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Pneumatically actuated muscles (PAMs) provide a low cost, lightweight, and high
power-to-weight ratio solution for many robotic applications. In addition, the antagonist
pair configuration for robotic arms make it open to biologically inspired control
approaches. In spite of these advantages, they have not been widely adopted in
human-in-the-loop control and learning applications. In this study, we propose a
biologically inspired multimodal human-in-the-loop control system for driving a one
degree-of-freedom robot, and realize the task of hammering a nail into a wood block
under human control. We analyze the human sensorimotor learning in this system
through a set of experiments, and show that effective autonomous hammering skill can
be readily obtained through the developed human-robot interface. The results indicate
that a human-in-the-loop learning setup with anthropomorphically valid multi-modal
human-robot interface leads to fast learning, thus can be used to effectively derive
autonomous robot skills for ballistic motor tasks that require modulation of impedance.

Keywords: human in the loop control, pneumatically actuated muscle, biologically inspired multimodal control,
human motor learning, electromyography

INTRODUCTION

Human-in-the-loop control systems provide an effective way of obtaining robot skills that can
eliminate the need for time consuming controller design (Peternel et al., 2016). Robot self-learning
(i.e., reinforcement learning) is another powerful approach for obtaining robot skills; but it usually
requires long training unless initialized by a human demonstration (which can be provided easily
by human-in-the-loop systems). Conventional controller design is especially problematic for robots
with Pneumatically Actuated Muscles (PAMs) due to their intrinsic high non-linearity. Therefore,
obtaining controllers by using human-in-the-loop control seems to be a good choice to overcome
the modeling difficulties faced in PAM modeling and control. However, how the human in the
loop would adapt and learn to control the PAM based robots has not been investigated earlier.
With this study, to our knowledge, we make the first attempt toward obtaining of a non-trivial
skill for a PAM based robot through human-in-the-loop robot control. The motto we adopt in
human-in-the-loop robot control is “let us utilize human brain to do the learning and optimization
for control.” Note that we make a distinction between human-in-the-loop control and kinesthetic
teaching based studies (Hersch et al., 2008; Kronander and Billard, 2014; Tykal et al., 2016), as in
the former human is the learning controller generating motor commands in real-time as opposed
to being an active scaffold or a guide to the robot. After skilled operation is achieved by the
human, autonomous controller synthesis boils down to mimicking human behavior by the help
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of a computer as a function of state and/or time and
sometimes context. To ensure a smooth integration of the
human into the control loop, the interface between the
robot and the human operator is critical. The interface
often necessitates anthropomorphic human-robot mapping with
intuitive mechanisms to engage the sensorimotor system -as
opposed to the cognitive system- of the human operator. Such an
interface makes it possible for the human to learn to control the
robot and do useful tasks with it as a tool in short timescales. In
recent years, there has been a growing interest in human-in-the-
loop robotic systems for robot skill synthesis (e.g., Walker et al.,
2010; Babic et al., 2011; Ajoudani et al., 2012; Moore and Oztop,
2012; Peternel et al., 2014). However, with a few exceptions
[e.g., Ajoudani et al. (2012) who used human muscular activity
from antagonistic pairs for end-point impedance estimation in
teleoperation, and Walker et al. (2010) who proposed a system
utilizing a hand grip force sensor to modulate the impedance of
the robot during the teleoperation], the majority of the existing
studies are targeted for position control based tasks. In Peternel
et al. (2014), the authors have shown that human sensorimotor
system could drive a robot using multimodal control. In this
work, in addition to the usual position based teleoperation,
hand flexion was measured by muscle electromyography (EMG)
and used to set the compliance property of the robot in
real-time. Although the interface was intuitive, the human
operator had to perform an additional task of squeezing a
sponge ball to create muscle contraction to deliver the required
EMG signals to regulate the stiffness of the robot. A more
direct control system can be envisioned for those robots that
have antagonistically organized muscle actuation system akin
to biological systems. Such robot architectures can be built by
using so-called artificial muscles, e.g., by Pneumatically Actuated
Muscles (PAMs). In such a case, the human muscle activities can
be measured in real-time and channeled to the corresponding
artificial muscles of the robot in an anthropomorphically valid
way (i.e., biceps to “robot biceps;” triceps to “robot triceps”).
However, driving a robot with control signals based purely
on muscle activities is not trivial if not impossible due to
factors such as noise in acquisition, motion artifacts, and
the differences in the muscle organization of the robot and
the human.

