. Second, we show that inverse statics mappings can be efficiently

learned offline utilizing lattice sampling. Results for a 2R planar robot and a 3R simplified

human arm demonstrate that their inverse statics mappings can be learned successfully

for the entire configuration space. Furthermore, we demonstrate that the number of

samples required for learning inverse statics mappings for 2R and 3R manipulators can

be reduced at least by factors of approximately 8 and 16, respectively–depending on the

number of discovered symmetries.

Keywords: symmetries, inverse statics models, inverse dynamics models, efficient learning, direction sampling,

goal babbling

1. INTRODUCTION

The learning of motor capacities and skills has always been a core topic of the developmental
approach to robot cognition (Asada et al., 2001), as mastering the body is fundamental for any
embodied agent. Since the seminal work on human motor control in the 1990th (Wolpert and
Kawato, 1998; Wolpert et al., 1998), it is widely believed that forward and inverse models play a
crucial role in the motor control architectures. Numerous learning schemes have been proposed
during the last decades for exploratory learning of robot forward and inverse kinematics, where in
the developmental context exploratory learning without the initial constraint of a particular task or
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trajectory is the main focus. Note that in the latter case more
specialized schemes can be applied both for kinematics (D’Souza
et al., 2001) and dynamics (Peters and Schaal, 2008; Meier et al.,
2016) and the learning problem is locally convex which simplifies
the task significantly. Motor control for the entire configuration
space, however, remains a major challenge because sampling the
entire action or observation space is usually very costly and the
non-convexity of the model (e.g., due to kinematic redundancy)
poses additional problems.

Efficiency is one of the major challenges in learning (inverse)
kinematics and dynamics models. Reducing the number of
required samples to learn these models in practical experiments
is beneficial regarding time and hardware costs. We therefore
propose symmetry-based exploration to effectively reduce the
number of required samples. This can be done by exploiting the
mapping properties to learn a model that is valid for the entire
action/observation space. For example, it is a particular property
of inverse statics maps (ISMs) (i.e., the map that assigns a
required static torque to maintain a desired joint configuration of
the robot) that multiple configurations require the same absolute
static torque to be maintained. We denote this configuration
set as symmetry set. We exploit the functional relation between
configurations in the symmetry set to show that learning ISMs
can be done very efficiently by exploring only one configuration
and learning the corresponding symmetric configurations. To
this aim, we propose a scheme to discover and learn symmetries,
and then we exploit these symmetries to drastically reduce
the number of required samples regardless of the particular
learning scheme. The paper demonstrates the generic nature of
the symmetry concept to accelerate the learning process through
exploiting symmetries with different learning schemes online and
offline.

Learning ISMs has previously been done offline only and by
using a feedback-controller to collect samples and to enhance an
already existing model (e.g., Luca and Panzieri, 1993; Xie et al.,
2008). In this paper, Direction Sampling (Rolf, 2013), which has
been previously proposed as an extension of Goal Babbling (Rolf
et al., 2011) to learn inverse kinematics (IK), is modified to learn
ISMs also online, from scratch and without using any controller
in a plain exploratory fashion. Learning ISMs in an exploratory
fashion is challenging as the straightforward application of
random torques bears the risk to destroy any manipulator if
no further safety layers are present and to respect joint-wise
torque limits alone does not solve this problem, other than in
kinematics, where joints limits can be enforced easily and without
endangering the robot hardware. Hence, the exploration may
yield inadmissible torques which result in accelerating the robot
manipulator and the robot hitting its joint limits1. Consequently,
the learner will be disturbed because of the resulting invalid
training sample consisting of inadmissible torque which is not
corresponding to the joint limits’ configuration where the robot
settles in. To avoid this situation, torque combination limits must
be considered in addition to the joint-wise torque limits. We

1Obviously, in practical applications, a software joint limit is employed to avoid

reaching the hardware joint limit.

therefore explore and learn the set of admissible static torques
to overcome this issue as explained in detail in section 5.1.

These aforementioned challenges also illustrate more
restrictions and difficulties of learning ISMs in comparison
to learning IK. For example, the application of a torque
produces dynamics, other than in the kinematics domain where
application of a joint command can be treated as instantaneously
effective, because the underlying joint controllers hide and
control the dynamics. Furthermore, the training samples
in IK are always valid samples since the end-effector pose
always corresponds to a valid robot configuration even when
the robot hits its joint limits, which is not the case in ISMs.
Moreover, IK usually maps from Cartesian (observation) space
to configuration (action) space, i.e., from a lower dimensional
space to a higher dimensional one, while the dimensions of
observation and action spaces in ISMs are usually identical
since ISMs map from configuration (observation) space to
motor (action) space. Learning the mapping between spaces
with identical dimensions is more difficult as both dimensions
scale with the number of DoFs. Consequently, more samples are
required to learn the model in contrast to IK. Hence, exploiting
symmetries and exploring only a small part of the configuration
space is also motivated to mitigate the curse of dimensionality
problem. It reduces the number of required samples as the
efficiency factor increases for higher DoFs. For instance, it
increases to 8 for a 2R planar manipulator and to 16 for a 3R
robot manipulator as illustrated in section 7.

The remainder of the paper is structured as follows:
Section 2 reviews related work. Section 3 introduces the concept
of symmetries. Section 4 explains symmetry discovery and
symmetry exploitation in learning. Section 5 addresses learning
ISMs online and explains the proposed Constrained Direction
Sampling. Lattice sampling is introduced briefly in section 6.
Section 7 presents experimental results and the efficiency gained
by exploiting symmetries for learning ISMs which is illustrated
by Constrained Direction Sampling (online) and a batch learning
technique using lattice sampling for a 2R and a 3R manipulators.
Section 8 concludes the work.

2. RELATED WORK

Our main goal is increasing the efficiency of learning models,
in particular for learning inverse statics. As learning ISMs has
been done previously only offline, we modified the Direction
Sampling method (Rolf, 2013) for learning ISMs online as
well. This paper therefore discusses three major points: learning
efficiently, learning inverse statics models, and online goal-
directed approaches. This section presents the previous related
work.

