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Representing objects in space is difficult because sensorimotor events are anchored

in different reference frames, which can be either eye-, arm-, or target-centered. In

the brain, Gain-Field (GF) neurons in the parietal cortex are involved in computing

the necessary spatial transformations for aligning the tactile, visual and proprioceptive

signals. In reaching tasks, these GF neurons exploit a mechanism based on multiplicative

interaction for binding simultaneously touched events from the hand with visual and

proprioception information.By doing so, they can infer new reference frames to represent

dynamically the location of the body parts in the visual space (i.e., the body schema) and

nearby targets (i.e., its peripersonal space). In this line, we propose a neural model based

on GF neurons for integrating tactile events with arm postures and visual locations for

constructing hand- and target-centered receptive fields in the visual space. In robotic

experiments using an artificial skin, we show how our neural architecture reproduces

the behaviors of parietal neurons (1) for encoding dynamically the body schema of our

robotic arm without any visual tags on it and (2) for estimating the relative orientation and

distance of targets to it. We demonstrate how tactile information facilitates the integration

of visual and proprioceptive signals in order to construct the body space.

Keywords: body schema, multimodal integration, artificial skin, parietal cortex, gain-field neurons, peri-personal

space, visual reaching, non-linear mixed-selectivity

1. INTRODUCTION

The body schema is the perception that each individual has of his own body in space. The
acquisition of this body schema during infancy helps to learn a structural organization of
the body parts and their visual shape, to establish the boundaries of the body and to situate
better its physical limits (Gliga and Dehaene-Lambertz, 2005; Klaes et al., 2015; Marshall
and Meltzoff, 2015; Bhatt et al., 2016; Jubran et al., 2018). Gradually, the body schema
grows to enhance spatial awareness to objects (reaching and grasping) (Van der Meer, 1997;
Corbetta et al., 2000) and to others (self-other differentiation, eye-gaze; Deák et al., 2014).
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In order to guide the movement of the body in space and to
allow interaction with an immediate environment, the brain
must constantly monitor the location of each body part at
different postures and to analyze the spatial relationship between
body parts and neighboring objects.This process requires the
integration of proprioceptive, tactile, visual, and even auditory
information to align the different reference frames from each
other; for instance, eye-, hand-, torso-, or head-centered
reference frames. Although many data are collected from
neurosciences, the mechanisms behind multimodal integration
from raw input for aligning the different reference frames and
for constructing this body schema are still under investigation
and several models and mechanisms have been proposed; c.f.,
(Taira et al., 1990; Burnod et al., 1992; Sakata et al., 1995; Caminiti
et al., 1998; Avillac et al., 2005; Borra et al., 2017). For robotics,
endowing to robots a body schema could help in reaching and
grasping tasks or in developing a sense of spatial awareness in
order to interact physically and socially with persons.

Many neuroscience studies have focused on how various
sensory modalities can be combined and integrated
to achieve the perception of limb location and the
representation of space immediately around the body
(i.e., the peripersonal space). Graziano and Botvinick
(2002) presented in one study two visions of how the
brain represents the body through neurophysiology and
psychology.The psychological approach emphasizes the
multisensory nature of body representation and has
shown that touch and proprioception are combined
in a sophisticated mental schema from the body. In
contrast, neurophysiology focuses on proprioception,
a component of the representation of the body, and
focuses primarily on the use of proprioception in the
movement control.

In a dynamic environment, the characterization of the
peripersonal space of a complex animal is fundamental for
reacting appropriately when an object enters in it. The natural
reaction could be either grasping or approaching the object
if it is of interest, or avoiding it if it represents a danger
(Graziano and Aflalo, 2007). Therefore, the brain integrates
different information from visual, auditory or somatosensory
systems to ensure an effective representation of the body and
peripersonal space (Holmes and Spence, 2004).

The peripersonal space is defined as the space that
immediately surrounds our body (Rizzolatti et al., 1997). The
neuronal representation of the peripersonal space is constructed
through a network of cortical and subcortical brain zones.
To represent the space around the body and the individual
parts of the body that can be reached with the hands, the
brain must, in particular, calculate the position of the arms
in space (Kakei et al., 2003). Neuroscientific studies suggest
that such a representation can be instantiated in a variety
of different reference frames, relative to the eye’s reference
frame, with respect to the hand’s reference frame, or with
respect to the reference frame of an arbitrary point between
these two (Gross and Graziano, 1995; Mullette-Gillman et al.,
2009; Chang and Snyder, 2010; Galati et al., 2010; McGuire
and Sabes, 2011). The term “reference frame” (RF) is used to

refer to the center of a coordinate system to represent objects,
including the body itself, and the relationships between objects
(Cohen and Andersen, 2002).

In the study of peripersonal space, Rizzolatti et al. (1997)
found that there are bimodal neurons that respond to the tactile
stimulus on a limb but also to visual stimuli near this body part,
regardless of the location of the limb in space and its posture. In
addition, Làdavas (2002) established psychophysical evidence of
how the visual perception of the peripersonal space is modulated
by the motor representations acquired during the execution of
the action.

In macaque monkeys, the posterior parietal cortex (PPC)
is involved in the integration of multimodal information to
construct a spatial representation of the outside world (relative
to the body of the macaque or parts of it) to planning and
the execution of object-centered movements (Sakata et al.,
1995; Andersen, 1997; Murata et al., 2016). In particular, the
intraparietal sulcus (IPS) serves as interfaces between perceptual
and motor systems to control the movement of arms and eyes
in space. Observations have shown that multimodal integration
in these areas is based on a multiplicative integration, i.e., gain-
modulation or gain-field (GF) mechanism (Andersen et al.,
1985; Pouget and Sejnowski, 1997; Salinas and Thier, 2000;
Salinas and Sejnowski, 2001; Blohm and Crawford, 2009). For
example, Bremner and Andersen (2012) have proposed that gain-
field neurons compute a fixation-centered reference frame by
subtracting the vector between the eye location and the hand
position to derive the hand position relative to the target in a
reference frame centered on the eye; (see also Baraduc et al., 2001;
Ustun, 2016). Nonetheless, the details of how these steps can be
processed by parietal neurons using tactile input and how spatial
transformation can be processed in a real physical system have
never been expressed nor explained in earlier works. Particularly,
most modeling works have assumed to know the location of hand
in the visual space and the visual shape of the arm configuration.
It is noteworthy that roboticists have started to consider this
research problem for robots as we will present it further.

