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Vision based-target tracking ability is crucial to bio-inspired snake robots for exploring

unknown environments. However, it is difficult for the traditional vision modules of

snake robots to overcome the image blur resulting from periodic swings. A promising

approach is to use a neuromorphic vision sensor (NVS), which mimics the biological

retina to detect a target at a higher temporal frequency and in a wider dynamic range.

In this study, an NVS and a spiking neural network (SNN) were performed on a snake

robot for the first time to achieve pipe-like object tracking. An SNN based on Hough

Transform was designed to detect a target with an asynchronous event stream fed by

the NVS. Combining the state of snake motion analyzed by the joint position sensors, a

tracking framework was proposed. The experimental results obtained from the simulator

demonstrated the validity of our framework and the autonomous locomotion ability of

our snake robot. Comparing the performances of the SNN model on CPUs and on

GPUs, respectively, the SNN model showed the best performance on a GPU under a

simplified and synchronous update rule while it possessed higher precision on a CPU in

an asynchronous way.

Keywords: neuromorphic vision, spiking neural network, snake robot, Hough transform, target tracking

1. INTRODUCTION

Target tracking performed on mobile robots, such as bio-inspired snake robots, remains a
challenging research topic. Specifically, when using visual approaches based on the conventional
vision sensor which has a rigid connection to a mobile robot, there are mainly two challenges:
(1) The primary issue is how to overcome the image blur resulting from the fast motion and the
unpredictable tremble of the robot. Meanwhile, if there was no change in a scene, the traditional
camera with a fixed frame rate would bring a large quantity of redundant data, which constraints
the design and application of real-time tracking approaches. (2) Another issue is that the relative
position of the target cannot be obtained fast and precisely from the sensors assembled on the
robot, including IMU sensors, vision sensors, and time-of-flight sensors. In addition, owing to the
limitation of space and weight of the real snake robot, it is usually difficult to utilize more sensors
with higher precision and larger volume or stereo vision sensors for gaining depth information.
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There have been extensive articles aiming to solve the
aforementioned problems in visual target tracking on robots. A
natural solution for tracking on blurred image sequence is to first
perform deblurring and then a apply tracking algorithm on the
deblurred sequence. An improved method is directly tracking
the target without deblurring (Jin et al., 2005). By generating
blur templates of the target from blur-free frames, the target is
represented by a sparsematrix and tracked by a particle filter (Wu
et al., 2011; Ma et al., 2016). Although these frameworks are blur-
tolerant, they are still time-consuming. An alternative approach
performed on mobile robots is tracking objects in special color.
Hu et al. (2009) designed a vision-based autonomous robotic
fish and implemented red-ball tracking. However, this method
cannot be used in a complex environment or for objects with
low color contrast. Recently, researchers have attempted various
new types of vision sensors in target tracking, such as structured
light sensors (Ponte et al., 2014) and neuromorphic vision sensors
(NVS) (Schraml et al., 2010; Glover and Bartolozzi, 2016; Liu
et al., 2016; Moeys et al., 2016; Seifozzakerini et al., 2016).

Tracking by using the neuromorphic vision sensors has
become a promising solution. The NVS, typically the Dynamic
Vision Sensor (DVS) (Lichtsteiner et al., 2008), mimics the
biological retina to generate spikes in the order of microseconds
in response to the pixel-level changes of brightness caused by
motion. An output event (also named as a spike) of the DVS
carries three kinds of information, including the timestamp t
when the event occurred, the pixel coordinate (x, y), and the
polarity p that represents the trend of the brightness change.
The polarity 1 represents increasing brightness, while the polarity
–1 means the brightness is decreasing. NVSs offer significant
advantages over standard frame-based cameras, namely a very
high dynamic range, no motion blur, and a latency in the
order of microseconds (Gehrig et al., 2018). Hence, the NVS is
suitable for working under bad light conditions and on high-
speed mobile platforms. There has been substantial research
showing the advantages of using a DVS camera in various vision
tasks, such as high-speed target tracking (Drazen et al., 2011;
Mueggler et al., 2014; Lagorce et al., 2015), object recognition
(Kheradpisheh et al., 2018), and visual odometry (Kueng et al.,
2016; Rebecq et al., 2017). Moreover, due the fact that a pixel of
an NVS is a silicon retinal neuron and an event is a unit impulse
with polarity, the asynchronous event train generated by an NVS
can be directly fed into Spiking Neural Networks (SNNs) as input
spikes for implementing target detecting and tracking in a faster
and more brain-like way.