With this mindset, we propose a multimodal approach to
control a Pneumatically Actuated Muscle (PAM) based robot
where EMG signals and the elbow angle of the human arm are
anthropomorphically mapped to the robot creating an intuitive
control scheme. The proposed approach is realized on a simple
single joint robot, and autonomous behavior of hammering a nail
into a wood block is synthesized through human sensorimotor
learning. Subsequently, a set of experiments is conducted for
analyzing human adaptation to the developed human-in-the-
loop control setup. The results indicate that such a system can be
adopted to effectively derive autonomous controllers for ballistic
motor tasks (Brooks, 1983). In addition, to show the usefulness
of our approach to design controllers for a non-linear robot
system that is difficult to model, we compared the autonomous
controller acquired through our human-in-the-loop system and
the controller derived by a model-based optimal control method.

METHODS

One of the factors driving this study is to investigate how
human-in-the-loop robot learning can be naturally generalized
to tasks that go beyond position control. In particular, we aim
at generating autonomous skills based on force based policies.
To realize this as a proof of concept we start from a simple one
joint two degrees-of-freedom Pneumatically Actuated Muscle
(PAM) based robot that has an antagonistic actuation design
allowing the stiffness of the robot to be controlled through co-
activation. The general framework realizes an anthropomorphic
mapping for human to control the robot in real-time by using
arm movements and muscle electromyography (EMG) signals
from the arm so that the position and stiffness control can be
achieved simultaneously. Once this is achieved then various tasks
where the robot must change its stiffness for successful execution
can be given to the control of human operators for shared
control (Dragan and Srinivasa, 2013; Amirshirzad et al., 2016)
or autonomous skill synthesis (Babic et al., 2011; Moore and
Oztop, 2012; Peternel et al., 2014) purposes. The framework is
illustrated in Figure 3 in the special case of nail hammering task.
How the EMG signals and the human movements are converted
to PAM pressures is left for the designer. In a classical setting,
it may include torque-to-pressure feedforward model as part of
the human-robot interface; but, we favor a more direct approach
to offload this mapping to human sensorimotor system to be
learned as the part of task execution.

Hardware Setup

The one joint robot is composed of an antagonistically organized
Festo MAS-40 pneumatic artificial muscle (PAM) pair (see
Figure 1) (Noda et al, 2013; Teramae et al, 2013). Each
PAM is connected to a rotational disk/pulley system by string
tendons housing an arm of 35 cm. Pressurizing the PAMs creates
opposing torques on the disk, therefore it is possible the control
both the motion and stiffness of the arm through pressure
control. The hardware consists of load cells between the tendon
and muscle-ends that can be used for control. A feed-forward

FIGURE 1 | One joint robot is composed of antagonistically organized Festo
MAS-40 pneumatic artificial muscle (PAM) pair. Each PAM is connected to
rotational disk/pulley system by string tendons housing arm of 35 cm.
Pressurizing PAMs creates opposing torques on disk, therefore it is possible
control both the motion and stiffness of arm through pressure control.
Hardware consists of load cells between tendon and muscle-ends that can be
used for control.
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model representing the relation between air pressure and the
resulting muscle/torque can be learned or derived (Ching-Ping
and Hannaford, 1996) to control the muscles and the robotic
system that it belongs. Due to highly non-linear relations between
system parameters it is considered difficult to control such
systems. In the current study, as human was placed in the control
loop, we eliminated the torque-pressure modeling and leave it
for human operator to learn it as a part of task execution. As
described below, human was given a simple interface to directly
control the pressures in the PAMs to achieve the task at hand.

A digital goniometer (Goniometer SG150, Biometrics Ltd.)
was used to measure the human elbow angle, and surface EMG
was used to measure muscle activities (see Figure 2). The EMG
signals were used in real-time to generate desired pressure values
(u) for the PAM of the robot at 250 Hz. The desired pressure
values were realized by a proportional valve controller (provided
by NORGREN). The EMG electrodes were attached to the skin
over the triceps muscles. EMG signals were passed through
rectification and low pass filtering.

