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Neuromorphic vision sensors are bio-inspired cameras that naturally capture the

dynamics of a scene with ultra-low latency, filtering out redundant information with low

power consumption. Few works are addressing the object detection with this sensor.

In this work, we propose to develop pedestrian detectors that unlock the potential

of the event data by leveraging multi-cue information and different fusion strategies.

To make the best out of the event data, we introduce three different event-stream

encoding methods based on Frequency, Surface of Active Event (SAE) and Leaky

Integrate-and-Fire (LIF). We further integrate them into the state-of-the-art neural network

architectures with two fusion approaches: the channel-level fusion of the raw feature

space and decision-level fusion with the probability assignments. We present a qualitative

and quantitative explanation why different encoding methods are chosen to evaluate

the pedestrian detection and which method performs the best. We demonstrate the

advantages of the decision-level fusion via leveraging multi-cue event information and

show that our approach performs well on a self-annotated event-based pedestrian

dataset with 8,736 event frames. This work paves the way of more fascinating perception

applications with neuromorphic vision sensors.

Keywords: neuromorphic vision sensor, event-stream encoding, object detection, convolutional neural network,

multi-Cue event information fusion

1. INTRODUCTION

The rapid development of Artificial Intelligence technology drives the research on autonomous
driving technology to be a hot spot. A reliable object detector should be a must in developed
autonomous driving systems because more than half of road traffic accidents are related to
pedestrians, motorcyclists, and bicyclists. It is vital for autonomous and semi-autonomous vehicles
to detect them accurately within a short period. There are many approaches to pedestrian detection
for the past decades. Conventional imaging sensors and time-of-flight sensors are the most
commonly used sensing device for the pedestrian detection. The output data of these sensors could
be effectively processed by several existing algorithms (Dollár et al., 2014; Ren et al., 2015; Liu
et al., 2016b; Lin et al., 2017). The faster the algorithms can be, the more response time drivers or
autonomous driving vehicles can hold to avoid possible collisions. However, most of the existing
pedestrian detection systems based on these sensors fail to perform well in a real environment
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due to high latency, heavy calculation demanding, and relatively
low accuracy. Moreover, time-of-flight sensors such as LiDARs
are often too expensive to be utilized in such scenarios, while
conventional imaging sensors often suffer from data redundancy,
high latency, and ineffective under poor lighting conditions.

With the advent of neuromorphic vision sensors, we get
another type of vision sensor for object detection (Liu et al.,
2016a; Ramesh et al., 2017; Cannici et al., 2018). Compared
to traditional cameras, neuromorphic vision sensor doesn’t
have frame rate concept and it supplies events based on pixel
intensity changes. Dynamic Vision Sensor (DVS) is a type
of neuromorphic vision sensors and outputs asynchronous
events recording the illumination changes (Lichtsteiner et al.,
2008; Posch et al., 2011; Berner et al., 2013). To be specific,
a single event is recorded as a tuple (t, x, y, p), where x,
y are the pixel coordinates of the event in 2D space, t is
the time-stamp of the event, and p is the polarity of the
event indicating the brightness change. Since the data of
neuromorphic vision sensors is a spatiotemporal event stream, it
significantly reduces data redundancy compared to conventional
vision sensors, and achieves low latency, wide dynamic range
and low power consumption. However, object detection using
neuromorphic vision sensors is at the stage that is relatively
initial due to the lack of annotated event-based datasets and
the naive algorithms for neuromorphic vision sensors data.
Lagorce et al. (2017) proposed a hierarchical recognition
architecture which uses the spatiotemporal information from
neuromorphic vision sensor to build features. Liu et al.
(2016a) combined Active Pixel Sensor (APS) images which
are grayscale and event frames to build a detector whose
accuracy reaches 90%. However, since the frame rates of
APS images are relatively low, they sacrifice the low latency
characteristic of DVS.