The details of this gain-modulation mechanism will be
presented in section 2, but in order to have a better understanding
of how it works, we present the data recorded by Bremner
and Andersen (2012) of PPC units when a macaque performs
a reaching task. The authors found that area 5d encodes the
position of the hand relative to the eye before the presentation
of the target to be grasped. But just after the presentation of the
target, these neurons were sensitive to the location of the target
relative to the position of the hand independent of the position
of the hand or target locations as well as the direction of the
eye gaze. That is, the most relevant information for a successful
task was the location of the target relative to the hand as soon as
the target is presented. Moreover, this representation is dynamic
and constructed during the approach of the hand toward the
target. This mechanism is particularly interesting in terms of
computational efficiency, because not all the spatial combinations
between the hand, the eye and the target are necessary to be
learned for estimating novel and unseen relative locations.

In Figure 1, we reproduce an excerpt of this work by Bremner
and Andersen (2014) for a reaching task with different locations
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FIGURE 1 | Recording responses of the PPC neuronal population in

macaques. (A) Experimental setup for a reaching task. The eye fixation (red

crosses), the initial position of the hand (plain green circle) and the targets

(dashed green circles) were located at −20◦, −10◦, 0◦ or +10◦ horizontally.

(B) response of the neuronal population for the target at −10◦ only, revealing

the evolution of the mixed reference frames encoded during the task. The

figures are adapted and reproduced from Bremner and Andersen (2014) from

Figures 1, 4.

of the Target T, of the Eye E and of the relative distance to the
Hand H. The Target location in Eye coordinates is denoted as
(T) and Hand location in Eye coordinates is denoted as (H),
whereas the location of Target-in-Hand coordinates is denoted
as (T − H) and its opposite direction is denoted as (T + H).
In Figure 1A, the eye fixation is expressed with the red cross
located at +10◦ horizontally, the initial position of the hand
is visualized with the plain green circle and the targets are
shown with green crosses and the dashed green circle. In this
work, Bremner and Andersen (2014) performed an analysis
of the neuronal population response for different coordinate
systems (Target-Eye, Target-Hand, Hand-Eye) oriented in three
directions of a pie chart. Bremner and Anderson made the
single-unit recordings from the posterior portion of dorsal
area 5 (area 5d), in the surface cortex adjacent to the medial
bank of the intraparietal sulcus (IPS). Recorded neural activity
was passed through a headstage, then filtered, amplified, and
digitized and saved for off-line sorting and analysis. As for
the analysis, they used a gradient analysis to determine which
variable within a pair [Target-Hand (TH), target-Eye (TE), or
Hand-Eye (HE)] exerted the most influence on the firing rate of
a cell, or whether both had equivalent influence. In conjunction
with a gradient analysis, Bremner and Anderson used an SVD
(Singular Value Decomposition) analysis to assess whether the
relationship between pairs of variables was separable (in other
words, a multiplicative, gain relationship) or inseparable (vector
relationship). They also realized a time-step analysis to calculate
the resultant length and angle of the coordinate framework
gradient for each cell. Figure 1B presents the evolution of one
neuronal population response for the target location at −10◦.
The pie chart at the top indicates the proper interpretation of the
direction of the arrow for the pair of variables considered. The
length of the arrow indicates the activity level and the orientation
of the arrow indicates the sensitivity to one coordinate system.
We can see from the graph that before the presentation of the
target, the neuronal population codes the position of the hand
relative to the eye gaze (H on the circular diagram at the top).
When the target is presented, however, this population changes

to code the location of the target relative to the hand (T-H on the
pie chart).This result indicates the flexibility of parietal neurons
to change the coordinate system dynamically to represent one
spatial information. This is in line with recent observations of
parietal neurons found sensitive to different spatial coordinates
centered in the shoulder RF, the elbow or a mixture of them
with respect to the context; a phenomenon referred as non-
linear-mixed selectivity to designate this dynamic calculation
made by parietal neurons (Zhang et al., 2017). The gain-field
mechanism is one of few computational mechanisms that can
support these types of dynamical transformation necessary for
spatial representation by fusing the What and Where pathways.

In robotics, Hoffmann et al. (2010) presented one of the rare
states of the art on the body schema from the perspective of
robotics. Most of the review was focused on integrating visual
and proprioceptive information. For instance, the better part
of the robotic experiments were designed in using the linear
combination of basic functions for visuomotor transformations
(Halgand et al., 2010; Chinellato et al., 2011; Schillaci et al.,
2014). However, in these works, the tactile information was not
considered at all and it would have been interesting to use an
artificial skin to contribute to the representation of the body
schema and its space around as an additional modality with
respect to the visual and proprioceptive modalities.

Hikita et al. (2008) proposed a bio-inspired model of the body
representation of the robot through these three modalities. They
used tactile information to trigger a Hebbian learning to associate
the position of the arm with the focus point of visual attention
when the robot touches the target with its hand or with a tool.
This model allows taking into account the behavior of parietal
bimodal neurons observed by Iriki et al. (1996).

The work of Roncone et al. (2015) also focuses on
representation body and peripersonal space using an artificial
skin. They concede, however, that their approach relies
instead on existing engineering solutions and targets practical
functionalities compared to the studies presented by Hikita
et al. (2008). They associated each touch unit with a spatial
receptive field extending in 3D space around the surface of the
skin. Stimulations in the form of motor or visual events are
detected and recorded. The developed architecture estimates the
probability of contact with anyone which part of the body, i.e.,
to predict the tactile contact and to adapt the robot behavior to
avoid or grasp an object (Roncone et al., 2016).