Human-Robot Interface

A generic interface to output the desired pressure values to
the PAMs can be given with u = W[l g e¢] T where u is
the vector of desired pressures for the PAMs; ¢ is the elbow
angle of the human, and e indicates the muscle activity levels.
The constant 1, enables a pressure bias to be given to PAMs.
In short, W is a linear coeflicient matrix that maps EMG
and joint movement data of the human directly to PAM
(desired) pressures and is composed of bias terms (By, Br),
positional factor (K¥) and EMG factor (K¢). A non-linear
mapping could have been used; but, as we would like to
rely on human ability to learn to generate appropriate control
signals, simplest possible mapping, i.e., linear, was deemed
appropriate.

To allow ballistic explosive movements that are necessary
for hammering, we designed the W matrix by inspiring from
biology: we created reciprocal inhibition mechanism between the
human arm and the robot. To be concrete, the human triceps
EMG signal was channeled to the upper PAM (akin to biceps)
as an inhibitory signal. The neural control of movement in the
human follows a similar design: when the triceps are activated
for arm extension, an inhibition signal is sent to the biceps for
reducing the effective stiffness of the arm which enables high
velocity movements (Ching-Ping and Hannaford, 1996). Since
the hammering task relied on extension of the arm for impact, we
did not use EMGs from the biceps in this task for experimental
convenience. The lower PAM on the other hand was controlled
by the human arm angle measured via a goniometer. Overall, the
explained feedforward interface was specified with

_[Byo K*
w3 ke s | (1)

The parameters that linearly map the goniometer read angles to
lower PAM pressure was obtained for each participant through
a simple calibration procedure to cover the allowed range of
pressure. The parameters for mapping the EMG signals to upper

PAM was obtained in a similar fashion. These parameters were
kept fixed through the nailing experiments reported in this
article. In sum, after the calibration we ended up with formulae
weight matrix to map human actions to desired pressures for each
participant. Concretely, each participant was asked to conduct
hammering movements as depicted in Figure 4. We measured
the elbow joint angle and triceps EMG during the movements.
From the measured data, maximum (@mayx), minimum (@min)
joint angles and the maximum triceps EMG amplitude (emax)
were identified for each participant. These variables were utilized
to derive the interface parameters in Eq. (1) so that minimum
and maximum joint angles were mapped to maximum (Pp,x =
0.8 [MPa]) and minimum (Pp,;, = 0 [MPa]) desired pressure for
lower PAM as depicted in Figure 5A:

K¢ — _ Prax
Pmax — Pmin ’
BL=<1+%)P . )
$Pmax — Pmin max

Similarly, the maximum EMG amplitude of each participant
during the real hammering movement was mapped to the
maximum (Ppax = 0.8 [MPa]) desired pressure of upper PAM
as depicted in Figure 5B:

Ke — _Pmax
€max
By = Prax. (3)

It is worth underlining that the goal of human movement-to-
robot control input mapping is not to make the robot imitate the
human exactly; the critical requirement is to obtain an intuitive
control by having users see a consistent near real-time response
from the robot.

EXPERIMENTS

Experimental Design

For the hammering task the robot tip was attached a hard
plastic to serve as the hammer head. A compressed wood was
used as the material the nail needed to be driven in. Figure 3
illustrates the hammering set up schematically. The wood block
was vertically placed, and had 9 cm thickness. We used a nail
of 5 and 0.23 cm thickness. The hammering task was initialized
by inserting the nail into the wood by ~0.4cm and placing
the nail under the center of the plastic end-effector attachment
that served as the hammer head. Experimenter detect the task
termination when the nail could be completely driven into the
wood.

