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The shipborne manipulator plays an important role in autonomous collaboration between

marine vehicles. In real applications, a conventional proportional-derivative (PD) controller

is not suitable for the shipborne manipulator to conduct safe and accurate operations

under ocean conditions, due to its bad tracing performance. This paper presents a

real-time and adaptive control approach for the shipbornemanipulator to achieve position

control. This novel control approach consists of a conventional PD controller and fuzzy

neural network (FNN), which work in parallel to realize PD+FNN control. Qualitative and

quantitative tests of simulations and real experiments show that the proposed PD+FNN

controller achieves better performance in comparison with the conventional PD controller,

in the presence of uncertainty and disturbance. The presented PD+FNN eliminates the

requirements for precise tuning of the conventional PD controller under different ocean

conditions, as well as an accurate dynamics model of the shipborne manipulator. In

addition, it effectively implements a sliding mode control (SMC) theory-based learning

algorithm, for fast and robust control, which does not require matrix inversions or

partial derivatives. Furthermore, simulation and experimental results show that the angle

compensation deviation of the shipborne manipulator can be improved in the range

of ±1◦.

Keywords: shipborne manipulator, real-time adaptive control, conventional PD controller, fuzzy neural network,

sliding mode control, experiment verification

1. INTRODUCTION

The shipborne manipulator has become the most important tool in achieving autonomous cargo
reloading between marine vehicles. With the use of the shipborne manipulator, onboard physical
labor can be greatly reduced. However, unpredictable ship motion has a great impact on the
maneuverability of the manipulator in real applications due to the complexity of the marine
environment. If the sea state reaches Level-4, i.e., the height of a sea wave is larger than 1.52
m and wind speed exceeds 10.8 m/s, arm movement of the manipulator is extremely limited
because of the influence of sling inertia and non-linear ship pose variation. In this case, the
operational capacity of the manipulator is reduced by more than 50% or the manipulator is even
temporarily suspended.

For the shipborne manipulator, changing boom inclination is realized through the expansion
and contraction of its amplitude cylinder. The energy-saving and vibration-damping function
of its accumulator is of great significance for improving manipulator control. In literature,
the cylinder-accumulator in a manipulator has been studied in different types of engineering
applications (Xiao et al., 2014; Shen et al., 2015; Zhao et al., 2017; Xia et al., 2018).
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FIGURE 1 | Cylinder control strategy with the intervention of an accumulator, (A) is the joints of manipulator, (B) is the flow direction indication, (C) is the hydraulic

system diagram with control signals.

Specifically, the accumulator is a key component in the design
of hydraulic hybrid structures, which ensures acceptable shock
absorption performance and system energy consumption. Its
different designs are used in other construction machines such
as a rock drill (Yang et al., 2017), Scraper (Junke and Zhen, 2017),
and Fast Forging Press (Zhang et al., 2016). However, there are
few investigations related to the influence of the accumulator
on the valve control system. According to the valve-controlled
cylinder-accumulator model, the accumulator is used as an
energy-saving and oil damping source in parallel with the rodless
cavity of the amplitude cylinder. Figure 1 shows the details of
connecting the accumulator with the cylinder.

In literature, the conventional PD controller is often used to
control different types of manipulators (Cervantes and Alvarez-
Ramirez, 2001; Alvarez-Ramirez et al., 2003; Su et al., 2010).
However, it is not suitable for controlling the hydraulic system
discussed in this work, due to its high-order non-linearity,
time-varying and hysteresis characteristics. It cannot control the
hydraulic system in time and is vulnerable to environmental
interference. Additionally, a significant steady-state error still
exists, even if plenty of time is used to tune the appropriate

values for the conventional PD controller. In order to control the
manipulator, calculating torque is the simplest control approach,
but this approach relies on the accurate mechanical model of
the system. To overcome this issue, the model-free approach has
gained respectable attention since it does not require the precise
model of the system and ismore robust in response to uncertainty
and disturbance.

