
ORIGINAL RESEARCH
published: 28 June 2019

doi: 10.3389/fnbot.2019.00040

Frontiers in Neurorobotics | www.frontiersin.org 1 June 2019 | Volume 13 | Article 40

Edited by:

Caixia Cai,

Agency for Science, Technology and

Research (A∗STAR), Singapore

Reviewed by:

Keyu Wu,

Nanyang Technological University,

Singapore

Jacques Kaiser,

Research Center for Information

Technology, Germany

*Correspondence:

Jieneng Chen

chenjn@tongji.edu.cn

Xiaobin Hu

xiaobin.hu@tum.de

Received: 25 February 2019

Accepted: 28 May 2019

Published: 28 June 2019

Citation:

Chen J, Chen J, Zhang R and Hu X

(2019) Toward a Brain-Inspired

System: Deep Recurrent

Reinforcement Learning for a

Simulated Self-Driving Agent.

Front. Neurorobot. 13:40.

doi: 10.3389/fnbot.2019.00040

Toward a Brain-Inspired System:
Deep Recurrent Reinforcement
Learning for a Simulated Self-Driving
Agent

Jieneng Chen 1*, Jingye Chen 2, Ruiming Zhang 1 and Xiaobin Hu 3*

1Department of Computer Science, College of Electronics and Information Engineering, Tongji University, Shanghai, China,
2 School of Computer Science, Fudan University, Shanghai, China, 3Department of Computer Science, Technical University

of Munich, Munich, Germany

An effective way to achieve intelligence is to simulate various intelligent behaviors in

the human brain. In recent years, bio-inspired learning methods have emerged, and

they are different from the classical mathematical programming principle. From the

perspective of brain inspiration, reinforcement learning has gained additional interest

in solving decision-making tasks as increasing neuroscientific research demonstrates

that significant links exist between reinforcement learning and specific neural substrates.

Because of the tremendous research that focuses on human brains and reinforcement

learning, scientists have investigated how robots can autonomously tackle complex

tasks in the form of making a self-driving agent control in a human-like way. In this

study, we propose an end-to-end architecture using novel deep-Q-network architecture

in conjunction with a recurrence to resolve the problem in the field of simulated

self-driving. The main contribution of this study is that we trained the driving agent using

a brain-inspired trial-and-error technique, which was in line with the real world situation.

Besides, there are three innovations in the proposed learning network: raw screen

outputs are the only information which the driving agent can rely on, a weighted layer

that enhances the differences of the lengthy episode, and a modified replay mechanism

that overcomes the problem of sparsity and accelerates learning. The proposed network

was trained and tested under a third-party OpenAI Gym environment. After training for

several episodes, the resulting driving agent performed advanced behaviors in the given

scene. We hope that in the future, the proposed brain-inspired learning system would

inspire practicable self-driving control solutions.

Keywords: self-driving agent, brain-inspired learning, reinforcement learning, end-to-end architecture, recurrence

1. INTRODUCTION

Recently, research in brain science has gradually received the public’s attention. Given the rapid
progress in brain imaging technologies and in molecular and cell biology, much progress has been
made in understanding the brain at the macroscopic and microscopic levels. Currently, the human
brain is the only truly general intelligent system that can cope with different cognitive functions
with extremely low energy consumption. Learning from the information processing mechanisms
of the brain is clearly the key to building stronger and more efficient machine intelligence

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00040&domain=pdf&date_stamp=2019-06-28
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenjn@tongji.edu.cn
mailto:xiaobin.hu@tum.de
https://doi.org/10.3389/fnbot.2019.00040
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00040/full
http://loop.frontiersin.org/people/589422/overview
http://loop.frontiersin.org/people/671827/overview
http://loop.frontiersin.org/people/704573/overview

Chen et al. Brain-Inspired Self-Driving

(Poo et al., 2016). In recent years, some bio-inspired intelligent
methods have emerged (Marblestone et al., 2016; Gershman
and Daw, 2017; Hassabis et al., 2017; Botvinick et al.,
2019), and they are clearly different from the classical
mathematical programming principle. Bio-inspired intelligence
has the advantages of strong robustness and an efficient, well
distributed computingmechanism. It is also easy to combine with
other methods.