2.1. Learning Efficiently
Various approaches have previously been proposed for tackling
the efficiency problem of learning. Some previous research
proposed exploring the observation space instead of the action
space to avoid the curse of dimensionality. For instance, learning
IK by exploring the observation space (Cartesian space) and
learning only one configuration for each pose to mimic infants
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efficient sensorimotor learning (e.g., Rolf et al., 2011; Rolf and
Steil, 2014; Rayyes and Steil, 2016) instead of learning forward
kinematics mappings by exploring the higher dimensional action
space (configuration space) e.g., Motor Babbling (Demiris and
Meltzoff, 2008).

Other research proposed that online learning of inverse
models can be done in part of the workspace only in order
to increase the efficiency and reduce the number of required
samples (Rolf et al., 2011; Baranes and Oudeyer, 2013), since
online learning approaches have the tendency to require more
samples than offline methods. Efficient exploration by efficient
sampling (active policy iteration) was proposed in Akiyama et al.
(2010), however it has been proposed for batch learning only.
Efficient learning has been also addressed for solving different
tasks (e.g., Şimşek and Barto, 2006) based on Markov Decision
Process and reward function. In this paper, we propose symmetry-
based exploration to learn ISMs for the entire configuration
space effectively by exploring a small part of it and exploiting
the symmetries of ISMs which reduces the number of required
samples. The proposed strategy is applicable for online and
offline learning schemes.

2.2. Learning Inverse Statics Models
Compensating forces and torques due to gravity is very important
for advanced model-based robot control. The gravitational terms
of the inverse dynamics models are usually computed either
by estimating inertial parameters of the links or from CAD
data of the robot. However, if no appropriate model exists e.g.,
for advanced complex robots or for soft robots, or if no prior
knowledge on the inertial parameters of the links is available,
learning these gravitational terms is a promising option. Previous
research on learning ISMs has been done offline using a closed-
loop controller to collect training data and often to enhanced
existing (parametric) models (e.g., Luca and Panzieri, 1993; Xie
et al., 2008). Early data-driven gravity compensation approaches
are based on iterative procedures for end-point regulation (De
Luca and Panzieri, 1994; De Luca and Panzieri, 1996). Recent
works (Giorelli et al., 2015; Thuruthel et al., 2016b) have
proposed data-driven learning techniques to control the end-
point of continuum robots in task space. Where ISMs map
between the desired end effector poses and the cable tensions.
However, feedback controllers and inefficient Motor Babbling
were implemented to obtain the training data and to learn ISMs
offline only. In contrast, we propose learning ISMs online, in an
exploratory fashion, from scratch and without using a closed-
loop controller. Besides, we exploit the symmetry properties of
ISMs to learn ISMs efficiently online and offline for the entire
configuration space.

2.3. Goal Babbling and Direction Sampling
Various schemes have been proposed to replicate human
movement skill learning and human motor control based on
internal models (Wolpert et al., 1998), i.e., learning forward
models (e.g., Motor Babbling Demiris and Meltzoff, 2008),
and inverse models (e.g., distal teachers Jordan and Rumelhart,
1992 and feedback error learning; Gomi and Kawato, 1993). In
contrast to Motor Babbling where the robot executes random

motor commands and the outcomes are observed, there is
evidence that even infants do not behave randomly but rather
demonstrate goal-directed motion already few days after birth
(von Hofsten, 1982). They learn how to reach by trying to reach
and they iterate their trails to adapt their motion. Hence, Goal
Babbling was proposed and inspired by infant motor learning
skills for direct learning of IKwithin a few 100 samples (Rolf et al.,
2010, 2011). Various other schemes were proposed for learning
IK e.g., direct learning of IK (D’Souza et al., 2001; Thuruthel et al.,
2016a) and incremental learning of IK (Vijayakumar et al., 2005;
Baranes and Oudeyer, 2013).

To apply Goal Babbling, a set of predefined targets, e.g., a set
of positions to be reached, is required and then used to obtain
the IK which is valid only in the predefined area. Direction
Sampling (Rolf, 2013) has been proposed as an extension of
Goal Babbling, to overcome the need for predefined targets
and gradually discover the entire workspace. The targets are
generated while exploring and the IK is learned simultaneously.
In previous work, we already illustrated the scalability of online
Goal Babbling with Direction Sampling in higher dimensional
sensorimotor spaces up to 9-DoF COMAN floating-base (Rayyes
and Steil, 2016). Goal Babbling has also been extended to learn
IK in restricted areas (Loviken and Hemion, 2017) and to
other domains e.g., speech production (Moulin-Frier et al., 2013;
Philippsen et al., 2016) and tool usage (Forestier and Oudeyer,
2016). Besides, it has been also applied to soft robots (Rolf
and Steil, 2014). However, it is striking that none of these
schemes have been extended or transferred to learn the forward
or inverse dynamics. As Goal Babbling shows high scalability
and adaptability in "learning while behaving" fashion, we focus
in this paper on learning ISMs, as a first step in the direction
of exploratory dynamics leaning, by modifying the previously
proposed Direction Sampling based on online Goal Babbling.

3. INVERSE STATIC MODELS AND
SYMMETRIC CONFIGURATIONS

In this section, we first explore fundamental properties of ISMs,
subsequently devise the concept of symmetries and then define
the notion of primary and secondary symmetric configurations
which are finally illustrated with a 2R planar manipulator. We
will use the term torques instead of generalized actuator forces as
our main target are manipulators with revolute joints only.

3.1. Properties of Inverse Statics Maps
ISMs map from configuration space, which constitutes the
observation space, to motor space, which represents the action
space. The dimensionality of the domain and codomain in ISMs
are therefore identical. ISMs are many-to-one mappings, i.e.,
multiple configurations require the same torque to bemaintained
as illustrated in Figure 1.

We aim to learn the map G which assigns to each joint
configuration q ∈ Qp a torque τ ∈ Ts required to maintain this
configuration:

G :Qp → Ts, G(q) = τ (1)
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FIGURE 1 | Characteristics of ISMs. The same torque is required to maintain

different configurations.

Qp is the set of permissible configurations while Ts is the set
of required static torques to maintain these configurations. G
typically associates each member of the set Ts with more than one
member of the domain Qp. There typically exist respective level
sets

Lτ =
{

q :G(q) = τ
}

(2)

with cardinalities |Lτ | > 1 for admissible torque vectors τ ∈ Ts.