The fuzzy logic controller (FLC) is widely applied to handle
uncertainty and disturbance in many systems (Hasanien and
Matar, 2015; Dabbaghjamanesh et al., 2016; Vaidyanathan and
Azar, 2016), especially in different kinds of robots (Fu et al., 2013;
Tai et al., 2016; Sarabakha et al., 2018). However, the FLC also
requires a lot of time in order to tune the proper parameters to
achieve a satisfied control performance. Recently, the FLC has
been combined with an artificial neural network (ANN), i.e.,
fuzzy neural network (FNN), to overcome the aforementioned
weakness of the FLC. In literature, the FNN has been successfully
applied in identification and non-linear system controlling (Lin
et al., 2015; Tang et al., 2017; He and Dong, 2018). At the same
time, the sliding mode control (SMC) theory-based algorithm
has been presented as a faster learning approach for tuning
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the FNN parameters, due to its faster convergence speed and
higher robustness to uncertainty and disturbance (Lin et al.,
2014). Moreover, the FNN, trained with the SMC theory-based
algorithm, has been successfully used in controlling a spherical
rolling robot (Kayacan et al., 2013), a robotic arm (Wai and
Muthusamy, 2013), and a gyroscope (Yan et al., 2017).

In this work, an FNN is proposed to work in parallel with
a conventional PD controller to achieve a PD+FNN controller.
It not only overcomes the original defects of conventional PD
control but also significantly enhances self-learning abilities and
adaptabilities. In order to validate the proposed control strategy,
simulation and experimental tests have been implemented. The
qualitative and quantitative results show that the presented
strategy is feasible and practical. In addition, it outperforms the
conventional PD controller. The main contributions of this work
are listed below:

• Designing a novel control strategy for real-time control
of shipborne manipulator. The presented control strategy
consists of a conventional PD controller and FNN, which
combines a fuzzy logic controller and artificial neural network.

• Developing online adaptation laws to eliminate the
requirement for precise tuning of the controller in the
shipborne manipulator.

• Qualitative and quantitative tests in the simulation and real
experiments have been conducted to evaluate the control
performance of the presented PD+FNN control strategy.

The organization of this paper is as follows: In section 2, the
dynamic model of the shipborne manipulator is introduced. In
section 3, the PD+FNN control strategy is described. In section
4, different simulation tests are conducted in order to verify the
proposed control strategy. In section 5, the real experimental tests
on the swaying platform are performed to validate the proposed
controller. Finally, conclusions are drawn in section 6.

2. DYNAMIC MODEL

Table 1 shows the simulation parameters. Figure 2 shows the
flow direction of the oil. The accumulator is linked with the
rodless cavity of the cylinder. When the cylinder extends,
the accumulator and the valve supply oil to the cylinder
simultaneously, making the cylinder stretch out faster. The
coupling dynamics model of the parallel accumulator of the
valve-controlled cylinder system is established based on the flow
continuity equation and the dynamic equation.

2.1. Cylinder Dynamic Equation
The cylinder dynamic equation can be obtained by ignoring the
cylinder cavity pressure, which is defined as:

pA = mt ẍ+ BPẋ+ kzx , (1)

where p denotes the working pressure, N/m2; A denotes the
action area of rodless cavity, m2; mt denotes the mass of the
piston, kg; x denotes the displacement of pistol, m; BP denotes
the viscosity damping coefficient, N · s/m; kz denotes the spring
stiffness, N/m.

FIGURE 2 | Connection schematic diagram of valve and accumulator.

2.2. Cylinder Flow Equation
The cylinder flow continuity equation is:

QL = Aẋ+ Cip , (2)

where Ci denotes the internal leakage coefficient, m5/N · s; QL

denotes the total flow into rodless cavity of cylinder,m3/s, which
is defined as:

QL = Q1 + QX , (3)

where Q1 denotes the oil flow from valve, m3/s; QX denotes the
oil flow from the accumulator,m3/s. Accumulator energy release
process can be regarded as interference according to Gaussian
distribution, i.e.,:

QX = N
(

µv, σ
2
v

)

, (4)

where µv and σv are the mean value and the standard deviation
of the accumulator output flow, respectively.

2.3. Valve Flow Equation
The spool flow is a function of the working pressure and the
displacement of the spool. The spool can be viewed as a zero-
open four-way spool valve. The valve flow equation is defined as
follows:

Q1 = Cdwxv

√

2

ρ

(

pS − p1
)

= kqxv , (5)

whereCd denotes the flow coefficient of valve;w denotes the valve
area gradient, m2/m; xv denotes the displacement of valve core,
m; xv = kv ·µ, kv denotes the spool scale factor;µ denotes current
signal; ρ denotes the oil density, kg/m3; ps denotes the system
pressure, N/m2; p1 denotes the pressure of the rodless cavity,
N/m2; kq denotes the flow gain coefficient,m2/s, which is defined
as:

kq = Cdw

√

2

ρ

(

pS − p1
)

, (6)
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FIGURE 3 | Presented PD+FNN control strategy for shipborne manipulator.