The mammalian brain has multiple learning subsystems. Niv
(2009) categorized major learning components into four classes:
the neocortex, the hippocampal formation (explicit memory
storage system), the cerebellum (adaptive control system), and
the basal ganglia (reinforcement learning). Among these learning
components, reinforcement learning is particularly attractive to
research. Nowadays, converging evidence links reinforcement
learning to specific neural substrates, thus assigning them
to precise computational roles. Most notably, much evidence
suggests that the neuromodulator known as dopamine provides
basal ganglia target structures with phasic signals that convey a
reward prediction error which can influence learning and action
selection, particularly in stimulus-driven habitual instrumental
behaviors (Rivest et al., 2005). Hence, many efforts have been
made to investigate the capability of bio-inspired reinforcement
learning by applying them to artificial intelligence-related tasks
(Peters and Schaal, 2008; Mnih et al., 2015; Zhu et al., 2017;
Gu et al., 2017).

In recent years, deep reinforcement learning has contributed
to many of the spectacular success stories of artificial intelligence
(Kober et al., 2013; Henderson et al., 2018). After the initial
success of the deep Q network (DQN) (Mnih et al., 2013), a
variety of improved models have been published successively.
Later on and based on the former discoveries, Mnih et al. (2015)
proposed the Nature DQN in 2015 and introduced the replay
memory mechanism to break the strong correlations between
the samples. Mnih et al. (2016) proposed a deep reinforcement
learning approach, in which the parameters of the deep network
are updated by multiple asynchronous copies of the agent in
the environment. Van Hasselt et al. (2016) suggested the Double
DQN to eliminate overestimation; they added a target Q network
independent from the current Q network. It was shown to
apply to large-scale function approximation (Van Hasselt et al.,
2016). Wolf et al. (2017) applied a deep Q network to a driving
scenario in a physics simulation based track. Newer techniques
included deep deterministic policy gradients and mapping an
observation directly to action, both of which could operate over
continuous action spaces (Lillicrap et al., 2016). Schaul et al.
(2016) suggested prioritized replay, adding priority to replay
memory to relieve the sparse reward and slowly converge on
the problem (Schaul et al., 2016). Reviewed in Hassabis et al.
(2017), experience replay was inspired by theories that seek
to understand how the memory system in the mammalian
brain might interact, and thus has biological plausibility. In the
case of partially observable states, the recurrent neural network
(RNN) and long short-term memory (LSTM) have been proven
to be effective in processing sequence data (Hochreiter and
Schmidhuber, 1997). Hausknecht and Stone (2015) replaced
the last fully connected layer in the network with an LSTM

layer. They integrated information through time and replicated
DQN’s performance on standard Atari games and partially
observed equivalents featuring flickering game screens. Also,
Foerster et al. (2016) proposed to use multi-agent to describe a
state distributively. A recent work (Kahn et al., 2018) adopted
double Q learning with recurrency and computation graphs to
tackle a robotics navigation task. Nevertheless, some previous
studies, such as those with Atari games, focused on the simple
environment and action space. Moreover, the previous studies
do not provide comprehensive comparisons with supervised
learning in a specific scenario. Because of these limitations,
there is an urgent need to further improve the capability of
deep reinforcement learning in a more challenging and complex
scenario such as the simulated driving control problem.

To clarify the biological plausibility, Lake et al. (2017) state
that there is indeed substantial evidence that the brain uses
similar model-free RL learning algorithms in simple associative
learning or discrimination learning tasks. In particular, the
phasic firing of midbrain dopaminergic neurons is qualitatively
and quantitatively consistent with the reward prediction error
that drives updating of value estimates. In the process of
reinforcement learning, the agent’s attempt in each state was
like the regulation process of dopamine in the brain (Dolan and
Dayan, 2013). To the best of our knowledge, there is rare work
studying the behavior difference between supervised learning and
RL in a specific scenario. In the kart driving case in this work,
the proposed learned agent shows stronger biological plausible
learning capability than the supervised learned agent, in respect
to dealing with specific situations and its adaptability.

One supervised learning-based study looked at the simulated
self-driving game (Ho et al., 2017). However, three problems
existed in their implementation. First, they created a handcrafted
dataset. Obviously, one can never create this ideal benchmark
dataset that includes all the bad situations encountered by the
driving agent during training. At best, one can include the
best behavior that the driving agent should implement in each
step. The driving agent was reported to perform well when it
had a good position in the driveway. However, the behavior
deteriorated rapidly when the driving agent deviated from the
driveway. Such behaviors indicated the dissimilar distribution
and instability even though correctional measures were taken on
the dataset. Second, they trained and supervised their network in
a supervised way. As there are many possible scenarios, manually
tackling all possible cases using supervised learning methods
will likely yield a more simplistic policy (Shalev-Shwartz et al.,
2016). Third, their experiments were built on ideal conditions;
for example, they assumed that the brakes were ignored. In our
experiments, we take the brakes into consideration. Moreover, to
support autonomous capabilities, a robotic driven agent should
adopt human driving negotiation skills when braking, taking left
and right turns, and pushing ahead in unstructured roadways.
It comes naturally that a trial-and-error way of study is more
suitable for this simulated self-driving game. Hence, the bio-
inspired reinforcement learning method in the study is a more
suitable way for the driving agent to learn how to make decisions.