Since CNNs perform well in object detection based on
traditional vision sensors, we are trying to detect objects using
this method with neuromorphic vision sensors. Chen (2018)
use APS images on a Recurrent Rolling convolutional neural
network to produce pseudo-labels and then use them as targets
for DVS data to do supervised learning with tiny YOLO
architecture. The result shows that purely using DVS data, object
detection can reach a truly high speed (100 FPS) in a real
environment. Although the processing speed is satisfactory, the
accuracy of the detection is equally essential. For multi-sensor
based object detection, different modalities are often combined
to achieve higher detection accuracy (Enzweiler and Gavrila,
2011; Gupta et al., 2014; Premebida et al., 2014; Chen et al.,
2016; Schlosser et al., 2016). There have been many kinds
of fusion methods used in object detection. For instance,we
can simply map different inputs together, use probabilistic
fusion or concatenation fusion. González et al. (2017) fuse
RGB and depth images using both early fusion and late fusion
methods and their multimodal framework obtains significant
accuracy improvement. However, non-overlapping regions and
uncertainties can put early fusion into trouble. Chavez-Garcia
and Aycard (2016) proposed a late fusion method based on the
Evidential framework which can enhance the description of the
objects to reduce uncertainties.

In this paper, we are trying to unlock the potential of event
data on object detection. However, the output of event-based
sensors is an event stream instead of the sequence of frames,
which is entirely different from frame-based sensors. Since we
cannot use standard computer vision algorithms to process such
data directly, new methods need to be proposed to cope with
the temporal contrast instead of absolute brightness representing
the value of each pixel. Considering the low frame rate of
APS would lower the detection speed (Liu et al., 2016a), we
decide to purely use event-based data for object detection by
introducing three event-stream encoding methods. Additionally,
since fusion methods can make detectors more robust (González
et al., 2017), we proposed channel-level fusion and decision-
level fusion with multi-cue event information (Dollár et al.,
2009). In the end, we developed two pedestrian detectors. To
evaluate the performance, we perform several experiments with
different combinations of sensor data and algorithms. Conducive
discussions based on our experiments are presented. Hopefully,
our work can inspire relevant research and pave the way of
more fascinating perception applications with neuromorphic
vision sensors.

The remainder of this paper is organized into three parts.
Section 2 presents the methodology of our pedestrian detection
system with multi-cue event information fusion. Section 3
presents the experiments carried out to assess our proposal step
by step, and discuss the obtained results. Finally, section 4 draws
our conclusion.

2. METHODOLOGY

Our approach aims at detecting pedestrians using neuromorphic
vision sensor. As shown in Figure 1, we introduced three
encoding methods which convert event stream to event frames
over a constant time interval. Then, a standard deep neural
network with input from the event frames is utilized to
predict the locations of pedestrians. Different fusion strategies
are further investigated to improve the performance of our
detection system. We detail the methodology of our system and
implementation as follows.

2.1. System Overview
The architecture of the proposed pedestrian detection system
with multi-cue event information fusion is shown in Figure 1.
We first split neuromorphic vision sensor data into three parts
based on the event polarities: positive event streams, negative
event streams, and all event streams (fusing positive and negative
event streams). The purpose is to figure out the influence of
the event polarity on detection performance. In order to take
full advantage of the event information, we propose the idea
of multi-cue event information fusion. To be specific, three
Event-to-Frame encoding methods, Frequency, SAE (Surface of
Active Events) and LIF (leaky integrate-and-fire) are applied to
event streams respectively and generate three sequences of event
frames. These encoding methods are chosen to reflect different
characteristics of the event stream.
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FIGURE 1 | Overview of the pedestrian detection system with multi-cue event information fusion. Frequency, SAE (Surface of Active Events) and LIF (leaky

integrate-and-fire) are the three methods we use to encode event stream. And we encode Positive, Negative, and Positive + Negative events respectively. We do

channel-level fusion by corresponding these three encoding methods to R, G, B channels respectively, then by processing the merged data we obtain a detector.

Moreover, we process different encoded data separately to acquire three detectors, then we use DBF to do decision-level fusion and obtain one fused detector.

The three event frame sequences would be synthesized with
two fusion approaches: the channel-level fusion and the decision-
level fusion. The former approach aims to synthesize the data by
using the three sequences as the RGB channels of an image. The
RGB images are then used as the input of the renowned neural
network architecture YOLO (Redmon et al., 2016) to acquire a
pedestrian detector. The latter approach, however, respectively
feeds the three sequences of event frames to YOLO to obtain
three individual detectors. These detectors are then fused by
a DBF (Dynamic Belief Fusion) function (Lee et al., 2016) to
achieve better detection performance.