The wheel-less snake robot (Wright et al., 2007) is a kind of
typical bio-inspired mobile robot, which is composed of many
modules alternately connected in vertical and horizontal planes.
Its abundant degrees of freedom help it achieve various three-
dimensional gaits, such as rolling, side-winding and slithering.
The slithering gait is a forward locomotion gait where the
biological snakes use undulations to push their bodies forward
(Hu and Shelley, 2012). Under this gait, the snake head can still
remain stable to locate the moving direction of the quarry or the
natural enemies. Similarly, the wheel-less snake robot is able to
move and look forward under a slithering gait and achieve target
tracking (Bing et al., 2017).

In this work, we presented a pipe-like object detecting
and autonomous tracking framework, which was performed
on our wheel-less snake robot with a monocular DVS camera
by applying a spiking neural network which is inspired by
the Hough transform (Wiesmann et al., 2012; Seifozzakerini
et al., 2016). First, we achieved line detection for a standing
pipe and circle detection for a lying pipe on the snake robot
in the Neurorobotics Platform (NRP). The fixed connections
between the input neurons corresponding to pixels of DVS and
neurons representing the points in parameter space were created
according to the principle of the Hough transform. Secondly,
a depth estimation method based on a monocular DVS was
proposed to estimate the pose of the snake robot and the relative
position of the target pipe by the change of object size. Thirdly,
an adaptive tracking strategy which generates a series of control
signals of turning left or turning right was adopted to implement
real-time tracking. Finally, target tracking experiments were
conducted on the wheel-less snake robot modeled in V-REP and
in NRP, respectively; and our SNNmodel was evaluated on CPUs
and on GPUs, respectively.

This paper is based on our previous work (Jiang et al., 2017),
which we extend in several ways:

• Besides V-REP, we validated our tracking framework in
another simulator - NRP.
• We extend the range of shapes to detect and track so that the

snake robot can track a target pipe in various views. We not
only detected and tracked the standing pipe (shape in lines)
but also the lying pipe (shape in circle).
• We revised conditions applied in detecting the standing pipe,

which is more biologically plausible.
• GPUs were used as accelerators to speed up object detecting on

the SNN.

The rest of the paper is organized as follows. In section 2,
we describe the proposed tracking framework, including the
overview, the model of spiking neural networks for detecting and
the relative position estimation algorithm. In section 3, we show
and discuss the results of experiments conducted on a wheel-less
snake robot. The conclusions are drawn in section 4.

2. METHODOLOGY

2.1. Tracking Framework
Target tracking is a typical instance of the autonomous
locomotion control. Therefore, tracking framework consists of
three components: sensing, planning and acting, which are also
the essential components of an autonomous system (Ponte et al.,
2014). More concretely, the proposed framework for pipe-like
object tracking on a wheel-less snake robot is composed of 4
constituents, as shown in Figure 1. (1) Sensor. The DVS camera
observes the environment and generates asynchronous events as
the input of the SNN. For an event e(t, x, y, p), (x, y) indicates
which neuron receives this input spike, t is the time when the
spiking neuron receives this input spike, and p (±1) defines the
voltage of this input spike. Meanwhile, the joint encoder records
the position of each joint of the snake robot in a short time period.
(2) Spiking Neural Network. A two-layer SNN was designed for
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object detecting. A neuron in the input layer fixedly connected
some neurons in the output layer according to the principle of
Hough Transform. The asynchronous events were fed into the
input layer of the SNN and impacted the neurons in the output
layer by propagating the spikes on the synapses. Once any output
neuron excited, a output spike was generated which means a
successful detection of the target. (3) Decision maker. It is a
non-spiking part. The joint position information obtained from
the joint encoders as well as the target position obtained from
the SNN were fused to estimate the relative position of target
and generate control signals. The function of control signals we
used is essentially the same as a Bang-Bang controller. (4) CPG
controller. This part is a built-in controller of the wheel-less snake
robot that converts the control signals into the parameters of
the Central Pattern Generator (CPG) to maintain or adjust the
specific locomotion gait.