In our study, we proposed a deep recurrent reinforcement
learning network to solve simulated self-driving problems.

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2019 | Volume 13 | Article 40

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

Rather than creating a handcrafted dataset and training in
a supervised way, we adopted a bio-inspired trail-and-error
technique for the driving agent to learn how to make decisions.
Furthermore, this paper provides three innovations. First,
intermediate game parameters were completely abandoned, and
the driving agent relied on only raw screen outputs. Second, a
weighting layer was introduced in the network architecture to
strengthen the intermediate effect. Third, a simple but effective
experience recall mechanism was applied to deal with the sparse
and lengthy episode.

The rest of this study is organized as follows: section 2
describes deep Q-learning, recurrent reinforcement learning,
network architecture, and implementation details. Section 3
verifies experimental results. The conclusion of this study is
drawn in section 4.

2. METHODOLOGY

Deep Q-learning is used to help AI agents operate in
environments with discrete actions spaces. Based on the
knowledge of Deep Q-learning, we proposed a modified
DRQN model in order to infer the full state in partially
observable environments.

2.1. Deep Q-Learning
Reinforcement learning manages learning policies for an agent
interacting in an unknown environment. In each step, an agent
observes the current states of the environment, makes decisions
according to a policy π , and observes a reward signal rt (Lample
and Chaplot, 2017). Given the current states and a set of
available actions, the main aim of the DQN is to approximate
the maximum sum of discounted rewards. According to the
Bellman equation, it gives the approximating form of Q-values
by combining the reward obtained with the current state-action
pair and the highest Q-value at the next state st+1, and the best
action a′:

Q(st , at)← rt + γ ∗ argmax
a′

Q (st+1, a′) (1)

We often use the form involving an iterative process:

Q(st , at)← Q(st , at)+ α

(

rt + γ ∗ argmax
a′

Q
(

st+1, a
′
)

− Q(st , at)

)

(2)

In the assignments above, α stands for the learning rate and γ

stands for the discounted factor.
The agent chooses the action following a ε-greedy exploration

policy. The value of ε ranges from 0.0 to 1.0. In order to
encourage the agent to explore the environment, the ε was set
to 1.0 at first. During the training process, the value decreased
gradually as the experience accumulated. Then, the agent could
use experience to complete the task.

When we sample a sequence (st , at , rt , st+1) from the replay
memory unit, the target value yt is calculated as:

yt =

{

rt for terminal st+1
rt + γ argmaxa′ Q

(

st+1, a
′|θ
)

for non-terminal st+1
(3)

The network was trained to approximate the expected Q-value,
which led to the loss function, with parameters θ in the model:

Loss(θ) =
∑

(

yt − Q(st , at|θ)
)2

(4)

2.2. Recurrent Reinforcement Learning
For some special games which are three-dimensional and
partially observable, the DQN lacks the ability to solve the
problem. In partially observable environments, the agent only
receives an observation ot of the current environment, which
is usually insufficient to infer the full state of the system. The
real state st is the combination of the current observation ot
and an unfixed length of history states. Hence, we adopted
the DRQN model on top of the DQN to deal with such
conditions (see Figure 1). The last fully connected layer was
replaced by the LSTM in the DRQN model in order to record
former information. Figure 2 shows the sequential updates in the
recurrent network.When updating the DRQNmodel, a sequence
S was randomly sampled from the replay memory unit, and the
beginning time step t was also randomly chosen according to the
maximum length l. Then the cut sequence St,t+1,...,l−1,l was sent
to the DRQN model. An additional input ht−1 standing for the
previous information was added to the recurrent model. At the
zero time step, ht−1 was set to zero. The output of the LSTM
z
(

ot , ht−1
)

, which combined the current observation ot and the
history information ht−1, was used to approximate the Q-value
Q
(

ot , ht−1, at
)

. The history information was updated and passed
through the hidden state to the network in the next time step:

ht = LSTM
(

ht−1, ot
)

(5)