More recently, robotics studies with artificial skin have
been developed to investigate biologically motivated models
of peripersonal space. For instance, Roncone et al. (2016),
Hoffmann et al. (2017) focused on the topological organization of
visuo-tactile receptive fields in cortical maps to organize actions
for an avoidance or reaching movement. Born et al. (2017)
proposed a model of invariance learning based on Hebb’s rule
for the development of hand-centered visual representations.
Lanillos et al. (2017) instead emphasized a predictive coding
approach for discovering causal relationships in visual, tactile and
motor stream to discriminate ego-motion and body parts.

In this paper, we propose a neural architecture of body and
peripersonal space representation that relies on the integration of
multiple feedbacks from the robot body; i.e., its proprioception,
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its tactile input and its vision. Our contributions are in the
use of (1) the mechanism of gain-field neuromodulation as
a main mechanism for integrating modalities from different
reference frames and (2) an artificial skin developed for a robotic
purpose. The model developed allows rebuilding the location of
the arm in the visual field and the location of objects relative
to the somatosensory field by aligning the different modalities
from each other. Most importantly, the results obtained are
close to the behavior of the parietal neurons recorded in the
parietal cortex area 5d, presented in the work of Bremner
and Andersen (2014): in comparison with the Bremner’s and
Anderson’s work, our architecture allows us to represent the
object location relative to the moving arm as soon as the object is
presented by combining proprioceptive, visual and tactile inputs
from the three different reference frames. And this representation
is dynamic and constructed during the approach of the hand
toward the target. We will present two robotic experiments with
a similar protocol in sections 3.2 and 3.3.

Our experiments can contribute to the understanding of the
biological principle of the peripersonal space representation.
In this respect, they reinforce our previous works on spatial
representation (Pitti et al., 2012, 2017; Mahé et al., 2015;
Abrossimoff et al., 2018).

2. MATERIALS AND METHODS

2.1. Material
In our experiments, we use the Jaco robot arm from Kinova
covered with an artificial skin that we developed, its properties
are extensively presented elsewhere in Pugach et al. (2013, 2015,
2016). The visual input is commonly acquired by a static firewire
camera fixed in height so that it can view the full arm moving,
see Figure 2.

2.1.1. Artificial Skin
The artificial skin is a rectangular conductive fabric of dimension
250 × 320 mm with sixteen electrodes attached uniformly along
the perimeter. The fabric resistance decreases when pressured.
We use it in our previous works in order to develop a low-
cost system based on the Electrical Impedance Tomography
method (EIT) for data acquisition from the conductive fabric.
The EIT is a non-invasive technique particularly used in
medical imaging to reconstruct an internal spatial distribution
of conductivity/resistivity frommeasuring iteratively the voltages
from different current locations through electrodes placed on the
circumference of the investigated object. The electronic hardware
and the neural reconstruction are detailed in Pugach et al. (2013,
2015) and a touch-based control of the Jaco Arm covered with
our artificial skin is detailed in Pugach et al. (2016). The spatial
patterns of the tactile contact can be acquired and localized at a
frequency of 40 Hz.

2.1.2. Vision System
The camera provides a video stream of 30 frames per second and
a resolution of 160 by 120 pixels. The arm is in the center of the
camera visual field. For the sake of simplicity, we have limited

FIGURE 2 | Experimental setup used in our experiments. (A) Robot arm

covered with the artificial skin and firewire camera fixed in height. (B) Visual

field of the camera and aperture angle of 100◦ of the robot arm.

the arm to a single degree of freedom in the visual plane of the
camera. The maximum angle of joint movement is 100◦.

2.2. Methods
2.2.1. Gain-Field Mechanism
The principle of integration behind gain-field neurons for spatial
transformation is based on the by-product of the neural fields’
activity between two or more modalities (Blohm and Crawford,
2009; Ustun, 2016); e.g., X and Y modalities. For instance,
Figure 3 shows the multiplicative binding X × Y between two
neural fields X and Y , which can serve then to construct a
relative metric to transpose signals from one reference frame to
another. The amplitude level of the resulting neural field indicates
their vicinity whereas its shape indicates their relative orientation
(arrow). Such computation is similar to sigma-pi networks
or radial basis functions networks and has been rediscovered
recently in computer vision as gated networks for categorizing
transformations (Memisevic, 2011). In robotics, gated networks
have been emphasized recently by Sigaud et al. (2016), Sigaud
and Droniou (2016), and Memisevic (2010) but they have been
used mostly for categorization and not for spatial transformation
as performed by gain-field networks–, for which the activity of
each unit is meaningful and corresponds to a metric value and
not a label.

In our case, gain-field networks will serve for two
computations: learning where the arm is in the eye field—e.g.,
eye-centered RF, combining touch, visual and proprioceptive
information—and learning where the target is relative to
the arm (e.g., arm-centered RF); see Figure 3B. We explain
first the mechanism of gain modulation and its equation
in the next section 2.2.2, we present then in details how
spatial transformation is done in the case of arm reaching in
section 2.2.3.

2.2.2. Gain-Field Networks
Gated or gain-modulated networks are an instance of sigma-
pi networks constituted of radial basis functions pre-defined
parametrically or learned that produce a weighted sum of joint
probability distributions as output (Pouget and Sejnowski, 1997).
The output terms Z are a linear combination of the product of
the input variables X and Y whose cardinalities are respectively
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FIGURE 3 | Gain-field mechanism for spatial transformation and hand-centered representation. The mechanism of gain-field modulation discovered in parietal

neurons corresponds to a multiplicative interaction across signals of different modalities (e.g., visual, tactile, auditive, or proprioceptive). Gain-field neurons see their

amplitude level to vary with respect to targets motion relative to different reference frames, which can be arm-, head-, hand- or eye-centered. The multiplicative

property between two receptive fields can permit the spatial transformation from one reference frame to another with a resulting receptive field whose amplitude and

orientation relates directly to it; see (A). For reaching one target, GF neurons may construct one arm-centered receptives fields to represent the distance and

orientation to the target, presumably from the multiplication between hand and targets seen visually in the eye-centered RF; see (B). Hypothesis reproduced from

Ustun (2016) and Chang and Snyder (2010).

nZ , nX and nY , so that predicting Ẑ consists on computing for all
values Zk of Z, k ∈ nZ :

∀k,Zk =
nX∑

i

nY∑

j

Wijk(Xi × Yj), (1)

with W synaptic coefficients in nX × nY × nZ . Since this matrix
can be quite large, a way to reduce drastically the dimensionality
of the gain-field networks is to multiply term by term, each Xi

and Yi with i ∈ nX , but this is not done in this work.
The global error E is defined as the Euclidean distance

calculated between Z and Ẑ for all the input examples. The
optimization function used for learning the synaptic weights of
the output layer Z is the classical stochastic descent gradient.
This is in line with our previous works (Pitti et al., 2012;
Mahé et al., 2015; Abrossimoff et al., 2018), and differs slightly
from Memisevic (2011) as they applied the algorithm to image
problems only, not to robotics.