2.2. Model of Spiking Neural Network
Compared to traditional artificial neural networks, spiking
neural networks are more similar to the biological brains
due to incorporating the concepts of spike-driven synaptic
dynamics and temporal dynamics. Temporal dynamics mean the
membrane potential of spiking neurons changes spontaneously
over time and spike-driven synaptic dynamics describe the
information propagation on synapses.

For the neuron model, the most popular one is the Leaky
Integrate-and-Fire (LIF) model (Burkitt, 2006), which can be
described by the following linear differential equation:

τm
dv

dt
= −v(t)+ RI(t). (1)

where v(t) represents the membrane potential at time t, τm is the
time constant and R is the membrane resistance. A LIF neuron

is a simple resistor-capacitor circuit where the leakage term −v(t)
τm

is due to the resistor and the integration term RI(t)
τm

is due to the
capacitor that is parallel to the resistor.

The behavior of a LIF neuron can be depicted as follows. (1) A
spiking input causes an increase of theMembrane Potential (MP)
of the neuron. (2) In the meantime, theMP always spontaneously
decays at a fixed rate. (3) When the MP exceeds the threshold,
a spike is generated as an output. Then, the MP of the fired
neuron is reset to zero so that the neuron enters a refractory
period, during which the MP remains zero and all input spikes
are ignored. Because of the similarity between the dynamics of
the LIF neuron and the voting process of shape detection based
on the Hough transform, the SNN composed of LIF neurons is
particularly well adapted for detecting line and circle.

In this work, we designed two SNNs composed of the LIF
neurons for line detection and circle detection, respectively. All
the SNNs contain a two-layered topological structure, including
an input layer and an output layer, as shown in Figure 1. The
input neurons obtained the events from DVS and duplicated
it immediately. The output neurons integrated the spikes and
excited when they received enough spikes, which are extended
LIF neurons with both a positive threshold and a negative
threshold. Each input neuron permanently connected some
output neurons according to the equation of specific shape. The
membrane potential dynamics of extended LIF neurons was
described as Algorithm 1.

2.2.1. Line Equation
According to the Hough transform, we assume En = (sin θ , cos θ)
as the normal vector perpendicular to the line L and ρ as the
normal distance from the line to the origin. Hence, a point Ep =
(x, y) on the line L can be formulated as the equation:

ρ = En · Ep = x sin θ + y cos θ , (2)

FIGURE 1 | Tracking framework. The asynchronous events derived from the DVS are processed by an SNN designed for object detecting. A neuron (in red) in the

input layer fixedly connects some neurons (in blue) according to the principle of the Hough transform. Some neuron (in green) excites when the membrane potential

exceeds a threshold. By combining the joint position information obtained from joint encoders and the target position in camera, the relative position of the target (in

red) is estimated to generate the control signals. Finally, the wheel-less snake robot approaches the target under a slithering gait.

Frontiers in Neurorobotics | www.frontiersin.org 3 May 2019 | Volume 13 | Article 29

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jiang et al. Retina-Based Object Tracking

FIGURE 2 | Panel (A) is a line in the Cartesian coordinate. Panel (B) is a 180× 180 SNN which θ is limited in [0◦, 180◦) while ρ is limited in (0, 180]. The central

neuron in red corresponds to the line L in (A), which is connected to all neurons in its neighbor for local inhibition.