Assume that the state of the system is x1 = x, x2 = ẋ, the
dynamic model of the valve-controlled cylinder system can be
defined as follows:







ẋ1 = x2
ẋ2 = θ1x1 + θ2x2 + gµ + d
x = x1

, (7)

where


























θ1 = −
kz
mt

θ2 = −

(

A2+CiBP
mtCi

)

g =
kqkvA

mtCi

d =
N(µv ,σ

2
v )A

mtCi

. (8)

3. PD+FNN CONTROL STRATEGY

3.1. Overview of Control Strategy
Figure 3 shows the presented PD+FNN control strategy, in which
the conventional PD controller works in parallel with the fuzzy-
neuro controller, as the FNN block shows in Figure 3. The PD
controller is utilized to not only trace the target value by system
error, i.e., e = xpref − xp, but also to provide learning errors
to train the FNN online. The FNN is supposed to improve the
control accuracy and offset the effects of system interference.

3.2. Fuzzy Neural Network Construction
The proposed FNN consists of two input signals, i.e., x1 = e and
x2 = ė, and one output signal xf . Takagi-Sugeno-Kang (TSK)
fuzzy model (Lin et al., 2015; Precup et al., 2015) is used in
which the antecedent part is the fuzzy set and the consequent
part consists of only crisp numbers. The rth rule of a zero-order
TSK model with two input variables x1 and x2 can be defined
as follows:

IF x1 isM1i and x2 isM2j , THEN fij = dij , (9)

where fij is the time-varying parameter of the consequent part.
dij is the coefficient of the output function for the rth rule,
and M1i and M2j are fuzzy sets. Therefore, the inputs can be
represented as µ1i and µ2j, respectively. The firing strength of

the rth rule is computed as the T-norm (multiplication) of the
member functions (MFs) in the antecedent part (Imanberdiyev
and Kayacan, 2018):

Wij = µ1i(x1)µ2j(x2) , (10)

The output signal of the system can be derived using the
normalized values of the firing strength W̃ij with the following
form (Biglarbegian et al., 2010):

uf =

I
∑

i=1

J
∑

j=1

fijW̃ij , (11)

where J and I represent the number of MFs for x2 and x1,
respectively. W̃ij is expressed as follows:

W̃ij =
Wij

∑I
i=1

∑J
j=1Wij

. (12)

Overall control input u to the system is defined as follows:

xv = xc − xf , (13)

where xc and xf are the control signals produced by the PD
controller and the FNN controller, respectively.

3.3. Triangular Fuzzy MFs
In the FNN, the fuzzyMFs play the important role of overcoming
environmental interference. These MFs have already shown
promising results for control (Khanesar et al., 2015) and
identification (Khanesar et al., 2011) purposes. In this work,
typical triangular fuzzy MFs are chosen in order to achieve a
faster and robust control performance. The MF is defined as
follows:

µ(x) =

{ (

1−
∣

∣

x−c
d

∣

∣

)

if c− d < x < c+ d

0 otherwise
, (14)

where x is the input, d and c are the width and the center of the
MF. The stability proof can be found in Kayacan and Khanesar
(2015) according to sliding mode control theory.
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3.4. Sliding Mode Control Theory-Based
Training Approach
In this paper, SMC based parameter update rules are proposed
to guarantee the stability of the system and provide favorable
robustness. By utilizing the principles of the SMC theory, the zero
dynamics of the learning error coordinate xc(t) can be described
as a time-varying sliding surface Sc in the following form:

Sc(xf , xv) = xc(t) = xf (t)+ xv(t) = 0 . (15)

If this condition is satisfied, the FNN structure is trained
to become the non-linear regulator which assists the parallel
controller (in our case PD controller), and the desired
performance of the system can be obtained. Therefore, the sliding
surface for the non-linear system under control is given by

Sp(e, ė) = ė+ χe , (16)

with χ > 0 being a positive parameter which defines the desired
trajectory of the error signal.