2.2.3. Neural Architecture for Spatial Representation
Using the gain-field mechanism presented earlier, it is possible
then to exploit their computational capabilities to represent
the arm in the visual field (i.e., the body schema) as well
as the location of the target relative to the arm (i.e., the
peripersonal space).

Figure 4A shows this computational process decomposed into
three steps: (1) location of the hand (tactile information) in
the eye field from visuo-motor integration (Hand in Eye), (2)
location of the target in the visual field (Target in Eye), (3)
detection of the target position relative to the robotic arm (Target

in Hand). Wemake the note that in this figure the eye is fixed and
only the arm is moving.

We detail now the implementation steps of our computational
model. The first part aims at learning the spatial location of
the arm in the visual reference frame from the tactile input,
see Figures 4A,B in the left figures. Here, various experiences
of tactile feedback for different visual target position and
motor/proprioceptive configuration permit to learn the visual
location of a ‘touched’ target together with the arm configuration
(the motor angle); explanation in section 2.2.4.1. This stage
permits to build a visual reference frame centered on the arm. The
second part aims at estimating the relative distance in the visual
field between the arm-centered RF computed previously and the
target RF, see Figures 4A,B on the right figures. This will permit
to compute peripersonal space and pre-attentive tactile sensation.

2.2.4. Implementation
For simplicity, the vision system is based on color recognition.
The input image is in RGB format and 160 x 120 pixels resolution.
This image is first converted to HSV (Hue Saturation Value) in
order to retrieve exemplars of which we vary the Hue. These
variations make it possible to extract the predominance of a
chosen color within the image. We then perform a binarization
of the image, the initial image is transformed into a black and
white image where all the pixels have only two values 0 and
1. We project later this image on neural fields of the same
dimension.

2.2.4.1. Part 1, arm in the eye-centered RF (HE)
In order to determine where the arm is in the visual space,
we use tactile information as a conditioning signal to combine
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FIGURE 4 | Proposed mechanism for constructing a hand-centered represention from multimodal infomation. (A) We can construct in a hand-centered reference

frame (TH) by merging the hand location (HE) and target location in the eye-centered visual space (TE). Locating the hand in the visual space (HE) can be done by

binding the location of seen targets (TE) and the proprioceptive information of the arm posture (P) conditionally to the perceived tactile sensation Tac. (B). TETac and

HETac can be constructed from multiple associations between visuomotor pairs only when a contact occurs (left). From the predicted location of the hand from

HETac, it possible then to estimate visually the distance and orientation to the hand (right).

proprioceptive information and visual information as explained
in the previous section, see Figure 5-1a Tactile input modulates
the learning rate as a “Go signal,” meaning that no tactile input
induces no learning at all.

The learning stage is done using Equation (1) to associate
the tactile and proprioceptive information to visual information,
see Figure 5-1b. We fix the arm in an angular position and
touch the artificial skin with an object (the focal point of the
visual attention). Whenever the object touches the arm, the
visual neuron associated with the tactile receptive field learns
the combination of the touched visual position with the angular
configuration of the arm / joint. Note that in the case of a
bimanual robot, we may achieve tactile self-stimulation and thus
provide self-calibration of the robotic body with artificial skin.

Recall that the learning algorithm of a neural network with
Perceptron units consists in modifying synaptic weights W until
finding the minimum mean squared error between the input X
(i.e., the joint distribution between themotor angle and the tactile
input) and the desired output D (i.e., the visual location of the
target on the robotic arm). The equations of the learning rule and
the output of each neuron are the same as the ones presented in
section 2.2.2.

Furthermore, in order tomodel a spatial receptive field around
the arm, i.e., the peripersonal space, we apply a Gaussian 2Dmask
on the output network (see Figure 5-1c). This mathematical

operation permits to create a soft and smooth outline
around the arm.

2.2.4.2. Part 2, target in the eye-centered RF (TE)
After having learned the representation of the robotic arm in
the visual field (HE), we use the simpler attention mechanism
exploiting visual information only to represent the target in the
eye-centered reference frame (TE). The determination of the
position of the target is based on color recognition. An RGB
image of the same size 160 × 120 pixels is converted to HSV
and is subsequently binarized in correspondence with the color
of the object. Thereafter, we project this binarized image on
a neural field of the same dimension. Finally, we locate the x
and y coordinates of the object’s center in the visual field after
selecting the most active neural position (see Figure 5-2.2a).
This competition is made through a Winner Takes All rule
(WTA) (Rumelhart and Zipser, 1985; Carpenter and Grossberg,
1988). The winning neuron generates an output at 1, the other
neurons are set to 0. The target representation in eye-centered
RF is performed by multiplicative neurons, the multiplication of
WTA vectors with a Gaussian curve centered on x and y (see
Figure 5-2b).