The experiments were designed as a series of sessions in which
several trials of human-in-the-loop robot control for driving the
nail into the wood was run. Each trial consisted of 15 of robot
teleoperation in which the participants executed hammering
movements in real-time via the robot. Participants were shown
that their arm movement was imitated by the robot, and a muscle
contraction caused movement on the robot even though their
arm was still. Furthermore, participants were given the freedom
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FIGURE 2 | Surface EMG was used to measure muscle activities and digital goniometer (Goniometer SG150, Biometrics Ltd.) was used to measure human elbow

angle. Interface program we developed used these signals in real-time to generate desired pressure values for PAM of robot at 250 Hz. EMG electrodes was attached
to skin over triceps muscle for hammering task.

Feedforward JINuELEMemal Human Motor JEMNEIREIS
Interface (p.€) Control observation

Pressure

_ regulator
U= ﬁ((p, e) ?
2
/i

u= £, e) | Pressure

"| regulator Movement
execution

FIGURE 3 | Hammering setup. Wood block was vertically placed, and had 9 cm thickness. We used nail of 5 and 0.23 cm thickness. Hammering task was initialized
by inserting nail into wood by ~0.4 cm and placing nail under center of plastic end-effector attachment that served as hammer head.

FIGURE 4 | Calibration phase for human-robot interface: We measure minimum and maximum angle and maximum EMG signals while actual hammering task with
real hammer and fit the parameters of (1) based on measured data. We obtained informed consent for the publication of this figure from the participant.
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to hammer the nail as they like so the frequency of the strikes
(hammering motion) and the amplitude of the robot motion
varied from participant to participant. Each session deemed to
be complete when the nail could be completely driven into the
wood. Then the nail was reset to its default position (care was
taken to place the nail in a fresh new location on the wood block).
As a measure of performance, we took the number of trials, i.e.,
the number of 15 s blocks that it took the participant to drive the
nail into the wood. We allowed a maximum of 5 trials for each
session. The experimental data showed that this was sufficient for
driving the nail into the wood for even novice participants.

To summarize, in the experiments, each participant went
through 4 sessions. Each session took a maximum of 5
trials, where each trial was a fixed 15s robot teleoperation.
The number of strikes that a trial contained was up to
the participant. Likewise, the number of trials that a session
included was dependent on how successfully the participant
could hammer the nail, thus varied among participants and
sessions.

Skill Transfer With Direct Imitation (Policy
Copying)

Once a participant learns to drive the nail into the wood, his/her
task execution data can be used to construct an autonomous
controller. One of the good performing participants was selected
for autonomous skill generation. Furthermore, we selected the
desired pressure sequences for the lower and the upper PAM
control that generated the highest impact among the hammering
movements of the selected participant. Since the velocity is
proportional to the impact force, we estimated the impact force
from the tip velocity of the robot. The human generated pressure
trajectories were segmented by taking the moment of upper
PAM pressure rise as the start, and by taking the moment of
collision with the nail as the end. For autonomous execution,
the obtained pressure trajectories were then reproduced on
the robot in a cyclic manner during an execution session
(e.g., 155s).

Optimal Control Solution
To compare our model-free human-in-the-loop approach with a
model-based controller, we design a policy based on an optimal
control method as explained below.

Let Uy = {u1,us,- -+, un—1} be a sequence of control variables
u € R and denote state variables x € R, optimal state and control
trajectories are derived by solving an optimal control problem
under non-linear system dynamics:

nilIlln ] (Xl) Ul))
St.Xpp1 = f (xpuy) . (4)

where the objective function of the total cost J (x;, Uy) is defined
as being composed of the terminal cost function /¢ (x) alone:

J (x1,Un) =lf (xn) - ©)

The state and control variables consisted of x = [6,6, Py, PL]—r
andu = [1,, rl]T, respectively. Py and Py are air pressures of the
upper and lower PAMs. In this case, we considered a cost function
model,
. . 2
I =wi (B(T) = 6ree(T))° + w, (D) = brecM) s (6)
where 0,¢(T) and éref(T) are a target terminal joint angle and
target terminal angular velocity obtained from the strongest
hammering trajectory of the selected participant. Weights of
wy and w, were optimized by Inverse optimal control (IOC)
framework with the learned hammering data of one participant
(see Appendix).
To solve the optimal control problem, we derived dynamics
model of the 1-DoF robot,

16 +h(0)+g®) ="+, )

where the inertial parameter is represented as I. The term h (9)
stands for the friction model:

h(0) = D6 + I'y tanh (T'26), (8)
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Human sensorimotor learning with practice

*

4 |

Average number of trials needed nailing

1 2 3 4
Session no.