The time-varying parameter of the consequent part
ḟij is updated based on the following adaptation law
(Kayacan and Khanesar, 2015):

ḟij = −
W̃ij

∏T ∏

αsign(xc), (17)

where

∏

=





I
∑

i=1

J
∑

j=1

W̃ij



 , (18)

the learning rate α > 0 is updated based on the following
equation:

α̇ = |xc| , (19)

The adaptation law for the premise part is given as follows
(Kayacan and Khanesar, 2015):

ċ1i = −γ1
∣

∣d1i
∣

∣ (1− T1i) sgn (x1 − c1i) × H
(

x1, c1 − d1, c1 + d1
)

,

(20)

ḋ1i = −γ1
(1− T1i)

∣

∣d1i
∣

∣

|x1 − c1i|
sgn

(

d1i
)

×H
(

x1, c1 − d1, c1 + d1
)

,

(21)

ċ2i = −γ1
∣

∣d2j
∣

∣

(

1− T2j
)

sgn (x2 − c2i) × H
(

x2, c2 − d2, c2 + d2
)

,

(22)

ḋ2i = −γ1

(

1− T2j
)
∣

∣d2j
∣

∣

∣

∣x1 − c2j
∣

∣

sgn
(

d2j
)

×H
(

x2, c2 − d2, c2 + d2
)

,

(23)

where

H(x, c, d) =

{

x if c− d < x < c+ d
0 otherwise

, (24)







T1,i =

∣

∣

∣

x1−ci
di

∣

∣

∣

T2,i =

∣

∣

∣

x2−ci
di

∣

∣

∣

. (25)

For the γ1, it needs to be selected as positive (Kayacan and
Khanesar, 2015).

4. SIMULATION AND RESULTS ANALYSIS

4.1. Simulation Parameter
The control gains for the PD controller are chosen as follows:
kp = 10, kd = 5.

4.2. Simulation Results
Table 1 shows the simulation parameters. Figures 4–7 shows
the simulation results without noise. The adaptive learning
capabilities of the PD+FNN structure can provide superior
performance in different conditions. It is able to solve limitations
such as the lack of modeling and existing uncertainties in
the environment and is therefore more suitable for real-time
applications.

As seen from Figure 4, the PD+FNN controller has a faster
and more stable response performance. Figure 5 shows that the
controller has a better adaptive learning property to lessen the

TABLE 1 | Simulation parameters.

Parameter Description Value Unites

name

A action area of rodless cavity 6.36× 10−3 m2

mt mass of the piston 7.0 kg

BP viscosity damping coefficient 0.2 N·s/m

kz spring stiffness 8.0× 102 N/m

Ci leakage coefficient 5.1× 10−7 m5/N·s

kq flow gain coefficient 0.868 m2/s

kv proportional coefficient of core 10−3

FIGURE 4 | Tracking response of step signal.
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FIGURE 5 | Tracking response of sinusoidal signal.

FIGURE 6 | Euclidean error.

error gradually. As shown in Figure 6, although the PD controller
ensures the error signal is bounded in the neighborhood of
zero, significant steady-state errors that occur from internal or
external interferences cannot be eliminated. Compared to the
PD controller, the PD+FNN controller eliminates the steady-state
error.

Figure 7 shows curves of the overall signal (which is defined
as xv = xc − xf ), the output of FNN (xf ), and the output
of the conventional PD controller (xc). As seen in Figure 7,
the overall control signal is close to the conventional PD
controller at the beginning of the simulation, then the FNN
learns the dynamics of the system and takes responsibility for the
system. Simultaneously, the output of the PD controller tends to
go to zero.

As discussed in the section 2.2, the accumulator energy
release process can be regarded as interference according to

FIGURE 7 | Control signals of PD+FNN.

Gaussian distribution. In order to create different noise levels,
four different mean values of the accumulator output flow are
chosen, i.e., µv = {100, 150, 200, 300} [L/min]. For the standard
deviation, it is selected as σv = 70 L/min.

Figure 8 shows the manipulator position errors under PD
controller with the noise level from 0.12 to 0.24 m.

Figure 8 shows that the PD controller cannot handle
steady-state errors that occur from internal or external
interferences. However, the PD+FNN controller can
eliminate steady-state errors through an adaptive learning
algorithm, and can be used in a real time control to cope
with noisy measurements and uncertainties in the system
more effectively.

Figure 9 shows the output signals of PD+FNN in different
levels of noise. Figure 9, shows that the overall control signal is
determined by the FNN controller, and the output signal from
PD tends to be close to zero. Therefore, the FNN learns the
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FIGURE 8 | Euclidean error in different levels of noise, (A) is µv = 100 L/min, σv = 70 L/min, (B) is µv = 150 L/min, σv = 70 L/min, (C) is µv = 200 L/min,

σv = 70 L/min, (D) is µv = 300 L/min, σv = 70 L/min.