2.2.4.3. Part 3, target in the arm-centered RF (TH)
Once we have processed the position of the target and of the arm
in the visual field, it is possible to compute their relative distance
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FIGURE 5 | Algorithmic implementation of tactile, visual, and motor integration. The principle of integration is based on the three successive step marked in pink

(1), green (2), and purple (3). Descriptions of each part are presented in section 2.2.4.1 respectively. Part 1 and 2 correspond to tactile-motor integration based on GF

computation for eye-centered RF of the arm (HE) and of the target (TE); they contain subparts (a–c) outlined in dotted lines. Part 3 corresponds to the computation of

the target in arm-centered RF (TH).

using the gain-field framework as presented in Figures 3, 4,
which corresponds to the third part in Figure 5. This final
layer is similar to the previous layers using basis functions. The
product between two neural fields, the neurons perform amutual
information encoding between the two modalities, i.e., between
the reference centered on the arm and the repository centered on
the target. To derive the location of the target relative to the hand,
we subtract the vectors between the target location on the eye
(position x, y of the focal point of attention, cf Figure 5-2a) and
the mutual center point (the coordinates x′, y′ defined by WTA).
The proximity of the target to the arm is defined by the amplitude
level of the mutual center point taken from the argmax function
(see Figure 3) and is converted to a value between 0 and 1. A
value of 0 indicates that the target is far from the arm and is not
in the peripersonal space. The value of 1 indicates that the target
is touching the arm, which is confirmed by tactile feedback.

3. RESULTS

In this section, we present the results of three experiments
using the proposed model of tactile, visual and proprioceptive
integration to represent the body schema and the peripersonal
space. The purpose of the first experiment is to present how
the neural architecture represents the space around the body

centered on the arm. The second and third experiments aim at
modeling the similar behaviors of parietal neurons for coding
information about the arm in the visual space and about the target
in the arm-centered reference frame.

3.1. Experiment 1 - Representation of
Space Around the Body
As explained in section 2.2.4, the first part of the learning stage
consists of associating the proprioceptive information of the
robotic arm with the visual location of a target in order to
reconstruct its visual mapping. This is done for various arm
configurations with tactile information as a conditioning signal
for calibration.

We make the remark that it is possible to not use tactile input
for the visual reconstruction as we have done in Abrossimoff
et al. (2018), but without tactile information, the learning phase
can take a long time because there is a very large number of
possible combinations between the pixel values and the angular
positions of the arm. Using tactile information instead, it can
make this phase easier by making the correspondence between
the visual location of one stimulus on the artificial skin and the
spatial configuration of the arm, only when touched. Each motor
angle is discretized in 100 units by population coding with a
Gaussian kernel centered on the current motor angle. We record
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FIGURE 6 | Visual prediction of the complete tactile RF distribution and of the whole arm location. Visual perceptron units estimate the visual location of each

tactile-motor GF unit (i.e., the body schema). The learning is done only when a visual target touches the arm and depends on the specific tactile location on the

artificial skin and on the specific arm motor angle. By activating virtually all the tactile units and for a specific motor configuration, it is possible to display the density

distribution of the arm location in the visual field. The results are presented for four different motor positions: 20◦, 50◦, 70◦, and 100◦, respectively (A–D).

FIGURE 7 | Noise filtering operation. After the visual prediction of the whole arm location as showed in Figure 6, we add a filtering operation to denoise the erronous

and isolated units till having a uniform density distribution; for the motor angle 30◦. (A) Before denoising. (B,C) After denoising in two stages.

the activity of the visual neural network for all angles of themotor
conditionally to the tactile activity.

After the learning phase, the output neurons from network
Figure 5-1.1b are able to predict the visual representation of the
arm even if the tactile information is not provided. The visual
representation of the tactile units can be simply retrieved back
from the learned model if we activate all the tactile units in the
network Figure 5-1a. By doing so, it is possible to estimate the
spatial distribution of all the receptive fields of the tactile units;

which means, we can reconstruct the spatial location of the whole
arm in the visual scene while loosing the information of each RF.

We present in Figures 6A–D the estimation of the full-arm
posture after the learning stage for four different motor angles,
20◦, 50◦, 70◦, and 100◦. We can observe that the estimation,
although noisy, represents well the arm configuration, although
for a simple transformation like a rotation. In order to
eliminate the noise of the spatial density distribution of the
arm location, we applied a mean-field filter and then used
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FIGURE 8 | Peripersonal space and arm-centered RF for various motor positions. We display in (A–D) the information about the compound GF receptive fields

resulting from the interaction between the hand and target receptive fields, for all the target locations in the visual space and for the four motor angles 20◦, 50◦, 70◦,

and 100◦ respectively. Each vector indicates the orientation of the compound GF receptive field and their length indicates the proximity of the target to the robot arm.

The direction of the arrows changes with respect to the motor angle and their length is non-linearly proportional to the distance to it.

a binary thresholding of the neurons twice, see Figure 7. In
image processing, the mean filter is defined as the average
of all pixels within a local region of an image. The same
process is done with neural populations. Neurons that are
included in the averaging operation are specified by a mask.
As a first step, we have used a larger filtering mask to
remove big tailed noise and as a second step, we have
used then a smaller filtering mask to remove small noise.
This may exempt to using vision to determine the position
of the arm in the visual field when the arm is occluded
or in the dark or to determine the relative distance of
multiple locations on the arm (e.g., hand, forearm, elbow)
to the target.

Figure 8 shows the receptive fields of the visuo-tactile neurons
computed for four different positions of the robotic arm and
for all the locations of the target in the visual space; see the
output network of Figure 5-3. This image has been obtained
by collecting the spatial orientation and distance between the
skin and the target computed from the neurons activity from
the output network. For all the visual positions of the target
around the arm, an arrow has been projected proportional to
the amplitude level of the neural field and in the direction of the
target as explained in Figures 4, 5-3.

Without any target nearby the arm, the receptive fields aim at
representing where the arm is. In the presence of a target within

reach, however, the receptive fields serve to compute where the
target is relative to the arm. This property of body representation
has been observed by Graziano and Aflalo (2007).

With respect to the distance to the arm, the neural activity
that computes the receptive fields is non-linear: the activity of
the cells is higher when a target is placed nearby the skin while
it decreases following a power-law scale when the distance to the
arm augments. This is a consequence of the two gaussian field’s
multiplication. Thus, the more a target is entering the receptive
fields, the more they encode with better precision its spatial
distance and orientation. They are therefore more sensitive to
nearby objects.

Furthermore, we can see also that our architecture is able
to correctly predict the body schema as well as to represent
its peripersonal space with respect to the arm position. This
property of dynamic encoding has been observed for instance
by Iriki et al. (1996).