3.2. Symmetric Configurations
We define the concept of symmetries as following:

Consider two level sets Lτ i and Lτ j where

τ i = Υ τ j,Υ = diag (δ1, . . . , δn) , (3)

δk = ±1,

n
∑

k= 1

δk < n

i.e., the elements in τ i and τ j differ w.r.t. their sign. Here, n
denotes the number of DoFs and diag (δ1, . . . , δn) denotes a
diagonal matrix with δ1, . . . , δn on its main diagonal. We define
L̆τ as

L̆τ =

2n
⋃

k= 1

Lτ k
(4)

L̆τ is the union of all level sets fulfilling Equation (3), i.e., the
union of the level sets which have the same absolute value of the
elements in the torque vector.

Two classes of configurations in these level sets can be
distinguished. Primary symmetric configurations, also denoted
as primary symmetries, constitute those pairs of configurations
qr , qs ∈ L̆τ for which

Mr,sqr + Nr,sqs = dr,s (5)

holds – where dr,s ∈ R
n and Mr,s,Nr,s ∈ R

n×n are constant
(in particular independent of the choice of τ ). The set of all
configurations in L̆τ which are directly or transitively related
by Equation (5) is called the set of primary symmetries (SPS)
denoted by S ⊂ L̆τ .

Secondary symmetric configurations, also denoted as
secondary symmetries, constitute those configurations in L̆τ for
which at least one of dr,s,Mr,s,Nr,s is a function of q and/or τ .

3.2.1. Symmetric Configurations of a Planar 2R

Manipulator
To exemplify the idea of primary symmetries and secondary
symmetries, Figure 2A shows all symmetric configurations of a
2R planar robot. There are 16 configurations which need the same
absolute static torque to be maintained and they can be separated
into two disjoint sets SA (blue) and SB (red) of 8 configurations
each.

The set SA constitutes a set of primary symmetries. The
symmetric configurations in SA are also geometrically symmetric
as illustrated in Figure 2A, it is therefore, easy to find the
functional relation between them with the linear equation given
in Equation (5). Similarly, the set SB constitutes a set of primary
symmetries as well. These two sets are secondary symmetric to
each other as SA and SB have identical absolute static torques.
The secondary symmetries occur by relating configurations from
SA with those from SB, however; there is no simple closed form
functional relations between these two sets. We will therefore
consider only primary symmetries in our experimental results.

For visualization purposes, we use component-wise level sets
for the 2R planar manipulator (cf. Figure 2A) as defined below
and illustrated in Figure 2B:

Lτ1 =
{

q :G(q) = [τ1, τ2]
T , τ2 ∈ R

}

,

L−τ1 =
{

q :G(q) = [−τ1, τ2]
T , τ2 ∈ R

}

(6)

Lτ2 =
{

q :G(q) = [τ1, τ2]
T , τ1 ∈ R

}

,

L−τ2 =
{

q :G(q) = [τ1,−τ2]
T , τ1 ∈ R

}

(7)

L±τ1 and L±τ2 fix one component of τ while the other one is not
restricted. All pairwise intersection points of component-wise
level sets L±τ1 and L±τ2 constitute symmetric configurations as
they have the same absolute values of the elements in the torque
vectors and hence fulfill Equations (2, 3).

Note that the component-wise level set is different from the
level set which is defined in Equation (2). The component-wise
level set fixes only one component of τ , while the level set in
Equation (2) fixes all components of τ . Based on Equations (2–4),
the level sets for the 2R robot illustrated in Figure 2A are:

L̆τ =

22
⋃

k= 1

Lτ k

Lτ 1 =
{

q :G(q) = [+τ1,+τ2]
T
}

Lτ 2 =
{

q :G(q) = [+τ1,−τ2]
T
}

Lτ 3 =
{

q :G(q) = [−τ1,+τ2]
T
}

Lτ 4 =
{

q :G(q) = [−τ1,−τ2]
T
}































































(8)
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FIGURE 2 | (A) Symmetric configurations of a 2R planar robot which require the same absolute static torque to be maintained. Configuration pairs in each

configuration set illustrated in blue SA (and red SB, respectively) are primary symmetric to each other in the same set. The two sets are secondary symmetric to each

other. Note that the manipulator is stretched out to the right in its zero configuration and that the gravity vector points downwards into negative y-direction.

(B) Component-wise level sets Lτ1 ,Lτ2 ,L−τ1 ,L−τ2 of the 2R planar manipulator. The 16 intersection points constitute symmetric configurations. Their colors and

numbers correspond to the configurations shown in Figure 2A. The numbers are based on Equation (11).

Each level set comprises 4 configurations corresponding to 4
points in the pairwise intersections of the component-wise level
sets in Figure 2B. Therefore, the symmetric configurations form
the union of the level sets L̆τ and the pairwise intersections of

component-wise level sets
⋂22

i=1 Lτi .
Like the configurations in Figure 2A, the 16 intersection

points in Figure 2B can be separated into the two disjoint sets
SA and SB indicated by the color of the points. The numbers
indicate the corresponding torque (intersection point) for each
configuration in Figure 2Awhich fulfill Equation (11) as well.We
can also derive the required torque for each joint geometrically
from Figure 2A and relate it with Figure 2B. Following the right-
hand rule, we can detect the sign of the torque for each joint.
In this setup, the zero configuration is where the arm stretched
out to the right. Every torque of a joint whose link is located on
the right side of a virtual vertical line/plane will have a positive
sign. For instance, for q1 in SB (red), we can imagine a vertical
line passing through the origin and a second vertical line passing
through the second joint axis. Both links are on the right side of
the lines so their torques are positive. On the contrary, both links
of q8 in SB (red) are on the left side of the imaginary vertical lines.
So their torques are negative.

4. ACCELERATING LEARNING BY
EXPLOITING SYMMETRIES

Each torque vector τ with identical absolute values of its
elements corresponds to a non-singleton set L̆τ of configurations.
Hence, functional relations between the configurations in L̆τ

can be exploited to generate training data and associate each
configuration in L̆τ with its applied torque vector Υ ′τ by
observing just one configuration from L̆τ where

Υ ′ = diag (δ1, . . . , δn) (9)

δk = ±1,

n
∑

k= 1

δk ≤ n

Before symmetric configurations can be exploited in this way,
they need to be discovered and the functional relations between
them need to be learned or inferred. Symmetric configurations
can be discovered by applying suitable torque profiles to the
manipulator (cf. section 4.1). Once a number of nsym functional
relations is determined, each applied motor command τ i

generates a sample (qi, τ i) as well as nsym − 1 further samples
(qj,Υ

′
iτ i), i 6= j obtained by evaluating the previously established

functional relations between symmetric configurations which are
explained in section 4.2. Increasing the efficiency by exploiting
symmetries and limiting the exploration to only one part of
configuration space is explained in section 4.3.