2.2. Multi-Cue Information Generation
In our work, an event-to-frame conversion is carried out
to encode the event stream for pedestrian detection, and
we deployed the frames with a state-of-the-art deep learning
algorithm. We employ three different event-stream encoding
methods, which are selected according to their ability to reflect
different aspects of the event information. By binning the
neuromorphic sensor’s outputs in 20 ms interval, the continuous
event streams are converted to a sequence of image frames, and
the pixel values of each image are encoded via the three different
Event-to-Frame encoding methods: Frequency, SAE (Surface of
Active Events) and LIF (leaky integrate-and-fire). Figure 2 shows
the encoded frames at the same moment with different event-
stream encoding methods. Although encoding approaches are
employed as extra work to convert event streams to event frames,
it is still possible to achieve high-speed detection by using a
sliding window with a specific time interval. The following part
illustrates the details of the employed approaches.

2.2.1. Event-Stream Encoding Based on Frequency
Considering that the occurrence frequency of an event within
a given time interval can represent its probability to be a

valid event instead of noise, we count the event occurrence at
each pixel (x, y), based on which we calculate the pixel value
using the following range normalization equation inspired by
(Chen, 2018):

σ (n) = 255 · 2 · (
1

1+ e−n
− 0.5) (1)

where n is the total number of the occurred events (positive or
negative) at the same pixel coordinate (x, y) within 20ms interval,
and σ (n) is the pixel value of the event frame. It can be noticed
that we normalize the range of σ (n) to between 0 and 255 in order
to fit the 8-bit image.

What inspires us to apply this encoding method is that the
edges of a moving object tend to be the edges of the illumination
in the image. Thus there would be much more event occurred
near the object’s edges.

Therefore, if we utilize the event frequency as the pixel value,
the edges of the object would be strengthened to a great extent,
which is beneficial for object detection as we have a more clear
profile of the object. Moreover, as sensors usually have noise, one
of the superiority of this encoding method is to filter out the
noise. As is shown in Figure 2B, the outline of the pedestrian is
highlighted while the noise point is significantly reduced.

2.2.2. Event-Stream Encoding Based on SAE

(Surface of Active Events)
Due to the extremely low latency, the neuromorphic vision sensor
can record the exact occurred time of every incoming event,
which is a unique advantage of neuromorphic vision sensors
over traditional ones. In order to take full advantage of such
characteristic, we apply the event-to-frame approach called SAE
(Surface of Active Events) (Mueggler et al., 2017), where the pixel
values of a frame are determined directly by the occurrence time
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FIGURE 2 | (A) The representation of the spatiotemporal data from neuromorphic Vision Sensor in 3D(x, y, t), (B) event-frame based on Frequency (C) event-frame

based on SAE, (D) event-frame based on LIF.

of the events. Specifically, each incoming event [t, x, y, p] will
change the pixel value tp at (x, y) according to the time-stamp t
, and thus an image frame given by the time-stamp of the most
recent event at each pixel is acquired:

SAE : t ⇒ tp(x, y) (2)

Moreover, to attain an 8-bit single channel image, numerical
mapping is conducted by calculating the 1t between the pixel
value tp and the initial time t0 for each frame interval T as follows:

g(x, y) = 255 ·
tp − t0

T
(3)

The reason why we employ this encoding approach lies in
its superiority in reflecting time information because the raw
timestamp information is directly utilized while the pixel value
and its gradient can tell the moving direction and speed of
the event stream. The acquired gray image of a scene with
pedestrians is shown in Figure 2C. It is apparent that the motions
of the pedestrians are recorded, and the gray value of each pixel
indicates the occurrence time during the frame interval. The
main shortcoming of such approach is its inability to filter out
noise due to the ignorance of frequency information. Also, this
method has requirements for movement speed considering that
a newly arrived event would cover up previous pixel values.

2.2.3. Event-Stream Encoding Based on LIF Neuron

Model
The third encoding method we leveraged is based on the
LIF (leaky integrate-and-fire) neuron model (Burkitt, 2006).
According to the LIF model, each neuron has its own Membrane
Potential (MP) which will be influenced either by input spikes or
time-lapse, and a firing spike output would be generated if theMP
exceeds the preset threshold. In our case, every image pixel (x, y)
is regarded as a neuron with its Membrane Potential and firing
counter n. Each incoming event at (x, y) will cause a step increase
of the pixel’s MP regardless of its polarity, and simultaneously
each pixel’s MP will decay at a fixed rate. Also, we selected a
proper threshold forMPs. In a specific time interval, we count the

FIGURE 3 | The encoding procedure of the LIF neuron model. Top shows an

asynchronous event stream. At time t, there is a spike of the LIF neuron.

number of times each pixel’s MP exceeds the threshold (recorded
as n), and once a pixel’s MP exceeds the threshold, the MP will
be reset to 0 with no latency. Then we do range normalization
by using Equation 1 to acquire the corresponding pixel value.
After each interval, the firing spikes counter n of each pixel will
be reset to 0. The encoding procedure of the model is illustrated
in Figure 3.