2.3. Network Architecture
In the beginning, we used the baseline DRQN model (Lample
and Chaplot, 2017) to make an agent perform self-driving.
However, we obtained unsatisfied results with the same model.
Hence, we have made three improvements in our modified
model to make things work better. The whole architecture is
shown in Figure 3. First, the network was built on top of the
NVIDIA’s autopilot model (Krizhevsky et al., 2012). To reduce
overfitting, the original model was modified by adding several
batch normalization layers. We used a four-layer stronger CNN
for feature extraction. The input size was resized to 320∗240. The
first convolutional layer contained 32 kernels, with a size size of
8∗8 and a stride of 4. The second convolutional layer contained
64 kernels, with a size of 4∗4 and a stride of 4. The third layer
contained 128 kernels, with a size of 3∗3 and a stride of 1. The
last convolutional layer contained 256 kernels with a size of 7∗7
and a stride of 1. Relu was used as the activated function in the
network, and the sizes of the pooling layers were all 2∗2. Second,
we abandoned the fully connected layers before the LSTM layer
in the original DRQN model and fed the LSTM directly with the

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2019 | Volume 13 | Article 40

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

FIGURE 1 | The modified DRQN model. The value function was divided into two categories: the current value function Q and target value function Q′. The parameters

in Q were assigned to Q′ per N episodes. The state contained two elements: ot gained from the current environment and ht−1 gained from former information. The

agent performed action a using a specific policy, and the sequence (ot, a, r, ot′) was stored in the replay memory unit. We used a prioritized experience replay memory

unit here. During training, the sequence was randomly chosen from the replay memory unit. We trained the network using gradient descent to make the current value

function Q approach Q′ given a specific sequence. The loss function was shown in Equation (4).

FIGURE 2 | Sequence updates in the recurrent network. Only the scores of the actions taken in states 5, 6, and 7 will be updated. The first four states provide a more

accurate hidden state to the LSTM, while the last state provides a target for state 7.

high-level feature. The number of units in LSTM was set to 900.
Third, the subsequent structure was divided into two groups for
different purposes. One was mapped to the set of possible actions,
and the other was a set of scalar values. The final action value
function was value function was acquired using both of them.We
will introduce their functions respectively.

We used two collateral layers rather than a single DRQN
network to approximate the value function. The auxiliary layer
also had a five-dimensional output as the action space layer.
The original target was to balance the impact of the current

and history. The agent could make a suitable action with a
fully observing perspective. Nevertheless, we wanted to focus
on the precise instantaneous changes of the current scene. The
output of the auxiliary layer was mapped to [0, 1.0] using
the softmax function, thus suggesting the correction for the
raw approximations using the DRQN model. Because of this
intervention, the network would not only learn the best action
for a state but also understand the significance of taking actions.
If an agent drove in a straight line and had an obstacle far ahead,
an original DRQN model could learn that it was time to make

Frontiers in Neurorobotics | www.frontiersin.org 4 June 2019 | Volume 13 | Article 40

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

FIGURE 3 | An illustration of the architecture of our model. The input image is assigned to four convolution layers. The output of the convolution layers is split into two

streams. The first stream (bottom) flattens the output and feeds it to an LSTM. The second one (top) flattens the output and feeds it to a fully connected layer. Then,

we obtained an importance stream and value stream individually and multiplied them as the output. We stored the information in prioritized experience memory unit.

As was shown in Figure 1, the network was trained using the DRQN loss function.

the driving agent move a bit to avoid hitting the obstacle. The
modified model would also have insight into when it was the best
time to move, with the knowledge that the danger of the obstacle
increases as it gets closer. V(s, a) was used to represent the
original output of the DRQN, and I(s, a) was used to represent the
importance provided by the auxiliary layer. We used the formula
to express the final strengthen of the Q-value (see Figure 3):

Q(s, a) = V(s, a)T ∗ I(s, a) (6)

The result was stored in the prioritized experience memory unit.
During training, the sequence in the memory unit was removed,
and we used Equation (4) to calculate the loss.

2.4. Implementation Details
Reinforcement learning consists of two basic concepts: action
and reward. Action is what an agent can do in each state. Given
that the screen is the input, a robot can take steps within a
certain distance. An agent can take finite actions. When a robot
takes an action in a state, it receives a reward. Here, the term
reward is an abstract concept that describes the feedback from
the environment. A reward can be positive or negative. When
the reward is positive, it corresponds to our normal meaning of
reward. However, when the reward is negative, it corresponds
to what we usually call punishment. We also describe the
training details such as the hyperparameters, input size selection,
frameskip, and prioritized replay.