4.1. Discovering Symmetric Configurations
For symmetry discovery, sequences of suitable torque profiles
are applied with the same absolute starting and ending torque
values.Algorithm 1 shows the required steps for discovering the
symmetries associated with a single torque vector τ ∗.

Let τ pr denote a torque profile. Starting from the home
configuration qhome, a number npr of torque profiles τ

pr
i are

generated using splines (cf. Figure 3) and applied sequentially,
where τ

pr
i is the ith torque profile. Each torque profile has k =

1, .., nsi time steps. These torques profiles are applied with start

and end-point constraints on their derivatives, i.e., τ̇
pr
i [1] =

τ̇
pr
i [nsi ] = 0, which is required to obtain a smooth trajectory.

For each torque profile τ
pr
i , τ

pr
i [1] = Υ ′τ ∗ ∧ τ

pr
i [nsi ] = Υ ′τ ∗

holds. Probability distributions pn and pτ are utilized to draw
nsi samples and to generate intermediate torques in each profile,
respectively.

After successful application of a torque profile, τ
p
i [nsi ] is

applied as long as the manipulator has not settled yet, i.e., τ
p
i [nsi ]
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FIGURE 3 | Examples of torque profiles for symmetry discovery. First, a torque spline is applied with the same initial and terminal absolute torque values.

Subsequently, a constant torque is commanded until the manipulator settles at a configuration.

FIGURE 4 | Joint trajectories resulting from applying sequences of torque profiles according to Figure 3. Red crosses indicate that the joint limits have been reached

and the manipulator returned to its home configuration. Black dots indicate the end of a profile where τ
pr
i
[nsi ] is applied until the manipulator has settled down in this

configuration i.e., the manipulator has stopped moving. The corresponding configurations are entered into L̆
′
τ (cf. Algorithm 1).

is applied until the manipulator stops moving. By reverting
to the same torque magnitude at the end of each profile but
applying different intermediate torques, a primary or secondary
symmetric configuration can be reached. If the manipulator
settles in a valid configuration, this configuration q is recorded
and added to the discovered set L̆′τ (if is not already contained
in it) associated with the torque Υ ′τ ∗ and the sequence is
continued with the next profile. If the manipulator reaches its
joint limits during or after application of a torque profile, it
goes back to its home configuration qhome and the sequence is
continued with the next profile. The discovered symmetries are
marked as primary symmetries if they can be related according to
Equation (5).

Figure 3 shows exemplary torque profiles and
Figure 4 shows two joint trajectories resulting from the
application of such torque profiles. 5 and 4 symmetric
configurations are discovered, respectively including the
initial configurations. Note that npr depends on the

geometrical structure and the number of joints of the
robot.

4.2. The Functional Relations Between
Symmetric Configurations
The functional relations between the primary symmetries
according to Equation (5) can be determined by established
multiple linear regression techniques (cf. e.g., Draper and Smith,
1998). These learned relations can then be utilized to compute
the symmetric configurations for each observed q with the
corresponding τ required to maintain it.

When some geometrical information about the manipulator is
available andwhen the primary symmetries are also geometrically
symmetric to each other, then the functional relations between
them are easily inferred utilizing the functional relations of
geometrical symmetries.

For example, the functional relations between primary
symmetries for the 2R planar robot illustrated in
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Algorithm 1 Symmetry Discovery using Torque Profiles

1: function DISCOVERSYM(τ ∗, qmin, qmax, npr , pn, pτ )

2: L̆′τ = ∅

3: for i = 1, . . . , npr
4: settled = false
5: nsi = sample probability distribution pn
6: τ

pr
i = generate Torque Profile (τ ∗, pτ , nsi )

7: for j = 1, . . . , nsi
8: apply torque τ

pr
i [j]

9: observe current configuration q

10: if q exceeds joint limits
11: go home
12: settled = true
13: break

14: end if

15: end for

16: while¬settled
17: apply torque τ

pr
i [nsi ]

18: observe current configuration q

19: if q exceeds joint limits
20: go home
21: settled = true
22: elseif robot has settled in q

23: add q to L̆′τ
24: settled = true
25: end if

26: end while

27: end for

28: return L̆′τ
29: end function

Figure 2A are given in Equations (10, 11) according
to Equation (5) and applying elementary geometric
considerations:

S = {q1, q2, q3, q4, q5, q6, q7, q8} (10)

q1 = [q1, q2]

q2 = [q1,−q
∗ − q1]

q3 = [−q1, q
∗ + q1]

q4 = [−q1,−q
∗ + q1]

q5 = [q1 + π , q∗ − q1]

q6 = [q1 + π ,−q∗ − q1]

q7 = [−q1 − π , q∗ + q1]

q8 = [−q1 − π ,−q∗ + q1]

q∗ = q1 + q2







































































(11)

S is the set of primary symmetries, {q1, q2, ...q8} are the
symmetric robot configurations, q1, q2 are the robot joint angles
and q∗ is a virtual joint angle illustrated in Figure 5.

FIGURE 5 | The physical and virtual joint angles of a 2R manipulator to

calculate the set of primary symmetries S.

FIGURE 6 | BCTS in the configuration space for a 2R planar manipulator.

4.3. Increasing Efficiency by Exploiting
Symmetries
4.3.1. Bijective Configuration-Torque Set (BCTS)
Owing to the symmetry properties of ISMs, only a fraction
of the configuration space needs to be explored. We denote
this subspace as bijective configuration-torque set (BCTS). The
BCTS is a set of configurations which contains exactly one unique
configuration q for each admissible absolute static torque τ .
BCTS is determined based on the set of primary symmetries. For
example, Figure 6 illustrates the BCTS (green area) for the 2R
planar robot (cf. Figure 2A) which is determined based on the
set of primary symmetries S given in Equations (10, 11).

As configurations outside the BCTS are symmetric to
those inside the BCTS, ISMs can be learned for the entire
configuration space by exploringmerely theBCTS and exploiting
the functional relations between symmetries. Constraining the
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exploration to discover the BCTS only increases the efficiency of
learning and decreases the number of required samples to learn
ISMs as we explore non-symmetric samples only.