Our motivation for applying this encoding is derived from
its time-continuous characteristic and the ability to reflect
occurrence intensity of events. With the time-continuous nature
of the pixelMP, historical event data have been taken into account
so that the output frames contain more abundant information
without the limitation of the time interval. Moreover, the event
intensity can be indicated because firing spikes are generated only
with input intensive enough to break through the threshold. In
this case, the noise will also be filtered to a great extent.

2.3. Network Architecture
YOLO, the acronym of “You Only Look Once,” is an object
detection system which was first put forth by Redmon et al.
(2016). Its latest version YOLOv3 by Redmon and Farhadi
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(2018) has state-of-the-art performance tested on COCO test-
dev. Comparing with other detectors, YOLOv3 performs the
best with the measurement of IOU@0.5 mAP. In YOLO object
detection system, an individual neural network is applied to the
whole image at the same time. By such a neural network, the
image is divided into grid cells called “regions,” and the prediction
of bounding boxes and probabilities for each region of the image
is made. YOLO looks at the whole image at the same time, so its
predictions gain information concurrently by the global context
in the image.

YOLO object detection system has a model size modification
mechanism, with which one could find trade-off point between
speed and accuracy.More specifically, modern YOLOv3 has three
primary model size: 320, 416, and 608. The tiny model has the
minimum requirements of computation, and with the most rapid
detection speed that makes this model remarkably applicable for
embedded systems and real-time detection jobs, while the largest
model needs more computational resources while performs the
best on mAP.

In this work, we choose the standard YOLOv3-416 model
as our base model. Specifically, the input image is resized to
the resolution of 416 × 416 pixels. Then, a single convolutional
network runs on the image to predict object bounding boxes. The
network takes DarkNet-53 which comprises 53 convolutional
layers as the backbone network and adds residual layers as
shortcut connections. After that, fully connected layers are
used to connect a set of bounding box outputs. Finally, a
non-maximum suppression is applied to suppress duplicated
detection. YOLOv3 looks at the whole image to train detection
model which can realize real-time prediction of bounding boxes
and their class probabilities simultaneously.

To be concise, we adopt a unified naming method to shorten
the length of the names of our YOLO-based neural networks.
The event frames converted by three encoding methods, namely
Frequency, SAE and LIF, are used as individual inputs to the
standard YOLOv3-416 model. Hence the trained networks are
referred as YOLO-F, YOLO-SAE, and YOLO-LIF respectively.

2.4. Multi-Cue Fusion
2.4.1. Channel-Level Fusion
We deployed a method called MTC (Merged-Three-Channel)
to achieve Channel-Level Fusion. Specifically, we merged three
corresponding event frames using the three presented encoding
mechanisms, namely Frequency, SAE, and LIF. The definition of
the three channels in the merged frame is [B, G, R] = [Frequency,
SAE, LIF], as shown in Figure 4. The merged frame is of the
OpenCV Matrix type of 8UC3, which means that the frame is an
8-bit unsigned integer image with three channels.

The advantages of each encoding method are illustrated in
section 2.2. It is noted that each encoding method has a different
focus of input data so that they are able to complement each
other and be adaptive to different application scenarios. Here
we synthesize the three channels together aiming to make the
most of the event stream information. It is expected that the
pedestrian detector based on such merged data could enjoy
better adaptability and robustness with a higher average detection
precision. For example, the SAE is likely to perform the best

FIGURE 4 | The model of the Merged-Three-Channel method: we colorized

three before-merging event frames for better effect of visualization, the actual

frames used in this work are grayscale.

with high speed moving objects while the other two approaches
perform better with serious noise impact.

To implement channel-level fusion, the event frames
converted by MTC methods are also implemented as individual
input to the standard YOLOv3-416 model. Thus the trained
networks are referred as YOLO-MTC.