Algorithm 1: The membrane potential updating of an extended
LIF neuron (λ is the fixed decay rate, v is the MP)

1: for input spike si with polarity pi at ti do
2: vi ← sign(vi−1) ·max(|vi−1| − λ · (ti − ti−1), 0)
3: vi ← vi + pi
4: if |vi| ≥ vth then
5: Generate output spike δ = sign(vi) at ti
6: Reset all connected neurons
7: vi ← 0
8: end if

9: end for

which maps each point (x, y) from Cartesian coordinate into
parameter space of (θ , ρ) as a sinusoidal curves.

As shown in Figure 2, the SNN corresponding to the
parameter space of (θ , ρ) is built up, which consists of 180 ×
180 spiking neurons. The first dimension of the SNN represents
the angle θ and the second dimension is the distance ρ. In this
example, the range of θ is [0◦, 180◦) with 1◦ resolution and the
range of ρ is (0, 180] pixels (180 approximately equals to the
diagonal distance of the view field of a DVS128) with 1-pixel
resolution. Each neuron of the SNN represents a line with (θ , ρ)
in the parameter space.

2.2.2. Circle Equation
As we all know, a point p = (x, y) on a circle C can be described
by the following standard equation:

(x− a)2 + (y− b)2 = r2 , (3)

where (a, b) is the coordinate of the center of the detected circle.
An SNN for circle detection is a three-dimensional parameter

space of (a, b, r), which consists of 128 × 128 × 64 spiking
neurons. The first two dimensions of the SNN represent the
position of a circle center in the horizontal direction and the
vertical direction, respectively, while the third dimension is the
radius of a circle. In this case, the resolutions in all of the three
dimensions are 1 pixel. Each neuron of the SNN represents a
circle with (a, b, r) in the parameter space.

2.2.3. Lateral Inhibition
The local lateral inhibition, which is a nature of biological
neurons, was applied to suppress the noise in this work. Every

spiking neuron was connected to its adjacent neurons. Once
a shape was detected, a spiking neuron would excite and all
the spiking neurons connected would be inhibited. In order to
make a trade-off between the result of noise suppress and the
computation cost, we select a 3 × 3 window as the range of local
lateral inhibition. This means that neurons in the 8-adjacent of
the fired neuron are reset. When a larger inhibition range is used,
the target would be detected less often in approximately the same
region, but more reset operations need to be done—otherwise,
the reverse.

2.3. Pipe Detection
For pipe detection, the different poses of a vision sensor will
result in different shapes of a pipe in the image plane, a pair of
parallel lines or a circle. The circle can be detected directly by an
SNN, while a strategy needs to be proposed for recognizing two
parallel lines.

The edges on both sides of the pipe body can be detected
as two parallel lines. In an indoor environment, the change
of brightness is opposite on both sides of the pipe while the
DVS camera moves perpendicular to the pipe. The polarity
of the events on one edge of the pipe is positive while that
on another edge is negative. Once the DVS camera moves to
the opposite direction, the polarity of the events on two edges
would reverse. The two lines with opposite polarity can be
considered as the body of a pipe. Furthermore, this pair of
parallel lines should appear at the maximum frequency which
is equivalent to the highest fired rate of the spiking neuron.
Therefore, three conditions to judge whether a pipe appears are
listed below:

• The polarities of the two lines are opposite.
• The two lines are parallel or the difference of the angle is tiny.
• The pair of parallel lines appears at the maximum frequency in

a short time period.