For the 2R planar robot shown in Figure 2A, the currently
achievable reduction factor r w.r.t. required samples is r = 8
as the primary symmetry set has cardinality 8, while exploiting
secondary symmetries would further increase r up to 16. For
the 3R simplified human arm (Babiarz et al., 2015) illustrated in
Figure 9, the cardinality of the primary symmetry set increases
to r = 16. Exploiting secondary symmetries would again yield
far higher reduction factors depending on the properties of the
manipulator, however, we currently have no means to exploit
them.

5. LEARNING INVERSE STATIC MODELS
ONLINE

In order to learn ISMs for the entire configuration space online,
from scratch, in a plain exploratory fashion and without using
a feedback controller , we employ Direction Sampling (Rolf,
2013). However, to apply it successfully for bootstrapping ISMs,
several modifications to the original scheme are necessary. We
therefore propose Constrained Direction Sampling. First, the
constraint in form of the set of statically admissible torques is
introduced.

5.1. Set of Static Torques (SST)
In the established Goal Babbling and Direction Sampling (Rolf
et al., 2011; Rolf, 2013; Rayyes and Steil, 2016), exploratory noise
is added in the action space in order to explore and learn new
configurations. However, adding this exploratory noise to motor
commands (torques) in ISMs may yield inadmissible torques.
Consequently, the robot will accelerate and hit its joint limits
which results in invalid training samples (inadmissible torques
which don’t correspond to the joint limits’ configuration where
the robot settles in).

In order to avoid such situations, the set of statically
admissible torques (SST) should be estimated beforehand or
learned and the exploration should be constrained to the SST.
Therefore, we modify Goal Babbling and Direction Sampling in
this paper to limit the exploration to this set with applying the
nearest neighbor strategy. These modified approaches are termed
Constrained Goal Babbling and ConstrainedDirection Sampling,
respectively.

The set of statically admissible torques (SST) is defined as:

Ts =
{

τ |∃q ∈ Qp : τ − G(q) = 0
}

(12)

Each time the robot hits its joint limits during the learning
process, the corresponding torque is marked as inadmissible and
the SST estimate is updated accordingly. Delaunay triangulation
is used to estimate the SST boundary. Exploratory noise
(cf. Equation 14) will be added to the static torque and the
nearest neighbor algorithm is employed to assign each invalid
torque to a valid one before execution. Figure 7A shows the
SST (blue points) for a 2R planar manipulator with specific joint
limits and illustrates that applying the original Goal Babbling

and adding explanatory noise might result in torques outside the
SST i.e., inadmissible torques. After applying Constrained Goal
Babbling, the exploration is limited to the SST as illustrated in
Figure 7B; this avoids generating invalid training samples and
avoids the robot hitting its joints limits as well. To save time,
this exploration can be performed in conjunction with symmetry
discovery as detailed in section 5.4.

5.2. Constrained Direction Sampling for
Learning ISMs
Originally, Direction Sampling was proposed in Rolf (2013)
to learn IK. In this paper, we modify Direction Sampling
to learn ISMs by incorporating SST constraints and the
nearest neighbor strategy. Moreover, our approach can be
applied to robots with both prismatic and revolute joints.
Algorithm 2 shows the individual steps of the Constrained
Direction Sampling. The initial inverse estimate Ĝ(q) at
time instant t = 0 yields some constant default torque
Ĝ(q) = τ home corresponding to some comfortable default
configuration (home posture) qhome (cf. line 2 in Algorithm 2).
The robot starts exploring from its home posture qhome and
the targets are generated along a random direction ∆q as given
in Equation (13):

q∗t = q∗t−1 +
ε

‖wT∆q‖
·∆q (13)

where q∗t is the currently generated target, q∗t−1 is the previous
one, w is a weighting vector as the joint space may be
noncommensurate if both prismatic and revolute joints occur
(here w = 1 as we consider revolute joints only), ε is the step-
width between the generated targets, and t indicates the time-
step. qhome is selected as a target with some probability phome≪1.
The agent tries to reach and maintain each generated target
q∗t using the online Goal Babbling basic scheme (GBSCHEME,
cf. Algorithm 2) as following: The current inverse estimate for
each generated target q∗t represents the motor torque τ̂

∗
t required

to maintain this target. Correlated exploratory noise σ (Rolf
et al., 2011) is added to discover and learn new configurations
as specified in Equation (14) (cf. line 15 in Algorithm 2):

τ+t = τ̂
∗
t + σ (q∗t , t) (14)

τ+t is the torque which is applied to the robot if τ+t ∈ Ts

holds or (if τ+t /∈ Ts) it will be assigned to the nearest valid
one (cf. line 16 in Algorithm2), the outcome (q+t ) is then
observed (cf. line 19 in Algorithm 2) and the inverse estimate is
updated immediately (cf. line 21 in Algorithm 2). In simulation,
a full dynamic simulation based on the forward dynamics model
(Craig, 1986) of the robot is required.

The robot tries to explore along the desired direction until its
actual direction of motion deviates from the intended one more
than ϕ degrees. For ϕ = π

2 , Equation (15) holds (cf. line 7 in
Algorithm 2):

α = (q∗t − q∗t−1)
T(q+t − q+t−1) < 0 (15)

where q+t is the currently observed configuration, q+t−1 is the
previously observed one, q∗t is the generated target and q

∗
t−1 is the
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FIGURE 7 | Discovered SST of a 2R planar manipulator with specific joint limits (A) with original Goal Babbling, (B) with Constrained Goal Babbling.