2.4.2. Decision-Level Fusion
Dynamic Belief Fusion (DBF) in Lee et al. (2016) is a state-of-
the-art algorithm for the fusion of heterogeneous object detection
methods. In this work, we use DBF to fuse detection results
from three individual YOLO-based detectors, YOLO-F, YOLO-
SAE, and YOLO-LIF. DBF relies on Dempster-Shafer Theory
(DST) which consists of Shafer’s belief theory and Dempster’s
Combination Rule. Shafer’s belief theory gets a degree of belief for
a hypothesis, and then DST combines such beliefs from multiple
independent sources via Dempster’s Combination Rule. DBF
fuses the output of multiple approaches to improve accuracy.

In binary object detection, we can get a set X which is
composed of {∅, T, ¬T, {T, ¬T}}, where T is a target
hypothesis, {T, ¬T} represents intermediate state and ¬T is
a non-target hypothesis. According to the detection outputs of
three individual detectors, YOLO-F, YOLO-SAE and YOLO-
LIF, we can draw Precision-Recall curve. And a theoretical best
possible detector proposed in Lee et al. (2016), p̂bpd, whose P−R
curve is modeled as

p̂bpd = 1− rn (4)

where r is recall. Then, we can get the corresponding recall r
and the corresponding precision (p) by mapping detection scores
of different detectors. p is assigned as the basic probability of
target hypothesis(m(T)),m(I), the intermediate state hypothesis,
is defined by p̂bpd − p and the precision 1 − p̂bpd is assigned
to m(¬T) which represents non-target. After that, DBF use
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Dempster’s combination rule to compute fused basic probability
of target and non-target hypothesesmf (T) andmf (¬T). Lastly, a
fused confidence score s is returned by Shafer’s belief theory. See
Lee et al. (2016) for more details.

The purpose of applying DBF is to conduct a comparison
with the presented MTC fusion method and to explore the
effects of the decision-level fusion algorithm framework and
channel-level fusion algorithm framework on our data. Our
goal is to take advantage of the potential information of
event streams derived from neuromorphic vision sensors to
achieve higher detection accuracy. Since DBF can robustly
extract complementary information from multiple detectors and
generate better performance over the best individual detector
in traditional object detection mission, we use DBF to fuse
the detection outputs of multiple detectors which are based on
three event-stream encoding methods. Our wish is to inspire
greater efforts along the lines of fusion research on neuromorphic
vision sensor.

3. EXPERIMENTS

The experiments of pedestrian detection with our proposed
approaches were conducted on a self-annotated dataset. The
following section presents detailed information about the
implementations of our proposed detection system as well
as its performances. Qualitative and quantitative analyses and
discussions of the experiment results are provided.

3.1. Dataset
Based on our knowledge, there is no public labeled pedestrian
dataset created with a neuromorphic vision sensor. Therefore,
we decided to create a dataset by ourselves. The dataset was
collected by a neuromorphic camera named DAVIS240 which
was mounted on the second floor of Munich main railway
station. The DAVIS240 was titled toward the pedestrians walking
on the first floor. The dataset includes four raw event streams
which are recorded from different views and locations. The
length of the dataset is 485.2 s containing 1249.5 M events.
The resolution of the camera is 240 × 180. It is worth to
note that we also manually split the event stream to two
parts during our experiments. For each raw event stream,
2,500 short event streams with a time interval of 20 ms are
created. In total, 8736 short event streams are annotated by
ourselves. In which, there are 28,109 bounding boxes labeled as
pedestrians and there are around 3.22 pedestrians on average
in each frame. Nomenclature of the dataset groups are listed in
Table 1.

3.2. Implementation
3.2.1. Channel-Level Fusion
On configuring neural networks of YOLO, we modified the .cfg
configuration file which defines the neural network, the data
augmentation, and training rules.

We select the standard YOLOv3-416 network, configure the
network to be compatible with a single class, set the batch and
subdivision to be 1 with max batches to be 50,000, and propose
default data augmentation method. The initial learning rate is set
as 0.0001; if the learning rate is too high (as default, 0.001) for this

TABLE 1 | Nomenclature of the groups.

Notation Definition

P All events contained in the frame is positive.

N All events contained in the frame is negative.

PN All events contained in the frame is positive or negative.

Frequency Encoded by the method of Frequency.

SAE Encoded by the method of Surface of Active Events.

LIF Encoded by the method of Leaky Integrate-and-Fire.