In this work, we tested all the detected lines in each time slot
and only one pair of lines satisfying the above conditions would
be found out. The target can be detected by Algorithm 2 and
represented as a 4-tuple P(t, θ ,w, pos), where t is the timestamp,
θ is the angle of the pipe, thew is the width of the pipe and the pos
is the offset in pixel which is relative to the left side of the field
of view.
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FIGURE 3 | Panel (A) shows the geometric relationship between the DVS camera and the target pipe. When t = t1 the pipe is on the far position from camera. After

the snake robot moves at an approximately constant velocity v, the pipe is on the near position when t = t2. Panel (B) shows the geometric relationship among the

pipe offset in the image plane, camera offset and actual offset while the snake-like robot moves forwards with a periodic swing.

Algorithm 2: Event-based pipe detecting in the SNN

1: for each time slot do
2: for event ei = (ti, xi, yi, pi) do
3: for every angle θj in SNN do

4: Calculate distance ρθj = argmin |ρ−xi sin θj−yi cos θj|
5: Update neuron N(θj, ρθj ) at ti with polarity pi
6: if a neuron fires then
7: Store the output spike
8: end if

9: end for

10: end for

11: Find out a pair of output spikes satisfying the judgment
conditions

12: if a pipe exits then
13: Output the pipe P(t, θ ,w, pos)
14: end if

15: end for

2.4. Tracking
2.4.1. Motion Analysis of Snake Robot
Due to the fact that the DVS was mounted on the head of the
snake robot, the horizontal offset and the orientation of the head
should be known for obtaining precise tracking performance.
Therefore, we collected the data from the joint encoder installed
on the head and recorded the pose of the head, which includes
the trajectory and the rotation in the simulation environment.
Then, the horizontal offset and the orientation were analyzed
by using FFT. After applying the head orientation compensation
approach, the head of the snake robot kept always looking
forward along the moving direction, which is a benefit for
simplifying the model to estimate the relative position of the
target. On the other hand, the horizontal offset was estimated
based on the head joint position. This idea is derived from the
observation that the rotation of the joints is the essential driving
force of the wheel-less snake robot.

For tracking tasks, our snake robot moved under a slithering
gait, which provides the most stable pose of camera. The
horizontal offset of DVS was fitted by FFT. In the meantime,

FIGURE 4 | The simulation environment in NRP, which includes a hollow pipe

and a snake robot with a DVS.

we reconstructed the horizontal trajectory of the head module
by integrating the head joint position θ . In fact, the head joint
position and the horizontal trajectory are both the periodic signal,
which can be formulated as Equation (4) and Equation (6),
respectively. Wu and Ma (2010) indicated that these two signals
have the same form but different amplitude and phase; however,
it was unable to give the offset of the head module in real time.
Therefore, considering the joint rotation is themain driving force
and reason to the motion of wheel-less snake robots, the head
joint position was regarded as the argument of the horizontal
trajectory. By tuning the phase and the amplitude, we got the
offset of the DVS from the head joint position according to the
Equation (6). Further, the situation of turning was approximately
treated as that of moving straight.

θ = a · sin(ω · t + φ) (4)

θtuned = α · a · sin[(ω · t + φ)+ φpos]

= α · (θ · cosφpos + θ ′ · sinφpos) . (5)

Position = A · sin(θtuned) = A · sin[α · (θ · cosφpos

+ θ ′ · sinφpos)] . (6)
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FIGURE 5 | The horizontal offset estimation for the head module of the snake robot while it is moving forwards. Panel (A) is from V-REP, Panel (B) is from NRP.

where A is the amplitude of the swing which is perpendicular to
the direction of motion, α is the ratio of the 90 degrees to the a,
θ is the value of the joint encoder, θ ′ is the joint velocity which is
also the first-order derivative of θ and φpos is the phase difference.
In our case, the tuple (A,α,φ) is (–0.124, 1.000, 0.000) for V-REP
and (1.400, 2.571, 0.908) for NRP, respectively. These parameters
are different in V-REP and NRP because the joint controllers
and environment parameters in these two simulators are a little
bit different.