Algorithm 2 Constrained Direction Sampling

1: procedure DS( τ home, qhome, SST)
2: initialize the learner with Ĝ(qhome) = τ home

3: choose random direction ∆q

4: for N number of samples

5: generate target q∗t according to Equation (13)
6: GBSCHEME(q∗t )
7: if α < 0
8: go to q+t−1
9: choose new direction ∆q

10: end if

11: end for

12: end procedure

13: procedure GBSCHEME(q∗t )
14: estimate static torque τ̂

∗
t required to maintain q∗t

15: add exploratory noise σ :
τ+t = τ̂

∗
t + σ (q∗t , t)

16: if τ+t /∈SST

17: set τ+t = τm where {τm ∈ Ts : ∀τn ∈ Ts

dist(τ+t , τm) 6 dist(τ+t , τn)}
18: end if

19: execute τ+t and observe q+t
20: compute weight wdir

t

21: learner←− (τ+t , q
+
t ,w

dir
t )

22: end procedure

previously generated one. In this case, the agent will return to its
previous configuration q+t−1 to avoid drifting and start following
a new randomly selected direction again (Rolf, 2013; Rayyes and
Steil, 2016).
One criterion of the weighting scheme, which has been previously
proposed in Rolf et al. (2011), is adopted in order to favor training
samples:

wdir
t =

1

2
(1+ cos∢(q∗t − q∗t−1, q

+
t − q+t−1)) (16)

wdir
t is the direction criterion which evaluates whether the

observed configuration and the generated target align well. This
speeds up learning along the desired direction which is favorable
in goal-directed algorithms. However, other weighting schemes
could be selected as well.

5.3. Local Linear Map
As an incremental regression mechanism is required for online
learning, a Local Linear Map (LLM) (Ritter, 1991) is employed.
However, some modifications are necessary for exploiting
symmetries. In this case, the learner must deal with scattered
samples. Due to the initialization techniques of the standard
LLM, receiving non-neighboring samples results in inconsistent
outcomes. A further modification to gain more efficiency and
reduce the number of required samples is proposed.

We will first explain the standard LLM algorithm for learning
ISMs, and then the proposed modifications:

5.3.1. LLM for Learning ISMs
The inverse estimate Ĝ(q) is initialized with a first local

linear function Ĝ
(1)
(q) which is centered around a prototype

vector qp
(1) = qhome corresponding to the initial static

torque τ home. M different new local linear functions Ĝ
(i)
(q) are

added incrementally during learning, centered around prototype
vectors qp

(i) and active only if new data is received in their
close vicinity determined by a radius d. Let ̺i denote a local
configuration vector given by Equation (17):

̺i =
(q∗ − qp

(i)

d

)

(17)

The inverse estimate Ĝ(q) is updated continuously and comprises

a weighted linear sum of the linear functions Ĝ
(i)
(̺i). The weights

are given by a Gaussian responsibility function GR(q) as shown
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in Equation (18).

Ĝ(q∗) =
1

N(q∗)

M
∑

i=1

GR(̺i) · Ĝ
(i)
(̺i)

GR(̺) = exp
(

− ||̺||2
)

N(q∗) =

M
∑

i=1

GR(̺i)

Ĝ
(i)
(̺i) =W(i) · ̺i + o(i),



















































(18)

N(q∗) normalizes the Gaussian responsibility functions in the
inverse estimate.

The first linear function Ĝ
(1)
(q) is initialized with qp

(1) =

qhome, o(1) = τ home, W(1) = 0, and Ĝ
(1)
(q) = τ home. A new

local linear function Ĝ
(i+1)

(q) will be added when the learner
receives a new training sample qnew at distance of at least d to all
existing prototypes (i.e., dist(qnew, qp

(i)) > d). The corresponding

prototype vector is added (qp
(i+1) = qnew). The offset o

(i+1) of

Ĝ
(i+1)

(q) is initialized with the inverse estimate before adding
the new function in order to avoid abrupt changes in the inverse
estimate function, i.e., the insertion of the new function will not
change the local behavior of Ĝ(q) at qnew. The weighting matrix
W(i+1) represents the slope of the linear function after inserting
the new sample:

o(i+1) = Ĝ(qnew).

W(i+1) =
∂Ĝ(q)

∂q
= J(q)











(19)

where J(q) is the Jacobian matrix of the inverse estimate (Rolf
et al., 2011).

The parameter update is done at each step using a gradient
descent with learning rate η in order to minimize the weighted
squared error Et given in Equation (21) as following:

W
(i)
t+1 =W

(i)
t − η ·

∂Et

∂W(i)

o
(i)
t+1 = o

(i)
t − η ·

∂Et

∂o(i)















(20)

Et = wdir
t ‖τ

+
t − τ̂

+
t ‖

2 (21)

Note that the execution of τ+t will result in q+t and the
corresponding torque estimated by the learner for q+t is denoted
by τ̂

+
t . Hence, the goal is to minimize the error between the

executed and the estimated torques in order to improve the
estimation accuracy.

The connections between the prototypes are organized and
distributed based on an Instantaneous Topological Map (ITM)
described in Jockusch and Ritter (1999) which is particularly
suited to online map construction.

5.3.2. LLM Modifications
In this paper, two main modifications are implemented:

First, if the received new sample has a distance >2d to all
existing prototypes, That causes a disproportionate change in the
inverse estimate results due to the initialization techniques when
inserting new functions (cf. Equation 19). The standard LLM
therefore failed to approximate the model because of receiving
non-neighboring samples when utilizing symmetries. To avoid
such situations, the added function will be initialized with the
new sample as given in Equation (22):

o(i+1) = τnew

W(i+1) = 0

}

(22)

Second, the LLM approach updates the inverse estimate
instantaneously and it therefore requires a lot of samples to
converge. However, data acquisition is very costly in terms of
time, tear, and wear. In order to reduce the number of required
samples, multiple gradient descent steps are performed for each
new sample until the error Et stabilizes. Hence, each training
sample has more influence on the inverse estimate update,
and consequently, the number of required samples is reduced
significantly.

5.4. The General Scheme for Symmetry
Discovery and Learning ISMs
Figure 8 illustrates the required steps for symmetry discovery
by generating torque profiles and for symmetry exploitation
with online learning ISMs. In the discovery phase, first a target
torque τ is selected. Subsequently, Algorithm 1 is applied to
discover symmetric configurations. Multiple linear regression is
then performed using the output of Algorithm 1 to update the
functional relations between primary symmetries. The applied
torque profiles and observed joint angles are exploited to update
the estimates of the SST and optionally theBCTS (cf. section 4.3).
When a sufficient number of primary symmetries nsym ≥ nmin

of symmetries has been discovered, the learning phase begins
and the functional relations between the primary symmetries
are exploited to generate nsym training samples based on one
applied training torque vector. nmin is set here to the number
of geometrical symmetries. Constrained Direction Sampling
(cf. Algorithm 2) or any other online (or batch) learning
approach can be applied to obtain the ISM. The learning phase
is terminated if a desired validation error emax (i.e., the torque
RMSE threshold) is reached. emax is determined based on the
torque limits and the required accuracy for accomplishing the
task. eval is the training torque RMSE which is evaluated at
each iteration (i.e., predefined number of samples) on randomly
chosen training samples from the current iteration.