2.4.1. Action Space
The agent could perform five actions, including Left, Right,
Straight, Brake, and Backwards. The range of the joystick reflects
the numerical value of the speed control, which is mapped into
a region of –80 to 80. The speed section was discretized into
a set of [0, 20, 40, 80] for speed control. We considered that
only the turning control had a high requirement for precision to
keep the model simple. Another three actions, including forward
flag, backward flag and brake, were represented by 1/0 flag.
Thus, we used 5-dimensional vectors to represent each action as
shown below:

actions = [40, 0, 1, 0, 0], left

= [−40, 0, 1, 0, 0], right

= [0,−80, 0, 1, 0], go backwards

= [0, 0, 1, 0, 0], go straight

= [0, 0, 0, 0, 1], brake

The meaning of each dimension in the vector represented
forward speed, backward speed, backward flag, forward flag, and
brake. For forward speed, a positive value indicates to the left and
a negative value indicates to the right. When the backward flag
was set to 1, the agent would move backwards at a specific speed.

Frontiers in Neurorobotics | www.frontiersin.org 5 June 2019 | Volume 13 | Article 40

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

2.4.2. Reward
Mnih et al. (2015) states that end-to-end human-level RL
control draws on neurobiological evidence that reward signals
during perceptual learning may influence the characteristics
of representations within the primate visual cortex. The AI
trained in a supervised way would only respond to visual
information. If the kart picks the wrong direction, it would
likely drive straight since the scenes of the correct and wrong
direction are mostly the same. In other words, the supervised
learned agent does not understand risky situations that are

likely to lead into error states during real-time play. In contrast,
an agent receiving reward and punishment signals can avoid
the noted situation efficiently. Under most circumstances, the
driving agent cannot explore a path with big rewards initially.
The driving agent often gets stuck somewhere in halfway
through and waits for the time to elapse before resetting. We
have to make the rewards of these cases variant in order to
make these experiences meaningful. Hence, we set a series of
checkpoints along the track. A periodical reward was given to
the driving agent when each checkpoint was reached. The closer

FIGURE 4 | There are reward trends for two different maps. (A) corresponded to Farm and (B) corresponded to Raceway. After training for 1,750 episodes, we

obtained the reward tendency. At about 400 episodes, the stability of the driving agent began to increase. After 1,400 episodes, the reward stabilized at a high level.

FIGURE 5 | We visualized the first layer and obtain a direct view (left). However, many grids contain unreadable information such as the grid marked with a green

frame. Because the first layer’s output was quite abstract, we then visualized the last layer using deconvolution and obtained the right picture. It seemed to represent

the wall element in the original graph. That means the agent could pay attention to the wall and then take suitable actions. Panel (A) shows the direct view visualization

of the first layer of CNN. Panel (B) shows the visualization of the last layer of CNN using deconvolution.

Frontiers in Neurorobotics | www.frontiersin.org 6 June 2019 | Volume 13 | Article 40

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

the distance between the checkpoint and the destination, the
bigger the phased reward was given. We have established a more
precise reward system to increase density, such as giving the
driving agent a slight punishment when it moves backwards.
At each step, the agent will also get a little punishment.
The detailed component of the reward will be introduced in
section 2.4.4.

2.4.3. Prioritized Replay
Hassabis et al. (2017) states that experience replay was
directly inspired by theories that seek to understand how
the memory systems in the mammalian brain might interact.
According to the biological plausibility mentioned in Hassabis
et al. (2017) and Schaul et al. (2016), we modified the
original replay mechanism. In most cases, there was little
replay memory with high rewards, which would be time-
consuming with a huge replay table and many sparse rewards.
As prioritized replay was a method that can make learning
from experience replay more efficient, we simply chose the
important experiences in proportion to their rewards and
stored them into the replay memory. That way, memories
with high rewards would have a greater opportunity to
be recalled.

2.4.4. Hyperparameters
The original screen outputs were three channel RGB images.
They were first transformed into gray-scale images and then
fed to the network to train. The network was trained using the
RMSProp algorithm. The size of minibatch was set to 40. The
size of replay memory was set to contain 10,000 recent frames.
The learning rate α was set to 1.0 in the beginning and followed
a linear degradation and finally was fixed at 0.1. The exploration
rate ε was set to 0 when we evaluated the model. When the agent
finished the game, it would get 1,000 scores as reward. Whenever
it crossed each lap, it would get 100 scores. The agent would get
0.5 scores as it got to a checkpoint. If the agent moved backwards,
it would get –0.5 scores as punishment. At each time step, it
would get –0.1 scores as punishment because we wished the agent
to finish the game as quickly as possible.

2.4.5. Other Details
To accelerate training and save running memory, the original
640∗480 screen resolution was resized to 160∗120 in the
beginning. After several hours of trials, the driving agent still got
stuck in most cases and could not complete one lap. The resulting
rewards oscillated for not finishing the game in the limited
number of steps, thus indicating the resolution was too low for
the model to recognize. To enrich the visual information and
address the above problems, the input size was set to 320∗240.
We also attempted to reduce the punishments to encourage
positive rewards. After the observation of the same length of
time, the distribution of the resulting rewards became steady and
started to turn positive over the baseline. Hence, the input size
of the resolution was finally set to 320∗240 in the experiment in
spite of the memory consumption. The system started to learn
successfully within the acceptable limit of time.