3.2. Experiment 2 - Estimation of Visual
Distance and Orientation of
Target-Centered GF Neurons When the
Arm Moves and the Target Is Fixed
The second experiment aims at replicating Bremner and
Andersen (2014) observation of hand-centered parietal neurons
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sensitive to the relative distance and orientation of the hand to
target (in our case the arm). Their activity level depends on both
the position of the arm (proprioception) and the location of the
target in the eye field. We present in Figure 9 the scenario of the
experiment. We set the target to four positions Figures 9A–D

and we move the arm within the interval range between [0 and
100◦]. Every 10◦, we record the activity of the multiplicative
neuron which performs the computation of the relative distance
between the arm and the visual target as explained in Figure 4

and Figure 5-3.
We draw in Figure 10 the relative visual distance and

orientation of the receptive field computed with respect to the
target location C and the most active tactile neuron retrieved.
The arm moves toward the target, touches it and goes beyond
it. The length of the arrow indicates the sensitivity of the RF
whereas its orientation points to the nearest tactile point. The
details of the neural activity retrieved for the four locations are
presented in Figure 11 and Supplemental Data. The left chart
displays the amplitude level of the neuron taken from argmax
function in resulting spatial RF between the arm and the target,
which permits to have an estimation of the relative proximity.
The middle displays the relative orientation angle in radian
with respect to the motor position normalize between [0 and
1] and the right chart presents the same information in polar
coordinates centered at the target location. The colors correspond
to the angular motor positions. The length of the vector indicates
the relative distance as in the previous experiment.

For locationA, we observe that the target is in the peripersonal
space during the entire movement of the arm and most of
the time in an area of high activity. The multiplicative neuron
encodes the location of the target in a mutual reference
frame and changes between 0.05 and 1 (see Figure 11A). The
maximum activity corresponds to the motor positions for 30◦

to 40◦. This means that the focal point of attention is above
the position of the artificial skin, which is confirmed by the
orientation graphs.

In these graphs, the orientations for the arm positions 30◦

and 40◦ are missing. The neuron does not encode orientation for
maximal activity because the target is within the visual location
of the skin. We make the note that the experiment was organized
so that the target did not touch the skin in order to have a stable
visual response of the target’s location.

For location B, the focal point of attention is quite far
away from the arm, which corresponds to a weak activity of
the neuron. The maximum activity does not exceed 0.02 but
it is still possible to estimate the relative visual orientation
from the resulting neural field. The neuronal activity varies
in a narrow range (between 150 and 210◦) relative to the
previous location of the target. For location C, we find a small
variation in the neural activity for motor positions from 0 to
50◦ because of the large relative distance. The contact with
the skin coincides with the motor position at 70◦. And for
location D, we see that the orientation is absent from the initial
position in Figure 11D. The neural activity is 0. This means
that the focal point of attention is out of the peripersonal
space. But once the neuron activity becomes different from
zero, the relative orientation of the target can be retrieved

FIGURE 9 | Experience 2 – Target-centered receptive field. Experience done

for fixed targets in four locations (A–D) when the arm moves.

even when the activity is very low and does not exceed
0.025.

As a short conclusion of this experiment, these results show
that our neural architecture can encode information about
relative proximity and orientation of a target with respect to the
arm in a mutual reference frame. Neurons react independently of
the location of the arm and of target in the visual field. The results
obtained are therefore close to the recordings made by Bremner
and Andersen (2014) of the parietal neurons in zone 5d.

3.3. Experiment 3 - Estimation of the Visual
Distance and Orientation of Arm-Centered
GF Neurons When the Target Moves to the
Arm
The third experiment is the alternative version of experiment 2
expect that we fix the arm position to a certain location and move
the targets toward it. The aim of experiment 2 was to analyze
the change in estimating the relative distance and orientation
of the arm toward targets during a reaching task. Besides, the
aim of experiment 3 is to analyze the change in estimating the
relative distance and orientation of approaching targets when the
arm is fixed. It is not clear though whether the two experiments
would give the same results, however this experiment aims at
replicating the results of Graziano and Botvinick (2002) and
Bremner and Andersen (2014) showing that the activity level of
the parietal neurons depends on the position of the arm position
(proprioception) and the location of the object in the visual field.

For this experiment, we fix the arm with the motor angle
at 30◦. Figure 12 shows the three starting points of the targets
to the robotic arm. The paths are within the peripersonal
space area and do not exceed it and each trajectory ends with
contact with the skin. We plot in Figure 13 the estimated
relative visual orientation in radians over time and in log-
polar coordinates respectively in the top and middle charts
as well as the estimated relative proximity to the arm in
the bottom chart.
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FIGURE 10 | Gain-field visual unit receptive field centered on the target C. Snapshots of the relative visual distance and orientation for the target located in C in

Figure 9 computed by the compound GF units from the arm and target centered RF when the arms moves in the interval [0◦ − 100◦]. The arrows length corresponds

to the amplitude level of the neurons, i.e., the proximity of the RF, and their orientation corresponds to the orientation. The color code represents the different motor

positions. For better visualization, we have increased the length of the arrow by 10 times.

For the three paths, the relative visual orientation does
not change when the target is distant from the arm, which
corresponds to a low activity of the neurons (between 0.01
and 0.4). But putting the targets closer to the arm induces a
more precise estimation of their orientation. Thus, in accordance
with section 3.2, the orientation calculation gains in precision
with respect to the distance to the arm. This is also true for
the estimation of the targets’ direction: as seen in the middle
charts, the big arrows–, which correspond to the closest targets’
positions,–indicate the optimal direction of the targets to reach
the arm.

For a better understanding, we present in Figure 14 the
changes of spatial receptive fields and corresponding relative
visual orientation of arm-centered GF neurons in detail
for trajectory A. The arm-centered RF is calculated by the
multiplication of the arm prediction in the eye-centered RF
and target location in the eye-centered RF and relative visual
orientation is taken from argmax function; see Part 3 in
section 2.2.4.1. In the beginning, the orientation almost does
not change when the receptive field is homogeneous, as seen in
the first four subplots. But when the object is close to the arm,
the orientation changes in correspondence with the more active
neurons.