MTC Encoded by the method of Merged-Three-Channels.

dataset, the neural network will never converge during training.
On training YOLO, we select 6,989 annotated frames (∼ 80%)
as the training set, and 1,747 annotated frames (∼ 20%) as the
validation set. All frames are aligned to the size of 416px× 416px
initially before training to accommodate the network input. We
implemented the YOLO training with NvidiaTM Titan X GPUs
and saved weights of each 10,000 training iteration for further
evaluation processes. Same training configures are implemented
on all 12 groups in the EPedestrian dataset used for training.

3.2.2. Decision-Level Fusion
In this work, our detecting object is pedestrian which is a binary
object detection task. We use the YOLO-based CNN framework
to get the detection results from three different event-stream
encoding methods Frequency, SAE, and LIF. Then, 2D object
bounding boxes and detection scores from three YOLO-based
object detectors (YOLO-F, YOLO-SAE, and YOLO-LIF) are used
as inputs for DBF mentioned in section 2.4.2. The P − R cure
is calculated by ground truth and detection results. Moreover,
we choose n as 18 to model the perfect detector in Equation (4).
Although according to Lee et al. (2016), the parameter n should
be set to infinite for the notional perfect detector, we discover that
the performance of the fused detectors would not have noticeable
improvement with n > 18 but suffer dramatically increasing time
consumption for calculation. So we set n = 18 for a balance
between runtime and accuracy.

3.3. Performance Evaluation
YOLOv3 is trained with 12 different groups of event frames
separately. The average precision (AP) of themodels evaluated on
EPedestrian Dataset are provided in Tables 2, 3. The Precision-
Recall curves of three individual detectors, YOLO-F, YOLO-
SAE, and YOLO-LIF, are shown in Figures 5A–C respectively.
The pedestrian detecting results which are separately obtained
by YOLOv3 in a train station hall with a bakery scene are
presented in Figure 6. We illustrate our experimental results
in the following three aspects and the detailed discussions and
analyses will be presented in the next section.

3.3.1. Comparison on Multi-Cue Information
We studied the three event-to-frame encoding methods with
the data stream of different polarity. Average precision (AP) of
the models with different encoding methods and event polarity
is illustrated in Table 2. It is noted that the detector based
on Frequency encoding, i.e., YOLO-F accomplishes the best
performance among single-channel detectors regardless of event
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TABLE 2 | The performance for polarity datatset using different event-stream

encoding methods (Frequency, SAE, and LIF) based on YOLO

(YOLOv3 IOU@0.5 AP).

Detector Polarity AP

YOLO-F Positive 74.48%

YOLO-SAE Positive 71.76%

YOLO-LIF Positive 63.05%

YOLO-F Negative 78.62%

YOLO-SAE Negative 74.25%

YOLO-LIF Negative 71.05%

YOLO-F Positive + Negative 81.04%

YOLO-SAE Positive + Negative 76.47%

YOLO-LIF Positive + Negative 72.72%

The bold values significant the best value of encoding methods in same polarity group.

polarity. Following YOLO-F as the best, YOLO-SAE outperforms
YOLO-LIF with data of all polarity. Moreover, evident gaps of
performance exist among the three single-channel detectors in
the order of YOLO-F, YOLO-SAE, and YOLO-LIF regardless of
event polarity. Among these results, the YOLO-F with positive-
negative events achieves the highest AP of 81.01%, which is
a quite high accuracy even if comparing with state-of-the-art
pedestrian detectors. As is shown in Figure 6, the first three
rows exhibit the detection results of the YOLO-F, YOLO-SAE,
YOLO-LIF. If we ignore the influence of event polarity and
focus on the third column, we can notice that the missing or
wrong bounding boxes tend to be different within the three rows,
which can be attributed to the complementary nature of the three
encoding methods.

3.3.2. Effect on Positive-Negative Combination
The effect of event polarity on detection performance can be
reflected in the Precision-Recall curves shown in Figure 5. As
PR curves, the value of AP equals to the area of the closed
region surrounded by the x-axis, the y-axis, and the precision-
recall curve. In short, the larger the closed area or higher the
PR curve is, the better performance of CNN-based pedestrian
detection achieves. It is evident in Figure 5 that the positive
event stream performs the worst regardless of the employed
encoding methods. Meanwhile, the positive-negative combined
data achieve a better performance than the negative one but
the discrepancy is quite small. As is shown in Figure 6, each
column presents different polarity of the input data in the
order of positive, negative and combined one. Regardless of the
encoding methods, it is noticeable that the amount of events
in the positive column is evidently less than the other two,
while the difference between negative and combined one is quite
inconspicuous.