6. BATCH LEARNING

Lattice sampling is implemented to sample the BCTS and collect
training data. A feed-forward network with n neurons in the
hidden layer is implemented to learn ISMs in a batch learning
fashion.
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FIGURE 8 | Flowchart of the SST and SPS discovery as well as the ISM learning phase. The estimated SST is used to generate admissible torque samples and the

SPS is used to generate nsym training samples from one recorded sample.

A lattice Ls is the set of points which is characterized by an
elementary unit cell. This elementary unit cell can be described
by m vectors given in Equation (23) and is replicated over
m-dimensional space.

Ls =

m
∑

i=1

λi · pi, 0 6 λi 6 1 (23)

The vectors pi are called also generators of the lattice (Cervellera
et al., 2014).

7. EXPERIMENTAL RESULTS

This section presents experimental results for learning ISMs for
a 2R planar robot and a 3R simplified human arm (Babiarz
et al., 2015). The results show the efficiency gained by exploiting
symmetries and demonstrate that exploiting symmetries is
a generally applicable strategy which can be utilized with
offline/online learning algorithms.Moreover, we demonstrate the
efficiency gained by implementing LLM with multiple gradient
descent steps (cf. section 5.3.2) for a 2R planar robot.

7.1. Exploiting Symmetries With
Constrained Direction Sampling - Online
Learning
7.1.1. 2R Planar Manipulator
Constrained Direction Sampling was employed to explore the
BCTS and learn the ISM for the entire configuration space of
the 2R planar robot (cf. Figure 2A) for which, each link length
is 25 cm. Figure 10 shows the learned area of the configuration
space (blue area) by exploring merely the BCTS (red area) and
exploiting the symmetries.

FIGURE 9 | Structure of the 3R simplified human arm with 25 cm link length.

After the training phase, the robot tries to reach and maintain
66 configuration targets regularly distributed on a grid in the
BCTS. All targets were maintained well with an RMSE of
0.0053 Nm which represents the difference between the learner
output, i.e., the estimated torque and the actual required static
torque. Compared to the minimum and maximum static torques
(−18.4, 24.5) Nm and (−6, 6.2) Nm for the first and second
joints, respectively, the observed RMSE is negligibly small.
Figure 11 illustrates the results in the configuration space. The
red crosses indicate the targets, and the blue circles represent the

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2018 | Volume 12 | Article 68

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rayyes et al. Learning ISMs Symmetry-Based Exploration

FIGURE 10 | Explored configurations (red) and learned configurations (blue) for the 2R robot by exploiting symmetries using Constrained Direction Sampling and LLM.

FIGURE 11 | Test performance for the 2R robot. The ISM is learned utilizing Constrained Direction Sampling and LLM with an RMSE of 0.0053 Nm. The boundary of

the BCTS is indicated by the black parallelogram, the red crosses indicate the test targets, and the blue circles represent the observed configurations.

observed configurations which illustrate the good performance
as well; the boundary of the BCTS is indicated by the black
parallelogram. Subsequently, the robot tries to maintain another
90 targets scattered over the entire configuration space. The
performance was also very good, the robot managed to achieve
all targets very accurately with an RMSE of 0.0052 Nm as shown
in Figure 12.

Efficiency gained by iterating gradient descent step in LLM:
In the experiment, LLM with a single gradient descent step
per sample was implemented first with Constrained Direction
Sampling. At least 540 iterations (each iteration consists of 100
samples) were required to discover the entire BCTS and achieve

an RMSE of 0.0053 Nm. By increasing the number of iterations,
the performance accuracy is increased as shown in Figure 13.
The blue line represents the RSME of the torque evaluated for
different numbers of iterations. The RMSE was 0.0024 Nm after
3000 iterations.

A significant reduction in the number of required samples
was observed by iterating multiple gradient descent steps in
LLM (LLMit) with Constrained Direction Sampling. Only 30
iterations were required to learn the ISM and achieve the same
accuracy, i.e., test RMSE of 0.0053 Nm. Hence, the number of
required samples are decreased by a factor of 18. The robot
performance is tested on 84 targets scattered over the entire
configuration space as shown in Figure 12B.
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FIGURE 12 | Constrained Direction Sampling results for the 2R planar robot utilizing (A) LLM with 540 iterations (B) LLMit with 30 iterations. Torque RMSE is

0.0052 Nm. The green area is the discovered BCTS, the red crosses are the test targets, and the blue circles represent the real observed configurations.

FIGURE 13 | Torque RMSE for Constrained Direction Sampling with LLMit (red) and LLM (blue).

The average training time required in each iteration for
updating the LLMit is 3 min and 0.2 min for the LLM. Hence,
the time cost per iteration for LLMit is 15 times higher. However,
LLM requires 18 times the number of samples required for LLMit .
As data acquisition is costly and moving the robot to the sampled
configurations is very time-consuming, the overall efficiency with
LLMit is much higher than with LLM.

The torque RMSEs for different numbers of iterations (red
line) are shown in Figure 13. As we can see from the figure, the
torque RMSE converges much faster for LLMit than LLM.

7.1.2. 3R Robot Arm
Constrained Direction Sampling with LLMit is implemented
to learn the ISM for the 3R manipulator (cf. Figure 9). After
exploring theBCTS, the robot performance is tested on 64 targets
regularly distributed on a grid in the configuration space. At least

140 iterations were required to achieve an RMSE of 0.26 Nm.
The minimum and maximum torques for the first, the second,
and the third joints are (−24.4, 24) Nm, (−24.2, 24.2) Nm, and
(−12.4, 12.2) Nm, respectively. The achieved accuracy is very
good compared to the torque limits.The results are illustrated in
the configuration space as shown in Figure 15A.