Since slight change occurs between adjacent frames, we
utilized the frame-skip technique (Bellemare et al., 2013). We
took out one frame as the network input by every k + 1 frame, and
the same action was repeated over the skipped frames. When k
became higher, the training speed became high as well. However,
the information the agent got became imprecise as well. In order
to achieve the balance of low computing resource consumption
and smooth control, we finally choose a frame skip of k = 3 by
relying on our experience.

3. EXPERIMENTS

The model was trained using three different tracks, which cover
all the track that Stanford used for comparison. An individual
set of weights was trained separately for each model because
each track has different terrain textures. The rewards were low
initially because it is equivalent to a random exploration at the
beginning of training and because the driving agent would get
stuck somewhere without making any significant progress. After
about 1,400 episodes of training, the driving agent finished the
race. Under most circumstances, the driving agent did not finish
the race in given steps so the reward was positive but not as high
as receiving the final big reward. We set this step limit because
of a lack of a reset mechanism for dead situations, which was
very useful in the early stage of training. In Stanford’s report,
they created a DNF flag to represent the driving agent getting
stuck. In our experiment, the driving agent had learned better
policy and displayed better behaviors, proving better robustness
of the system.We also visualized the CNN in order to validate the
ability of the model.

3.1. Experimental Environment
We chose the car racing game to carry out our simulated
self-driving experiment. In order to play the car racing game
autonomously, we used a third-party OpenAI Gym environment
wrapper for the car racing game developed by Bzier1. With
the assistance of the API, we accessed the game engine directly
and ran our code while playing the game frame-by-frame. By
means of the API, we can easily get the game information,
whether it is screen output intermediate game parameters,
such as its location in the small map. Our models proved
to efficiently handle the observable gaming environments. To
demonstrate the agent’s driving status, we include a Youtube link
at https://youtu.be/KV-hh8N5x3M.

3.2. Rewards Analysis
For comparison, the model was trained and tested using the
same tracks like those used by Stanford in their supervised
learning method. Figure 4 shows the rewards trends for two
different maps. From the rewards trends we can observe that
at about 400 episodes, the stability of the driving agent began
to increase. The reward stabilized at a high level after 1400
episodes, where the agent performed a good driving behavior and
finished the tracks well. Each track has different terrain textures
and difficulty routes. Therefore, an individual set of weights was

1https://github.com/bzier/gym-mupen64plus

Frontiers in Neurorobotics | www.frontiersin.org 7 June 2019 | Volume 13 | Article 40

https://youtu.be/KV-hh8N5x3M
https://github.com/bzier/gym-mupen64plus
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

TABLE 1 | Performance comparison.

Track Our model Stanford model (Ho et al., 2017) Human

Farm 98.33 97.46 94.07

Raceway 166 129.09, 1 DNF* 125.30

Mountain 213 138.37, 2 DNF* 129.50

For each track, we run 10 races in real time and calculate the mean race times as the final

result. The Stanford results were borrowed from the Stanford report. Human results are

obtained by real human participants playing each track twice: The first time is to get used

to the track, and the second time is to record the time they finish the game. DNF* signifies

that the autopilot got stuck and was unable to finish some number of races.

TABLE 2 | System comparison between our work and Stanford’s

supervised model.

Aspect Details Our

agent

Stanford’s

agent

Skills Turning left/right, driving forward X X

Driving backward X

Brake X

Turning around X

Bad situation Driving reverse X

Getting stuck X

Performance comparison Less time-consuming X

Finishing the tracks X X

Data-consuming Handcrafted dataset X

Annotation X

Unlabeled data X

Self-adaptability X

Online learning paradigm X

trained separately for each model. The experiments were carried
out on a common configured portable laptop, and all models
converged after spending over 80 h each.

3.3. CNN Visualization
CNN layers were used to extract abundant information in
the scene, and the result of the high-level feature was the
critical measurement of the training process. In the traditional
supervised learning, the network could be evaluated from many
methods such as the validation accuracy and the loss function.
However, in the reinforcement learning, we did not have this
kind of method to provide a quantitative assessment of the
model. Hence, we visualized the output of the first layer and
the last layer (see Figure 5), with the aim of ascertaining the
quantitative features that are captured by the network. The high-
level low-level layer output seemed quite abstract through direct
observation. Thus, we visualized the high-level features through
deconvolution. Through the visualization procedure, we were
sure that the network could capture the important element in
the scene.