3.3.3. Performance Evaluation on Different Fusion

Strategy
In Table 3, the detection results of the three single-channel
detectors and the two fusion methods are presented. Regardless
of the polarity of the data, DBF outperforms both MTC fusion
and the three single-channel detectors on our dataset, and the
best AP value of it reaches 82.28%, better than the 81.04%

TABLE 3 | The performance for Positive-Negative combination dataset using

different event-stream encoding methods (Frequency, SAE and LIF) based on

YOLO and two fusion strategies.

Detector AP-P AP-N AP-PN

YOLO-F 74.48% 78.62% 81.04%

YOLO-SAE 71.76% 74.25% 76.47%

YOLO-LIF 63.05% 71.05% 72.72%

YOLO-MTC 76.06% 77.26% 78.98%

DBF 78.53% 80.86% 82.28%

of YOLO-F. The performance improvement of DBF indicates
that detection accuracy can be improved by investigating
complementary information provided by each detector. As for
the other fusion approach, MTC fusion performs better than all
the three single-channel detectors only with positive event data. It
is surprised that the average accuracy ofMTC fusion is lower than
YOLO-F in both negative and positive-negative event data. This
result apparently fails to meet our expectations. In Figure 6, the
detection results of the MTC fusion is illustrated in the last row.

3.4. Discussion
As an attempt to make full use of the event information of the
neuromorphic vision sensor, we not only propose the multi-
cue fusion concept and conduct experiments based on it, but
also provide relevant analyses and explanations of the results,
hoping to clarify the idea of multi-cue fusion further and inspire
relevant work.

3.4.1. What Can We Learn From the Evaluation of

Different Event Polarity?
The Precision-Recall curves shown in Figure 5 tells us that the
polarity-combined event frame achieves the best performance
while the positive one the worst for all the encoding channels.
We explain the excellence of the combined frame by the fact that
the polarity-combined event frame collects more information
than single polarity one, and such abundance of information is
beneficial to the network training. In contrast with the positive
channel, the negative one realized a much closer PR curve to the
combined channel. This result can be explained by the difference
of event amount between the two polarities. We assume that the
further reason behind it might lie in the characteristics of human
walking posture: the longer contour of the back than of the front.
This inspires us to give preference to the negative events for
pedestrian detection when we want to reduce the input data but
achieve similar performance.

3.4.2. Why Does YOLO-F Perform Better Than the

Other Two Single-Channel Detectors?
It is noted in Table 2 that the detector based on the frequency
channel performs better than the other single-channel detectors.
We explain this phenomenon by the hypothesis that the
frequency-based method is a more general and all-around
encoding method which is quite appropriate for the constructed
pedestrian dataset. For comparison, the SAE-based encoding
method is limited to time information so that it fails to filter
out any noise event, while the LIF-based method set a stricter
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FIGURE 5 | Precision-Recall curves of different event-stream encoding methods (Frequency, SAE and LIF) based on YOLO with different Positive-Negative

combination dataset: (A)YOLO-F; (B) YOLO-SAE; (C) YOLO-LIF.

rule for event recording, leading to less noise but correspondingly
increasing loss of valid information. As for the frequency-based
one, it makes a balance between noise and valid information.
Simultaneously, the unique time-sensitive and intensity-sensitive
advantages of SAE-based and LIF-based exert limited influence
on the detection performance here because the applied dataset
reflects little information of speed or intensity.

3.4.3. Why Does the Channel-Level Fusion Not

Perform as Expected?
As shown in Table 3, the merged-channel detector, i.e., YOLO-
MTC does not live up to our expectation and only achieve a
mediocre performance comparing to YOLO-F and DBF. The
reason for the unsatisfactory performance of the Channel-Level
fusion is that all event frames are seen as a three-channel RGB
image, while gray-scale images duplicate its single channel to
three. Such procedure makes the method behaves more like
averaging the advantages of the information of its three channels
so that networks based onMerged groups will perform averagely,
taking into account the performance gaps among the three single-
channel detectors.