FIGURE 9 | Output signals of PD+ FNN in different levels of noise, (A) is µv = 100 L/min, σv = 70 L/min, (B) is µv = 150 L/min, σv = 70 L/min, (C) is

µv = 200 L/min, σv = 70 L/min, (D) is µv = 300 L/min, σv = 70 L/min.
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FIGURE 10 | Experimental equipment, (A) is the main equipment, (B) is the relationships between sensors and the control unit.

dynamics of the system and ultimately takes responsibility for
the system.

5. EXPERIMENTAL VERIFICATION

5.1. Introduction of Experimental
Equipment
The crane experimental model was placed on a swaying table
to simulate the sea state. The relationship between each part of
manipulators is shown in Figure 10.

The sensor and controller parameters are shown in Table 2.

5.2. Analysis of Step Signal Response
The test results are shown in Figure 11 with the step
extension signal.

The release process of the accumulator is shown in
Figure 11. When the cylinder is extended, the accumulator
releases the oil non-linearly. The cylinder protrudes quickly,
and the extension time is about 0.25 s. The color block
diagram on the right side of Figure 11 shows that the
energy release rate of the accumulator is significantly
correlated to the rodless chamber pressure and the cylinder
extension speed.

5.3. Experimental Strategy and Data
Analysis
The swaying table was controlled with a sinusoidal signal
in the frequency of 0.11Hz and an amplitude of ±7◦. The
comparison experiment of automatic wave compensation was
performed using a PD algorithm and PD+FNN to control the
angular at 0◦.

Figure 12 shows the wave compensation results of the
conventional PD controller. During the wave compensation
process, the cylinder pressure is stable, and the fluctuation
range is approximately 90–105 Bar. However, the expansion
and contraction movement of the cylinder is irregular due
to the vicious cycle caused by the accumulator intervening.

TABLE 2 | Parameters of components.

Name Content Parameters

Crane
Weight /kg 4.8× 103

Maximum system pressure /Nm 1.8× 107

Luffing mechanism

Maximum operating range /m 1.5

Maximum working velocity /m·s-1 1

The pitching angle /◦ −20 ∼ 58

Maximum lifting weight /kg 1.25× 103

Accumulator

Model type Bladder

Volume /m3 6.3× 10−3

Pre-charge pressure /Nm 6× 106

Cylinder Bore-rod /mm 90–45

Pressure sensor

Range /Nm 0− 6× 108

Response time /ms < 2

Accuracy 0.3%

Linearity ≤ 0.5%

Flow sensor
Range /m3·h-1 0.2–1.2

Accuracy ±1% Range

The performance of the cylinder control varies greatly, and
the delay is severe. The wave compensation angle error
is ±3◦. Figure 13 shows that the accumulator flow output
is irregular.

Figure 14 shows the experimental results of the PD+FNN
controller. The optimization strategy effectively solves the speed
shock caused by the accumulator. The cylinder control signal is
consistent with the motion of the swinging table, which largely
reduces the vibration of the cylinder. The wave compensation
effect has been improved, and the angle compensation deviation
is stable at±1◦.
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FIGURE 11 | Outstretch simulation of step signal, (A) is the fluctuation diagram, (B) is the output flow of the cylinder under different angle change rates.

FIGURE 12 | Compensation test with PD strategy.

FIGURE 13 | Accumulator output flow with PD strategy.

Figure 15 shows the highest value of the accumulator flow
output concentrated in the negative angle of the cylinder
(cylinder extension).

6. CONCLUSION

In this work, a novel control strategy, i.e., PD+FNN approach,
is designed to control a shipborne manipulator. Specifically,
it is able to handle the high-order non-linearity, time-varying
and hysteresis characteristics of the valve-controlled cylinder
under the intervention of the accumulator. In addition, it
can solve the overshoot generated by the wave compensation
process when the accumulator releases energy and the cylinder
reacts quickly in the extended stage. Moreover, the presented
control strategy is capable of solving the problem of pressure
fluctuation. The control precision is improved compared to
using a conventional PD controller. Qualitative and quantitative
tests on the simulation and real experiments have shown that
the proposed controller is capable of significantly reducing
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FIGURE 14 | Compensation test with PD+FNN strategy.

FIGURE 15 | Accumulator output flow with PD+FNN strategy.

steady state-errors and in overcoming the disturbances caused
by the accumulator and uncertainties. The deviation angle
of compensation is ±1◦ instead of ±3◦ compared to the
conventional PD controller. We believe that the results of this
work will motivate a wider use of the proposed PD+FNN
approach, for autonomous collaboration of marine vehicles with
a shipborne manipulator.
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