2.4.2. Relative Position Estimation
By using a distance sensor, such as an ultrasonic sensor, an IR
sensor, etc., we can actively measure the relative distance between
the snake robot and target. However, a time-of-flight distance
sensor is usually directed, which means more sensors need to
be installed in the limited space of the snake robot, especially
when the position of the target is unknown. It is plausible to the
actual snake robot as well. Besides that, when using a DVS along
with distance sensors, wemust ensure the consistency of different
sensor measurements, that is, to make sure the measured data
represent the same object. Therefore, aiming to use fewer sensors,
we detected the target and estimated depth simultaneously by
using a single DVS sensor.

Once the target is detected by the SNN, we can estimate the
offset of the target in the horizontal plane and the forward relative
distance between the DVS camera and the target. As shown in
Figure 3A, in a time period 1t = t2 − t1, there is a functional
relation between the decrease of the distance 1d = |d2 − d1|
on the z-axis and the increase of the visible width of the target
1w = |w2 − w1|. Besides that, the distance d is always inversely
proportional to the width of the target w, the scale factor is the
focus length f multiplying the actual width l. Moreover, we can
reasonably assume that the snake robot moves forward at an
approximately constant speed since that is very small. Hence,
the 1d can be estimated by multiplying the elapsed time and
the speed of the snake robot. In summary, we can calculate the
distance d2 depending on the displacement in a time period
and the change of the target visible width according to the
following equations.

1d = |d2 − d1| = v ·1t , (7)

d = f · l · w−1 , (8)

d2 =
f · l

w2
=

w1 · v ·1t

1w
. (9)

The snake-like robot moves slowly and the 1t and the 1w
between two consecutive output spikes are tiny. Therefore, the
error of distance calculated by the Equation (9) is remarkable.
To reduce the error, two discrete output spikes are selected
for distance estimating and the interval is 10 spikes in
this paper.

Assuming that the position of the moving snake robot and
the target pipe satisfies the relationship shown in Figure 3B, the
snake robot swings along the central line while it is moving
forwards. Hence, in order to obtain the offset between the
central line and the target, we calculated two kinds of offset,
the pipeOffset and the cameraOffset, respectively. Further, we
proposed the method to estimate the pipe position for tracking
as shown in Algorithm 3. We calculated the pipeOffset according

to the ration of tan θ to tan φ
2 (φ is the FOV of DVS). Then we

estimated cameraOffset according to the Equation (6).

Algorithm 3: Position estimation and pipe tracking

1: for pipe Pi(ti, θi,wi, posi) do
2: if l = Size(pipe) is known then

3: Calculate the distance d = f · l · wi
−1

4: else

5: if i ≥ 10 then
6: Calculate the distance d = v · (ti − ti−10) ·

wi−10
wi−wi−10

7: else

8: Set the distance d to 0
9: end if

10: end if

11: Calculate the offset of the pipe in DVS, pipeOffset = d ·
|posi−64|·tan

φ
2

64
12: Estimate the offset of the camera cameraOffset
13: Calculate the actual offset offset = pipeOffset +

cameraOffset
14: Generate control parameter C = Sign(offset), where −1

means turning left, +1 means turning right and 0 means
going straight

15: end for

2.5. GPU Acceleration
For artificial SNNs, the neurons will update their states only
when input spikes arrive asynchronously. When SNNs are
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FIGURE 6 | Results of pipe detection. (A) Detected pipe body in V-REP. (B) Detected pipe entry in V-REP. (C) Detected pipe body in NRP. (D) Detected pipe entry in

NRP.

implemented on CPU or neuromorphic chips, the neurons
can update asynchronously as well. However, the general CPU
is unable to deal with the large quantity of communication
between neurons and real-time state updating of neurons. The
neuromorphic simulators and chips still have some drawbacks on
running a large SNN. Therefore, we tried to accelerate our SNN
by using a GPU. By providing a uniform clock, the neurons could
update synchronously in a short time period, such as frame-based
image processing.