3.4. Result and Discussion
The test results are shown in Table 1. The driving agent
was tested on several tracks in line with those of Stanford’s
experiment such as Farm, Raceway, andMountain. We evaluated

our model based on the time. For each track, we ran 10
races in real-time and calculated the mean race times as
the final result. The human results (Ho et al., 2017) and
the Stanford results were borrowed from the Stanford report.
Human results are obtained by real human participants playing
each track two times: The first time is to get used to the
track, and the second time is to record the time they finish
the game.

The proposed model shows some advantages via a
comprehensive comparison in Table 2. Firstly, some of the
actions such as braking and going backwards are important
in the driving kart scenario. Stanford’s paper reported that
the agent is unable to handle situations where the agent may
have to turn around or drive backward, and thus would
lead to getting stuck. Secondly, their AI is more sensitive
to positive visual information. If the kart picks the wrong
direction, it would likely drive straight since the visual scenes
of the true and wrong direction are mostly the same. In
other words, their AI does not understand risky situations
that are likely to lead to error states during real-time play.
Thirdly, the Stanford model was trained in a handcrafted
dataset collected from 18,658 training examples across four
tracks, three of which were also used for testing. If they want
to generalize their model to other tracks, they need to collect
new data and annotations, which might be expensive and
unfeasible. Intuitively, our proposed model attempts to learn
actions by trial and error without a huge amount of labels and
handcrafted datasets.

By analyzing the route the agent runs, we found that the
route was not as smooth as that in Stanford’s experiment, for
which there are two reasons. On one hand, ǫ decayed too
fast. As shown in Figure 5, the value of ǫ rapidly decreased
to 0.1 while the rewards increased. Then, during the latter
phase of training, the agent depended mainly on experiences
even though there were still many better state-action sets to
explore. On the other hand, the actions was discretized roughly.
We used a set of [0; 20; 40; 80] as the choices for speed.
Through observation, speeds of 20 and 40 both produce a tiny
effect while a speed of 80 would make a radical change. More
efforts should put on the selection of numerical value of the
joystick parameter. However, compared with the experiment
done by the Stanford group, our experiments performed well
even if the driving agent deviated from the driveway. We
considered the brake and trained the driving agent using a trial-
and-error method, which was more in line with the real situation.
Hence, the bio-inspired reinforcement learning method in the
study was a more suitable approach for the driving agent to
make decisions.

4. CONCLUSION

Brain-inspired learning has recently gained additional interest
in solving control and decision-making tasks. In this paper,
we propose an effective brain-inspired end-to-end learning
method with the aim of controlling the simulated self-driving
agent. Our modified DRQN model has proven to manage

Frontiers in Neurorobotics | www.frontiersin.org 8 June 2019 | Volume 13 | Article 40

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

plenty of error states effectively, thus indicating that our
trial-and-error method using deep recurrent reinforcement
learning could achieve better performance and stability. By
using the screen pixels as the only input of the system, our
method highly resembles the experience of human beings
solving a navigation task from the first-person perspective.
This resemblance makes this research inspirational for real-
world robotics applications. Hopefully, the proposed brain-
inspired learning system will inspire real-world self-driving
control solutions.

DATA AVAILABILITY

No datasets were generated or analyzed for this study.

AUTHOR CONTRIBUTIONS

JieC, JinC, RZ, and XH carried out the conception and design of
the study, the analysis and interpretation of the data, and drafted
and revised the article.

FUNDING

This work was financially supported by the German Research
Foundation (DFG) and the Technical University of Munich
(TUM) in the framework of the Open Access Publishing
Program. This research was also funded by the Chinese Ministry
of Education’s National University Student Innovation and
Entrepreneurship Training Program (2018).

REFERENCES

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade

learning environment: an evaluation platform for general agents. J. Artif. Intell.

Res. 47, 253–279. doi: 10.1613/jair.3912

Botvinick, M., Ritter, S.,Wang, J., andHassabis, D. (2019). Reinforcement learning,

fast and slow. Trends Cogn. Sci. 23, 408–422. doi: 10.1016/j.tics.2019.02.006

Dolan, R. J., and Dayan, P. (2013). Goals and habits in the brain. Neuron 80,

312–325. doi: 10.1016/j.neuron.2013.09.007

Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). “Learning

to communicate to solve riddles with deep distributed recurrent q-networks,”

in Advances in Neural Information Processing Systems (NeurIPS) (Barcelona:

Curran Associates, Inc), 2137–2145.