Once more, the analysis of the obtained results shows that the
representation of the target location with respect to the arm is
dynamic and constructed during the approaching of the target
toward the arm.

4. DISCUSSION

In this paper, we have proposed a brain-inspired model
of multimodal neurons in the parietal cortex for the body

representation of the robot arm Jaco and its peri-personal space.
The neural model makes it possible to encode the location of the
arm, the target and the relative distance between them in three
different reference frames. This model is based on the integration
of different modalities such as touch, vision and proprioception
using the neural mechanism known as gain-modulation, which
performs multiplicative interaction between variables. Such
framework permits the dynamic coding of the body posture and
targets inmultiple coordinate systems even when the two systems
are moving.This mechanism is particularly important for spatial
interaction with objects and for solving spatial tasks online; e.g.,
tool-use, manipulation, dynamic coordination, interacting with
someone else.

Before any target enters the peripersonal space of the robot,
the arm and the target are coded in separate receptive fields: a
receptive field centered on the artificial skin and another centered
on the target in the visual space. As soon as the target enters the
peripersonal space, the interaction between the two neural fields
is computing a resulting receptive field (mutually referential),
which makes it possible to estimate the relative distance and the
relative visual orientation between the arm and the target. This
behavior is similar to the one found in the parietal neurons and
recorded by Bremner and Andersen (2012) and Bremner and
Andersen (2014) for reaching tasks and by Iriki et al. (2001);
Graziano and Botvinick (2002) for body image.

For instance, as soon as the robot moves toward or away
the target, the spatial receptive fields of the neurons change
and therefore the way targets are represented: in eye centered
coordinates, in hand centered coordinates or in target centered
coordinates. Thanks to the multiplication between the neural
fields, the spatial resolution anchored at the arm becomes
proportional to the vicinity of the target. Such computation may
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FIGURE 11 | Spatial receptive fields and relative visual orientation of target-centered GF neurons. The left charts correspond to the estimated proximity of the four GF

neurons target centered at fixed positions respectively at locations (A–D). The y axis corresponds to amplitude level of the neurons whereas the x axis and the color

code represent the different motor positions between [0 and 100◦] and normalized between [0 and 1]. Location A is the nearest to the arm and location D is the

farthest. Each target-centered neuron show different types of receptive field with respect to the distance to the arm. The higher the amplitude level is, the closer the

arm is with respect to the target. When the amplitude level reaches 1, it indicates that the target is above the arm in the visual space. The middle and right charts

represent the estimated relative visual orientation between the target and the robot arm. The middle plot displays orientation vectors coming from equally spaced

points along a horizontal axis. It expresses the orientation vector components relative to the origin of the respective orientation vector. The x-axis and the color code

represent the different motor positions, the arrows’ length corresponds to the amplitude level of the neurons, i.e., the proximity of the RF, and their orientation

corresponds to the orientation. The y-axis represents the y components in relative coordinates. The right chart presents the same information in polar coordinates

centered at the target location.
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FIGURE 12 | Experience 3 – Arm-centered receptive fields. Experience done

for three looming targets at different locations (A–C) in the direction of the arm.

ease motor control and help also to create a sense of spatial
awareness around the body, which is useful for constructing
a notion of agency (Pitti et al., 2009a,b), of self and of
intersubjectivity (Murata et al., 2016; Pitti, 2017).

As the GF mechanism serves the encoding of dynamical
events, its lability due to multiplicative interaction across
heterogeneous events may be advantageous for the construction
of a plastic infant’s body image during development (Gliga and
Dehaene-Lambertz, 2005; Marshall and Meltzoff, 2015; Bhatt
et al., 2016) as well as for the purpose of other cognitive
tasks such as tool-use and body extension (Iriki et al., 1996;
Murata et al., 2016), perspective-taking to have person-centered
viewpoints (Iriki et al., 2001; Murata et al., 2016) or during
perceptual illusions such as the rubber hand illusion, tomismatch
visuo-tactile events in a confused body-centered representation
(Botvinick and Cohen, 1998; Tsakiris et al., 2007).

In our previous research, we have modeled the visuo-tactile
integration with neural networks using our artificial skin in
order to study the rubber hand illusion although we did not
have motor information at this time (Pitti et al., 2017). We
think it is theoretically possible to simulate it as we will have a
fast readaptation of the new motor position for the seen visual
position of the fake hand as during the first phase of visuo-
tactile based learning in our experiment. The learning between
visual and proprioceptive information will be fast because it
will be actively modulated by tactile stimulation as we proposed
in Figure 4.

About the integration of an external tool to the body image, see
Iriki et al. (1996). We think the adaptation mechanism may be
similar also to the first phase of the visuo-tactile based learning
of our experiments. If we connect a tool to any tactile position
on the artificial skin–, a normal location would be on the robot
hand if it has tactile sensors,– and a target touches the tool, a
visuo-tactile integration will be done not on the skin surface but
where the target is (at the tool location). We suggest that some
’tool’ neurons may modify rapidly the third circuit in Figure 3

to model the “target-in-tool” centered reference frame, when we
have the tool in hand, or even better, other maps may be created
similar to this third circuit, each one specialized to a particular
tool (Braud et al., 2018).

We think that our results are in line with observations
showing how the peripersonal space increases when the subject
is in motion (Noel et al., 2015; Bufacchi and Iannetti, 2018).
Because gain-field neurons encode relative spatial information,
they are effective either when objects are moving or when the
body moves. In consequence, such mechanism may describe
well spatial position of objects surrounding the body in motion.
Since this construction is dynamic and depends on the context,
peripersonal space remapping can work to certain limits only
and spatial estimation may change also according to it. For
instance, while the body moves, speed integration might be
difficult for stabilization of incoming signals. Our framework
may explain well how the remapping can be done of the third
circuit in Figure 3 (as explained earlier for tool-use) to enlarge
peripersonal space to the new context.

A different prediction can be made on phantom limbs with
the observation that many amputees are feeling their phantom
limb moving (Ramachandran and Blakeslee, 1998). If we think
that tactile, visual and proprioceptive information aremissing but
the circuits for spatial representations are still there as after the
first phase of visuo-tactile based learning, we may simulate the
position of the arm moving in different coordinate systems (HE
or TH).