3. EXPERIMENTS

Our tracking framework was evaluated both in NRP and V-
REP, which is a robot-brain simulator and a robotics simulator,
respectively. To begin with, we reconstructed the trajectory of the
head module of the snake robot for obtaining the camera offset
perpendicular to the forward direction. Then, two scenes were
built. One of them only had a standing pipe while another one
contained a lying pipe. Finally, experiments were conducted on
the aforementioned scenes. Meanwhile, the SNN was performed
on a CPU by only using a single thread and a CUDA
GPU, respectively.

3.1. Simulation Environments
The Neuromorphic Platform (NRP) (Roehrbein et al., 2016;
Falotico et al., 2017) is an integrated simulation platform
to facilitate a direct link between robotics and neuroscience.
In its Gazebo-based world simulator, we built a modular
wheel-less snake robot and a simple environment in which
there was only one pipe, as shown in Figure 4. we built
two SNNs as well, respectively for pipe body detection
and pipe entry detection. By using the Robot Operating
System (ROS) as a communicating middle-ware, our snake
robot and the SNNs could exchange data and commands
through ROS topics. While V-REP (Rohmer et al., 2013) is a
simulator only for robotics in which we implemented SNNs
outsides and connected the snake robot and SNNs by utilizing
Remote APIs. Although the NRP and the V-REP are both
robotics simulators, models of the snake robot are a little bit
different in the number of modules, the controller parameters
and so on.

3.2. Results and Discussions
We conducted experiments in V-REP and NRP, respectively,
considering four situations, which are (1) tracking pipe body on
the left side of the snake robot, (2) tracking pipe body on the right
side of the snake robot, (3) tracking pipe entry on the left side of
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the snake robot and (4) tracking pipe entry on the right side of
the snake robot.

First, we fitted the camera offset by using the head
joint position. As shown in Figure 5, the blue curve is an
approximately sine curve that represents the actual offset
of the DVS camera, the red one is the offset analyzed by
FFT and the green one is the reconstructed offset. We not
only estimated the offset according to the Equation (6),
but also applied a mean filter on the timeline to smooth
the estimation result. Therefore, the horizontal offset of the
DVS camera was directly obtained in real time under a low
estimation error.

Then, for the pipe detection, we put a hollow pipe at
different perspectives of the DVS camera. The snake robot
always started moving from the same initial position for each
situation, but the initial position in V-REP is different from that
in NRP. During the detecting procedure, the event sequences
generated by the DVS were fed into the vision SNN. Events
were asynchronously processed, but we only detected pipe
once in each time slot according to the method discussed in
section 2.3, and the image and the position of the pipe were
recorded and a part of them was shown in Figure 6. The
standing pipe was represented by a blue and a green line and
the lying pipe was represented by a green circle. The precision
of the standing pipe detection is higher than the lying pipe
detection because of the limitation of the network size, especially
for circle detection. More neurons means greater ability to
recognize the much finer structure of the target. Additionally, it
suffered from worse precision when the snake robot got close
to the target, especially the lying pipe. At the beginning, the
circle looks dense and easily distinguished, however it looks
noisier because more details of the target which generated
noise spikes were seen. If we increased the firing threshold
of the membrane potential to increase the precision of target
detection, however, the firing rate of output neurons would
reduce so significantly that there were not enough output
spikes generated.

After that, the relative distance between the DVS camera and
the target pipe was estimated by using Algorithm 3. As the snake
robot moving toward the pipe, the width of the pipe increased in
the image plane. As shown in Figures 7A,B, the relative distance
decreased when the width of pipe increased and the average error
was around 0.1 m. Nevertheless, the error of Figures 7C,D were
much higher than for standing pipe tracking. The reason is that
the firing rate was much higher and the difference of width was
smaller than parallel lines detection when we detected the circle.
Additionally, in all cases, larger error also occurred at the early
time period of the simulating experiment. We only evaluated the
precision on the data derived from V-REP because we assumed
the size of targets was known in NRP to avoid introducing too
much error.