7.2. Exploiting Symmetries With Lattice
Sampling - Batch Learning
7.2.1. 2R Planar Manipulator
To demonstrate the general applicability of symmetry
exploitation, we investigate batch learning to learn the ISM
of the 2R robot (cf. Figure 2A) based on a lattice sampling
approach. Lattice sampling was performed to collect training
samples in the BCTS. A feed-forward neural network with
one hidden layer consisting of 18 neurons was used in a batch

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2018 | Volume 12 | Article 68

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rayyes et al. Learning ISMs Symmetry-Based Exploration

FIGURE 14 | Learning ISMs with exploiting symmetries with batch learning (A) for the 2R planar manipulator with an RMSE of 0.0051 Nm (B) for the 3R manipulator

with an RMSE of 0.009 Nm. The green area represents the discovered BCTS, the border of the BCTS is indicated by the black lines, the test targets are visualized by

red crosses and the blue circles indicate the real configurations.

FIGURE 15 | Learning ISMs with exploiting symmetries (A) online with Constrained Direction Sampling (B) offline with Lattice Sampling. The torque RMSE is

0.028 Nm. The green area represents the discovered BCTS, the border of the BCTS is indicated by the black cube, the test targets are visualized by red crosses and

the blue circles indicate the real configurations.

learning fashion. Only 255 samples in the BCTS were required to
learn the ISM for the entire configuration space with almost the
same testing torque RMSE of 0.0051 using the same 90 testing
targets as in section 7.1.1. The result is illustrated in Figure 14A.

Lattice sampling was then performed for the entire
configuration space without exploiting symmetries. 2040
samples were required to achieve approximately the same RMSE
of 0.005Nm. The number of required samples to learn the ISM of
the 2R robot was reduced by a factor of 8 by exploiting primary
symmetries. This factor corresponds well to the number of 8
primary symmetries for the 2R robot.

7.2.2. 3R Robot Manipulator
We did the same experiment as in section 7.1.2 utilizing lattice
sampling and a feed-forward neural network with 18 neurons
in the hidden layer in offline learning fashion. Only 65 training
samples in the BCTS were required to achieve approximately the
same accuracy with RMSE of 0.28 Nm. The good performance

of the robot is also illustrated in Figure 15B. To illustrate
the efficiency gained by using symmetries, Lattice sampling
was implemented without exploiting symmetries. 855 samples
were required to explore the entire configuration space with
approximately the same RMSE of 0.03 Nm. The number of
required samples to learn the ISM of the 3R robot was reduced
by a factor of 16.13 which matches the number of 16 primary
symmetries well. To achieve higher accuracy, 600 samples with 30
hidden neurons were required to achieve an RMSE of 0.009 Nm.
The result is demonstrated in Figure 14B.

7.3. Discussion
The number of required samples to learn ISMs for 2R and 3R
manipulators were reduced by a factor of 8 and 16, respectively,
resulting from exploiting primary symmetries and constraining
the exploration to the BCTS only. Hence, exploiting symmetries
can drastically increase learning efficiency – regardless whether
offline or online learning schemes are considered – by reducing
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the number of required samples by a factor which approximately
equals the number of discovered primary symmetries in the
presented experiments. Further efficiency gains can be expected
if secondary symmetries are exploited as well.

Note that the number of samples in batch learning is lower
than that required in the presented online learning approach.
Nevertheless, even batch learning approaches can greatly benefit
from a significant reduction in the number of required samples
by exploiting symmetries. However, online learning techniques
such as Goal Babbling and Direction Sampling, which generate
targets on the fly and update the learner at each step
simultaneously, best fit the concepts of gradual exploration as
well as “learning while behaving” – hence they best reflect human
developmental aspects in robot learning.

8. CONCLUSION AND OUTLOOK

We showed that inverse statics mappings of discretely-actuated
serial manipulators can be learned very accurately, if the
problems arising from exploratory learning in the torque domain
are properly addressed. To learn ISMs online and from scratch,
we constrained the Direction Sampling approach and improved
the LLM learner. Naturally, these modifications may be useful
also in other contexts and comprise a contribution to increase
efficiency of any learning scheme employing these methods.
Moreover, we demonstrated that the efficiency of learning
inverse statics mappings can be further increased significantly
by exploiting inherent symmetries of the mapping, a concept
that we formalized properly and which as well is relevant
beyond the particular exploratory learning application. To
demonstrate its generality, we successfully integrated it into
online Constrained Direction Sampling and a more standard
batch learning approach based on lattice sampling. The presented
results indicated that factors of at least 8 and 16 w.r.t. the number
of samples can be achieved for a 2R and a 3R robot, respectively.
Thus, exploiting symmetries is a promising strategy to increase
the efficiency of learning both online and offline, and it is rather a
general strategy and not limited to learning ISMs only, but it can
be exploited in other functions or mappings.

We initially considered the particular problem of learning
the inverse statics model as a rather simpler subproblem of
the general inverse dynamics exploratory learning. However, it
appears that it already displays some major difficulties of torque-
based exploratory learning. And it requires substantial effort to
be tackled. That led to the novel approaches on symmetries and
the learning methods presented in this paper, which all have their
right in itself and provide useful tools beyond the ISM learning
alone. It is not obvious though, how to make the next step toward
general inverse dynamics exploratory learning without relying
on a pre-defined closed-loop controller, because that requires to

suggest a general way to automatically choose target trajectories
in the joint space that are safe, but representative and increasingly
complex, while all other problems of efficiency and ambiguity still
remain.

Currently, our approach is limited to primary symmetries as
the functional relations between secondary symmetries prove

to be challenging. Furthermore, elasticity as well as nonlinear
friction effects are currently not considered. This sheds some light
on more direct and natural extensions for future work, which
we are working on. The proposed symmetry-based exploration
is being (i) implemented in the real application, (ii) generalized
to learn primary and secondary symmetries for discretely-
actuated serial manipulators with arbitrary geometrical and
inertial properties, (iii) extended to incorporate link and joint
flexibility as well as nonlinear friction effects, which will pave
the way for thorough experimental evaluation on a robot with
variable stiffness actuators and (iv) implement a dictionary with
a fixed budget to update LLM using a sub-data set instead
of the current sample only. Furthermore, due to the same
dimensionality of action and observation spaces, the efficiency
advantage of Goal Babbling is less pronounced for learning
ISMs than learning IK. However, this disadvantage is partially
compensated by the efficiency gained by exploiting symmetry
properties of ISMs and limiting the exploration to BCTS only.
In our recent work (Rayyes et al., 2018), we additionally lay
the foundation for increasing the scalability by learning IK and
the inverse statics ISx and ISMs simultaneously. ISx maps from
Cartesian space to the motor space. Hence, ISMs can be inferred
by relating IK and ISX .
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