Moreover, we suggest that the Gain-Field mechanism strongly
supports the body schema construction during development.

Many research suggest that body knowledge occurs early in life
and that the different modalities conspire to represent the body
structure and nearby targets. Hock et al. found that infants as
young as 3 months old are sensitive to the overall organization
of body parts; (see Zieber et al., 2015; Hock et al., 2016; Jubran
et al., 2018). Meltzoff et al. (2018) reports that the contralateral
hand areas of the somatosensory cortex in 7-month-olds’ is
active during contact with the hands, suggesting neural structures
represent hands early in life. Bremner et al. (2008) showed how
9-month-olds’ use different strategies to perform reaching and
grasping tasks by choosing the most effective modality (vision or
touch) and RF.

Although we entrust strongly vision for representing space,
the tactile information greatly enhances the calibration of a
multi-centered referential system by connecting the visual and
the proprioceptive information. This aspect is often neglected
in neural models of reaching and motor control such as the
ones proposed recently in Ajemian et al. (2001), Chang et al.
(2009), Brayanov et al. (2012), Blohm (2012), and Ustun (2016)
or those fewly emphasized as in Andersen (1997) and Baraduc
et al. (2001).

The same is true in robotics and it is only recently that tactile
information is taken into consideration. For instance, a color
code (or a QR code) is often used to disambiguate between the
target and the robot arm and to compute the relative distance
between them. Robot architectures taking account of tactile
information allow on the contrary to have a visual marker on the
target only and to reconstruct back the visual position of the arm

Frontiers in Neurorobotics | www.frontiersin.org 13 March 2019 | Volume 13 | Article 5

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Pugach et al. Gain-Field Computation for Robot Body Schema

FIGURE 13 | Spatial receptive fields and relative visual orientation of arm-centered GF neurons for three approaching targets. The bottom charts correspond to the

estimated proximity of three arm-centered GF neurons respectively at locations (A–C). The y axis corresponds to the amplitude level of the neurons and the x axis

correspond to time iteration. The higher the amplitude level of the GF neurons is, The closer the target is with respect to the arm location. Each GF neuron has a

different types of receptive field with respect to the arm part and the receptive fields are different from the target-centered GF neurons displayed in Figure 11. The

middle and top charts represent the estimated relative visual orientation between the target and the robot arm. The density distribution of the estimated visual

orientation is affined during displacement of the target toward the arm.

FIGURE 14 | Spatial receptive fields and relative visual orientation of arm-centered GF neurons. Activity of arm-centered GF neurons relative to the target location for

trajectory A.
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from tactile information. In our model, the position of the arm in
the visual field is calculated via visual neurons (Perceptron units)
that conditionally fire for conjunctive tactile and motor pattern.
By doing so, they integrate tactile, visual, and proprioceptive
information so that after the learning phase, these visual units
are able to predict the visual location of the arm even without
tactile input, just from the motor angle, where the arm has been
touched by the target. This result is particularly interesting for
motor simulation to anticipate contacts and to estimate the arm
location even if the arm is occluded and in the dark.

For instance, one conclusion drawn by the Darpa Robotic
Challenge is that all teams in the challenge failed to use aspects
of the physical space to help their robots move (Atkeson
et al., 2015). More contacts make tasks mechanically easier, but
algorithmically more complicated. One full body artificial skin,
however, is expected to be extremely useful as part of an early
warning system to avoid errors and external disturbances.

Another use of tactile information is to ease motion control:
as multiplicative neurons dynamically encode the location of
objects relative to the robotic arm, the control task may be
facilitated. The tactile sense may serve robots to perceive depth
and calibrate the representation of the physical space relative to
visual and motor modalities.

In our experiments, the camera was fixed and only the arm
was moving. We think however that we can integrate this feature
in the future. We did so partly in an earlier work based on audio-
visual integration for eye-to-head change of reference frame with
the head moving (Pitti et al., 2012). We think we can embed
this feature using a similar network as the ones proposed in
Andersen et al. (1985) and Salinas and Thier (2000) for visual
and proprioceptive integration using GF neurons. The vestibular
information can be useful as well and in line with evidences
from neuroscience.

Because gain-field neurons encode a relative spatial
information, they are effective either when objects are moving
or when the body moves. In consequence, our architecture may
describe well spatial position of objects with the body in motion.

Although our experiences are currently performed in 2D space
and has been applied with one single degree of freedom only, and
without taking account of the object shape (its affordance), we
do not see any constraints to extend this framework to 3D reach
and grasp. As it is known that the orientation of the hand, depth
perception and the object shape are required for 3D grasping,
many results emphasize the role of gain modulation also for
it. For instance, Kakei and colleagues found that the control

of the forearm muscles for pronation/suppination are coded
with parieto-motor neurons sensitive to visual directions (Kakei
et al., 2003) as it is for arm motion. Experiments studying
the hand orientation with oriented grippers showed also the
importance of gain modulation for dynamically aligning the
hand to the target orientation in the vertical plan (Baumann
et al., 2009; Fluet et al., 2010) or for reaching objects aligned
in various 3D orientations (Sakata et al., 1997; Murata et al.,
2016). Furthermore, “depth neurons” have been found in the
parietal cortex for the visual control on hand action (Rizzolatti
et al., 1997; Sakata et al., 1997; Filippini et al., 2018). Sakata
et al. (1997) suggested that depth movement is encoded from
the associative interaction between size change and disparity
change in the visual field and (Ferraina et al., 2009) proposed
further that the GF mechanism supports the integration of
hand movement depth for encoding of hand position and
movement in 3D space.

Some recent robotic results found that it is possible to
reconstruct back the 3D information of objects (Eslami et al.,
2018) or to estimate their physics through observation, without
interactions and from huge visual data only (Yildirim et al., 2017).
Despite these impressive results, we believe nonetheless that
embodiment –that is, the sensorimotor information structure of
agents,– is mostly missing in these works in order for one agent to
construct a unified and amodal spatial representation of the body.
In future works, we will attempt to extend our framework to 3D
space, toward learning the affordance of objects and interacting
with them.
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