FIGURE 6 | Learning performances of “hammering with robot” experiments.
After first session most participants were able to generate occasional high
impact strikes; however it took more time for hammering behavior to stabilize
into a regular pattern. Hammering performance were much improved after four
training sessions (*p < 0.01).

which is composed of viscous and static friction models. D is the
parameter of the viscous friction. I';and I, are the static friction
parameters, and g (0) represents the gravity term. t* and t'are
torques generated by the upper and lower PAMs, respectively.
The torque was calculated with a model of a PAM actuator as
in Teramae et al. (2013). We convert the continuous time robot
dynamics Equation (7) to a discrete time model to formulate the
optimal control problem described in Equation (4). We applied
an optimal control method, namely iterative Linear Quadratic
Gaussian (iLQG) (Todorov and Li, 2005) to obtain the control
inputs for executing the nailing task with the robot.

RESULTS

Human Control Adaptation and Learning
Six participants participated in “hammering with robot”
experiments. All the participants showed clear learning effects.
After the first session most participants were able to generate
occasional high impact strikes; however it took more time
for hammering behavior to stabilize into a regular pattern.
As presented in Figure 6, the hammering performances of
the participants improved, i.e., they could drive the nail with
less number of strikes as they become more experienced with
the system. A t-test comparing the first and last session
performances showed that there was a significant improvement
in the performance of the participants from the first session to
the last (p < 0.01), indicating significant human learning.

Autonomous Hammering With Direct
Imitation (Policy Copying)

We selected strongest hammering data from high performance
participant. In this case, strongest hammering means hammering
with the fastest swing down speed, since the impact force is

proportional to the swing down speed. We allowed 15s of
autonomous execution. Figure 1 shows sample frames from an
autonomous hammering with direct imitation. The obtained
controller could nail with only 3 strikes (Figure 7A). Also, direct
imitation of other participants can achieve the nailing (Table 1).
As a stress test, we switched to a larger nail of 6.5cm length
and 0.34 cm thickness, and applied the autonomous controller
obtained with the original nail (0.23 cm thick and 5cm long) to
the larger nail. The robot could also completely drive this nail,
albeit now with 5 strikes.

Comparison With the Policy Derived by an
Optimal Control Method

To optimize the trajectory and pressure input by using optimal
control method, we set the terminal angle and angular velocity
based on the selected high impact hammering trajectory. We
derived weights of objective function by IOC: we extracted
6 strikes form the final session data of the high performing
participant to form the learning data for IOC. As a result,
the weights of w; = 72.45 and w, = 0.033 were obtained.
The optimal input and trajectory to be used in execution were
then obtained by an optimal control method with the obtained
objective function. We allowed 15s x 5 trials of autonomous
execution. Figure 7B shows some sample frames from an
autonomous hammering session that employed the trajectories
obtained by the optimal control method. The obtained controller
could not completely nail within 5 trials (i.e., 40 strikes). These
results clearly show the advantage of using our human-in-the-
loop approach to derive controllers for non-linear robot systems
that is difficult to be identified.

DISCUSSION

One of the bottlenecks for the introduction of multipurpose
robots to human life is the necessity of programming them. It
is not feasible to preprogram them for all possible task scenarios.
Many methods such as visual demonstration (Pillai et al., 2015),
haptic guidance (Power et al, 2015), motor primitive (Peter
and Schaal, 2008), and optimization control based (Zhang et al.,
2015) methods have been proposed for acquiring robot skills.
However, most methods are geared toward systems in which
position and force can be reliably controlled. For such systems,
conventional methods may deliver suitable solutions for skilled
robot behaviors. However, for those systems where position and
force control is problematics as in PAMs, it is not effective to use
model-based optimization and/or skill transfer methods based
on kinematics and force. Needless to say, some studies do exist
addressing the precise control of position and force in PAMs
(Ching-Ping and Hannaford, 1996; Ugurlu et al., 2015), which
nevertheless, have some drawbacks due to the need for complex
calibration.