However, the unsatisfactory results can be attributed to
the lack of dataset with a complex environment as well.
Considering that the significant advantage of the Channel-
Level fusion lies in its adaptation and robustness, it is not
fair to judge its performance with relatively similar scenarios.
We still believe that this method is worth a try in some
situation, especially when the features of the recorded events
are constantly changing such as with erratic weather, variable
object moving speed or changing brightness. The chances are
that the three channels could complement and reinforce each
other to achieve the best performance. Therefore, it is an
inspiration to employ the Channel-Level fusion to a more
volatile environment.

3.4.4. What Makes Decision-Level Fusion Outperform

the Other Methods?
The average precision (AP) in Table 3 shows that DBF
outperformed MTC as well as individual detectors on our
pedestrian dataset. We guess that CNN performed much worse
than DBF because coarse-grid scanning windows and aspect ratio

of windows fixed as square bring localization error. By integrating
multi-cue information, DBF can reduce the inaccurately localized
problem and improve the detection accuracy.

As is analyzed in Lee et al. (2016), DBF can guarantee
an improved performance of detection over the best detectors
in the fusion pool, because it would always return the
bounding box with the highest detection score among all the
detectors’ results. However, the system runtime would keep
increasing with additional detectors because input data need
be fed to all detectors respectively before decision fusion.
Therefore, in order to seek a balance between accuracy and
efficiency, the choices of additional detectors are significant.
Only with detectors whose advantages are complementary,
could the fused one achieve better detection performance with
relatively low time consumption. That is also the purpose
of our selection of the three encoding methods, which all
contribute to the excellent performance of the Decision-
Level Fusion.

3.4.5. What Is the Inspiration of Our Work for Future

Research?
Although the focus of our work is laid on pedestrian
detection, it is conceivable that the proposed principle of
multi-cue event information fusion is applicable for many
other perception tasks of neuromorphic vision sensors. For
instance, detection of different objects besides pedestrian,
feature extraction, and tracking, multi-object tracking, etc. It
is also worth noting that given an extra frame encoding
procedure, high-speed detection is still achievable by using a
sliding window with a certain time interval. Hence the low-
latency superiority of neuromorphic vision sensors can still
be retained. The excellent performance of the detector based
on the decision-level fusion inspires that we can improve
fusion performance by increasing detectors with higher detection
accuracy and decreasing detectors with lower detection accuracy.
Simultaneously emphasis should be paid to the complementary
relation among the selected detectors.

In this paper, we deploy three different event-to-frame
encoding methods to unleash the potential of event data on
application of neuromorphic vision sensor. Thinking further,
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FIGURE 6 | Predicted results: The outputs from three individual detectors (YOLO-F, YOLO-SAE and YOLO-LIF) are shown in the upper three rows while outputs from

YOLO-MTC are shown in the lower row. Meanwhile, the results of the same Positive-Negative combination dataset are shown in the same column. (A) YOLO-F_P; (B)

YOLO-F_N; (C) YOLO-F_PN; (D) YOLO-SAE_P; (E) YOLO-SAE_N; (F) YOLO-SAE_PN; (G) YOLO-LIF_P; (H) YOLO-LIF_N; (I) YOLO-LIF_PN; (J) YOLO-MTC_P; (K)

YOLO-MTC_N; (L) YOLO-MTC-PN.
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we can develop algorithms that directly process the event
data generated from neuromorphic vision sensor as well.
Processing the event data directly may improve running speed
and reduce the computational cost. Additionally, we make the
summation time as a constant in this work (here 20 ms),
while different time intervals can also be tried in further
research to fulfill different demands. In our future work, we
plan to construct an event-based dataset with more abundant
detection objects and a more complex environment, so that
we can test the adaptation and performance of our presented
detection system in different situations, especially the channel-
level fusion. Besides, more appropriate event-stream encoding
methods and the integration of accurate detection algorithms
without compromising computational speed are the main tasks
of our future work.

4. CONCLUSIONS

With the purpose of improving pedestrian detection accuracy
with neuromorphic vision sensors, we put forward the idea of
multi-cue event information fusion. Based on such a principle, we
introduced several encoding methods with different advantages
of reflecting event information, after which two possible data
fusion approaches are presented. In addition, two pedestrian
detection systems based on multi-cue fusion are developed. It is
noted that all of these approaches share the same motivation: to
unlock the potential of event stream data in different situations.

The thorough evaluation of the proposed detection system is
then carried out, and we also provide detailed analyses of the
results and prospect of future work. Hopefully, our work could
contribute to the perception applications with neuromorphic
vision sensors.
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