Gershman, S. J., and Daw, N. D. (2017). Reinforcement learning and episodic

memory in humans and animals: an integrative framework.Annu. Rev. Psychol.

68, 101–128. doi: 10.1146/annurev-psych-122414-033625

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). “Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates,” in Robotics

and Automation (ICRA), 2017 IEEE International Conference on (Singapore:

IEEE), 3389–3396.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).

Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.

doi: 10.1016/j.neuron.2017.06.011

Hausknecht, M., and Stone, P. (2015). “Deep recurrent q-learning for partially

observable mdps,” in AAAI (Austin, TX).

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., andMeger, D. (2018).

“Deep reinforcement learning that matters,” in AAAI (New Orleans, LA).

Ho, H., Ramesh, V., and Montano, E. T. (2017). Neuralkart: A Real-Time Mario

Kart 64 AI. Available online at: http://cs231n.stanford.edu/reports/2017/pdfs/

624.pdf (accessed June 20, 2019).

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Kahn, G., Villaflor, A., Ding, B., Abbeel, P., and Levine, S. (2018). “Self-supervised

deep reinforcement learning with generalized computation graphs for robot

navigation,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA) (Brisbane, QLD: IEEE), 1–8.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: a

survey. Int. J. Robot. Res. 32, 1238–1274. doi: 10.1177/0278364913495721

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (NeurIPS) (Lake Tahoe, NV), 1097–1105.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017).

Building machines that learn and think like people. Behav. Brain Sci. 40:e253.

doi: 10.1017/S0140525X16001837

Lample, G., and Chaplot, D. S. (2017). “Playing fps games with deep reinforcement

learning,” in AAAI (San Francisco, CA), 2140–2146.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in International

Conference on Learning Representations (ICLR) (San Jun).

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an integration

of deep learning and neuroscience. Front. Comput. Neurosci. 10:94.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).

“Asynchronous methods for deep reinforcement learning,” in International

Conference on Machine Learning (San Juan), 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

et al. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

et al. (2015). Human-level control through deep reinforcement learning.Nature

518:529. doi: 10.1038/nature14236

Niv, Y. (2009). Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154.

doi: 10.1016/j.jmp.2008.12.005

Peters, J., and Schaal, S. (2008). Reinforcement learning of motor skills with policy

gradients. Neural Netw. 21, 682–697. doi: 10.1016/j.neunet.2008.02.003

Poo, M.-M., Du, J.-L., Ip, N. Y., Xiong, Z.-Q., Xu, B., and Tan, T. (2016).

China brain project: basic neuroscience, brain diseases, and brain-inspired

computing. Neuron 92, 591–596. doi: 10.1016/j.neuron.2016.10.050
Rivest, F., Bengio, Y., and Kalaska, J. (2005). “Brain inspired reinforcement

learning,” in Advances in Neural Information Processing Systems (NeurIPS)

(Vancouver, BC), 1129–1136.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). “Prioritized experience

replay,” in International Conference on Learning Representations (ICLR) (San

Jun).

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2016). Safe, multi-

agent, reinforcement learning for autonomous driving. arXiv preprint

arXiv:1610.03295.

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning with

double q-learning,” in AAAI, Vol. 2 (Phoenix, AZ), 5.

Wolf, P., Hubschneider, C., Weber, M., Bauer, A., Härtl, J., Dürr, F., et al. (2017).

“Learning how to drive in a real world simulation with deep q-networks,” in

2017 IEEE Intelligent Vehicles Symposium (IV) (Redondo Beach, CA: IEEE),

244–250.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., et al. (2017).

“Target-driven visual navigation in indoor scenes using deep reinforcement

learning,” in Robotics and Automation (ICRA), 2017 IEEE International

Conference on (Singapore: IEEE), 3357–3364.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Chen, Chen, Zhang and Hu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 9 June 2019 | Volume 13 | Article 40

https://doi.org/10.1613/jair.3912
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1016/j.neuron.2017.06.011
http://cs231n.stanford.edu/reports/2017/pdfs/624.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/624.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.jmp.2008.12.005
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.1016/j.neuron.2016.10.050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent
	1. Introduction
	2. Methodology
	2.1. Deep Q-Learning
	2.2. Recurrent Reinforcement Learning
	2.3. Network Architecture
	2.4. Implementation Details
	2.4.1. Action Space
	2.4.2. Reward
	2.4.3. Prioritized Replay
	2.4.4. Hyperparameters
	2.4.5. Other Details

	3. Experiments
	3.1. Experimental Environment
	3.2. Rewards Analysis
	3.3. CNN Visualization
	3.4. Result and Discussion

	4. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