Teaching by demonstration framework is an effective way
to rapidly synthesize skills on a robot, when the interface
and modality of control is natural for the demonstrator.
There are several variants as to how teaching is done from
visual demonstration (Dillmann, 2004) to kinesthetic guidance
(Calinon et al., 2001; Kushida et al., 2001). In the latter case,
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First strike

A Initial state

First strike

hammering with optimal control.

Second strike

Autonomous hammering with direct imitation

Second strike

Autonomous hammering with optimal control

FIGURE 7 | Several video frames illustrating autonomous nail hammering. (A) shows autonomous hammering with direct imitation. (B) shows autonomous

Third strike

Third strike

.

TABLE 1 | Number of strikes required to accomplish the hammering task by autonomous hammering with direct imitation from 6 participants.

Participant Participant 1 Participant 2

Participant 3

Participant 4 Participant 5 Participant 6

Strike count 3 20 25

17 6 8

the actions are already realized on the robot so no complex
processing is needed to reproduce it on the robot. In the
former case, even special tracking sensors are used, significant
effort may be needed to map the demonstrated movement
into robot actions (Ude et al., 2010). These methods, however,
may not be always suitable when the targeted task involves
non-negligible dynamics and/or fast actions are required. Of
course, it is possible and thus often the case that these methods
are used to generate initial robot policies that are subject to
optimization or improvement via reinforcement learning (Kober
et al, 2012). In what we call robot skill synthesis through
human-in-the-loop control and learning, we aim to engage the
human sensorimotor system to do the learning and optimization.
Therefore, we seek interfaces and adaptive mechanism for the
robot to speed up human learning and minimize the mental
and physical effort of the human. In particular, exploiting
anthropomorphic similarity of the robot and human (Moore
and Oztop, 2012; Oztop et al, 2015), simultaneous human-
robot learning (Peternel and Babic, 2013; Mohammad and Oztop,
2015), control mixing and intention understanding (Dragan and
Srinivasa, 2013; Amirshirzad et al., 2016) seem to be promising
directions to pursue for highly effective human-in-the-loop
control systems. As a final note, PAM based robots can be suitable
for exploiting human sensorimotor learning effectively as there

are parallels with human skeleto-motor system and those robots
that employ PAMs with antagonistic setups. Therefore, it seems
reasonable to target more complex tasks on higher degrees of
freedom robots with PAMs.

CONCLUSION

In this study, we proposed and realized a biologically valid
multimodal human-in-the-loop system on an antagonistically
designed pneumatically actuated one link, two artificial muscled
robot. We focused on the ballistic movement of hammering a nail
into a wood block, and ran experiments to assess the learning
progress of humans to use the robot for driving a nail into a
wood block. The rapid human adaption and learning observed,
suggest that the developed system engages human sensorimotor
learning and does not incur much burden for the cognitive
system. In addition to the human experiments, we used one of
the high performing participant’s skilled execution of the task
to synthesize an autonomous controller. The experiments with
the controller showed that a significantly larger nail (0.34cm
thick, 6.5cm long) compared the original one (0.23 cm thick,
5cm long) used in the skill transfer can be handled with a
fixed set of parameters over the conditions. Overall, the current
study suggests that adoption of human-in-the-loop approaches
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for PAM based robots is a fruitful research direction, in which
easy and intuitive human learning facilitate effective skill transfer
for tasks that require continuous modulation of impedance.
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APPENDIX

Optimization of Objective Function With
I0C

To determine the weights of objective function for the optimal
control method, we used an inverse optimal control (IOC)
method. IOC can estimate the reasonable weights to match
the optimal states to the demonstrated behaviors. Then we
adopted a probabilistic local IOC approach (Levine and Koltun,
2012), in which the probability of the actions is approximated
locally around expert’s demonstrations (Park and Levine, 2013).
In the local IOC approach, given example trajectories D =
{X;,X5,---}, the experts behaviors are represented with a
probabilistic model:

p (@) =[T,» Xi[1ow). (A1)

After applying Laplace approximation to the model, the weights
w are learned by maximizing its likelihood. We used the
six hammering behaviors of the selected good performing
participant to find the parameters of the objective function w;
and w; in Eq. (6).
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