Furthermore, we estimated the actual offset of the target pipe
and generated control signals so that our snake robot was able
to achieve pipe tracking, as shown in Figure 8. Figures 8A–D
showed the final trajectory of the snake robot for tracking in
V-REP, the shapes in red were the actual position of the target
pipe. Then, Figures 8E–H showed the final trajectory of the snake

FIGURE 7 | Relative position estimating in V-REP. For each case, the upper

line shows the increase of the width of the target pipe in pixels and the lower

line shows the distance between the head of the snake robot and the target

pipe. In (A) and (C), the target pipe is on the left side of the snake robot, and

the target pipe is on the right side in (B) and (D).

robot for tracking in NRP. All the results demonstrated that our
tracking framework based on SNN was valid and effective. The
snake robot was able to find the target pipe and approach it by
performing a series of motion, including turning left, turning
right and go straight. The trajectories shown in Figure 8 were
not representative of a smooth curve because of the swing of
the snake robot, but the trend of motion is still correct. Another
feature about the curves was that there were several obvious
turning points in V-REP but not in NRP.

Finally, we compared the performance of the proposed SNNs
on CPU and GPU, respectively. As shown in Table 1, the GPU
was able to accelerate the detection procedure for each case,
especially for lying pipe detection. Due to the three-dimensional
parameter space for lying pipe detection, the GPU could achieve
higher speedup than standing pipe detection. Moreover, in cases
3 and 4, the pipe detection could be performed in real time
by using the GPU. In addition, the simulating experiments
conduced in NRP showed higher frame rate than that of V-REP,
especially when the GPU was utilized. The possible reason is
that the V-REP spent more time in data transferring between the
snake robot and the SNN.
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FIGURE 8 | Left: Control signals of turning left(–1), turning right(1) and going straight(0) for the snake-like robot. Right: The overhead view of the trajectory of the head

module while tracking. From (A–H), eight experiment results are shown which are left-side standing pipe tracking in V-REP, right-side standing pipe tracking in V-REP,

left-side lying pipe tracking in V-REP, right-side lying pipe tracking in V-REP, left-side standing pipe tracking in NRP, right-side standing pipe tracking in NRP, left-side

lying pipe tracking in NRP, right-side lying pipe tracking in NRP.
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TABLE 1 | The frame rate of pipe tracking on CPU and on GPU, respectively.

Case Hardware CPU(fps) GPU(fps) Speedup

Standing pipe in V-REP Intel i7-5500U/Nvidia Geforce 940 m 0.21 1.71 8.14

Lying pipe in V-REP Intel i7-5500U/Nvidia Geforce 940 m 0.33 3.22 9.76

Standing pipe in NRP Intel i7-4770/Nvidia Geforce GTX 645 1.63 40.74 24.99

Lying pipe in NRP Intel i7-4770/Nvidia Geforce GTX 645 0.36 22.35 62.08

4. CONCLUSION

In this work, we proposed a pipe-like object detecting and
tracking approach by combining the DVS and SNNs, and
successfully performed on a wheel-less snake robot. The
target pipe was detected by dealing with the asynchronous
address-event stream obtained from a DVS. Then, an
autonomous tracking method was present according to the
relative position between the snake robot and the target.
Furthermore, the performances of the proposed SNNs were
estimated on CPU and GPU. The experiments demonstrated the
efficacy of our tracking approach based on SNNs and showed the
practicality and accuracy of the autonomous tracking method.
Comparing the performances of our SNNmodel on CPUs and on
GPUs, respectively, the SNNmodel showed the best performance
on a GPU while is displayed the highest precision on a CPU.
However, there are still some drawbacks to our approach. The

prime one is that the performance of tracking is sensitive to the
noise and the error in detection and position estimation.
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