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Generalization ability in tactile sensing for robotic manipulation is a prerequisite to

effectively perform tasks in ever-changing environments. In particular, performing

dynamic tactile perception is currently beyond the ability of robotic devices. A biomimetic

approach to achieve this dexterity is to develop machines combining compliant robotic

manipulators with neuroinspired architectures displaying computational adaptation. Here

we demonstrate the feasibility of this approach for dynamic touch tasks experimented

by integrating our sensing apparatus in a 6 degrees of freedom robotic arm via a soft

wrist. We embodied in the system a model of spike-based neuromorphic encoding

of tactile stimuli, emulating the discrimination properties of cuneate nucleus neurons

based on pathways with differential delay lines. These strategies allowed the system

to correctly perform a dynamic touch protocol of edge orientation recognition (ridges

from 0 to 40◦, with a step of 5◦). Crucially, the task was robust to contact noise and was

performed with high performance irrespectively of sensing conditions (sensing forces and

velocities). These results are a step forward toward the development of robotic arms able

to physically interact in real-world environments with tactile sensing.

Keywords: force and tactile sensing, neuro-robotics, conduction delays, mechanoreceptors, cuneate neurons,

biologically-inspired robots, spiking neural networks

INTRODUCTION

As robots becomemore accepted to be part of our daily social and work environments, the research
focus has taken a diversion toward more human centric design and learning paradigms. Many
research studies in recent time have taken inspiration from nature and its evolutionary principles,
to exploit the robustness and low computational costs in performing a dynamic task in un-trained
surroundings (Ijspeert, 2014).

In the last few decades several neurophysiological studies inmammals focused on understanding
the role of the various families of mechanoreceptors (sensory receptors that are sensitive to
mechanical distortions) spread across the human skin, and their role in projecting information
about external world to brain (Johansson and Flanagan, 2009; Abraira and Ginty, 2013). Such
studies, subsequently led to enhanced understanding of the profile of sensory information,
that neuronal circuits receive during simple object manipulation tasks. These studies describe
the nature of spatiotemporal information (spiking responses) in tactile sensory afferents.
Further, there is evidence that tactile feature extraction can happen already at afferent
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stages (Johansson and Flanagan, 2009; Gollisch and Meister,
2010; Weber et al., 2013), complementing with central
information processing in the sensory cortex (Bensmaia
et al., 2008a; Hsiao, 2008). Explicit studies on the effects of
geometric features such as edge orientations (vertical line
tilted in an angle, Figure 1C) on sensory afferents reported
about information processing at peripheral stages of sensory
perception (Pruszynski and Johansson, 2014). In alike manner,
in the present study our research focuses on developing a robust
tactile perception for robots, based on bioinspired paradigms.
Toward this goal, we aimed at reproducing the intelligence
embodied in the connectivity of the peripheral human tactile
sensory system. By reproducing this connectivity structure in
our robotic system we mimicked the hardwired architecture that
has been hypothesized in humans (Johansson and Flanagan,
2009). In particular, we captured the features of the conduction
delays along the neural pathways from peripheral to the central
processing stages, to allow the tactile processing of geometric
features such as edge orientations.

Many research studies in recent time have created neuro-
robotic systems by combining computational models based
on various neurophysiological data (Saal et al., 2017) along
with tactile sensors to reconstruct tactile afferent like responses
(Lee et al., 2017; Rongala et al., 2017; Osborn et al., 2018).
Recently, biomimetic computational models of peripheral tactile
perception were extended to take into account the second
neuronal layer of decoding (Bologna et al., 2013; Rongala et al.,
2018a,b) and this feature was also used for edge detection (Hay
and Pruszynski, 2018). Some robotic studies have also focused
on geometric feature extraction techniques, where Ruben and
colleagues (Ponce Wong et al., 2014) studied edge orientation

FIGURE 1 | Methods. (A) Robot setup with finger and compliant wrist

integration. Insert demonstrates the integration of tactile sensor onto robot

end effector with the help of a compliant wrist. (B) Illustration of the active

touch protocol, where the finger is moved across the stimuli (red dotted line).

(C) Representation of all the 9 ridge stimuli (3D printed with a height and width

of 0.5 × 0.5mm, with placement of three ridges).

with similar approach of robotic-arm based exploration and
classification. They used support vector regression methods to
learn and classify the stimuli, which requires offline training.
One other study from Hernandez and colleagues (Martinez-
Hernandez et al., 2013) conducted static edge perception
experiments by tapping the stimuli with tactile sensor to
demonstrate passive tactile perception for contour following.
This approach used a probabilistic classifier based on Bayesian
formalism for tactile perception. The edge detection was done
only on right angles (0◦, 90◦, 180◦, 270◦) with controlled
sensing force.

One characteristic feature (Ijspeert, 2014) of all the
aforementioned studies is that they were conducted under
controlled sensing conditions. However, in order to build
biomimetic devices that are able to process tactile information
in the real world, we need to capture the way this process is
robust to varying sensing conditions. Therefore, here we adopted
a neuro-inspired paradigm to create a tactile feature extractor
and verified it to be an effective information decoding strategy.
Combining a two-layer neurocomputational model based on
discrete events and delays, along with soft robot interfaces led
us to develop a functional tactile system, that was able to deliver
effective decoding of geometric edge orientations under varying
sensing conditions (sensing forces and velocities). We have also
assessed that our system performance was robust to variation in
sensing forces.

MATERIALS AND METHODS

Tactile Sensor
For this research study we used a tactile fingertip, with a core
element of MEMS (Micro Electro-Mechanical System) sensor.
This sensor comprises of 2 × 2 piezoresistive sensor array
(Figure 2A), arranged with 2.36 mm pitch [SensorPitch (SP)
in Equation (1)]. Each sensor array comprises of four sensory
channels (four piezoresistors, with cross-shape arrangement),
constituting for a total of 16 sensory-channels in a 22.3 mm2

area (Beccai et al., 2005; Oddo et al., 2011). This tactile sensor
demonstrated sensitivity for both tangential and normal forces
(Oddo et al., 2011) and precision and repeatability in the
neuromorphic encoding-decoding of a varied range of stimuli
that include ridges (Oddo et al., 2016) and naturalistic textures
(Rongala et al., 2017). In this research study we consider data
from 2 sensory channels [sensory channel 8 (SC8) and sensory
channel 11 (SC11), Figure 3A], that are sensitive to the tangential
force arising along the stimulus sliding direction. These channels
are also space shifted along same axis with respect to the
stimulus direction, which makes them appropriate to validate the
conductional delay hypothesis. We convert this analog sensory
information to neuromorphic spikes (event-based representation
of data alike in neurons) using neuron models that are described
in further sections of this article.

Compliant Wrist
A compliant wrist was assembled on a rigid end effector of a
6 DoFs anthropomorphic robot (Comau Racer-7-1.4) through
a loadcell (6-axis Nano 43, ATI Industrial Automation, Apex,
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FIGURE 2 | Two-layer neuron architecture. (A) (Left) fingertip structure and arrangement of 16-sensory channels. The data from two sensory channels (8 and 11) are

injected as input current into the Izhikevich neuron model (1st order neurons), that deliver mechanoreceptor-like spike trains. (Below) representative illustration of

mechanosensors responses [MS1 and MS2 (corresponding to SC8 and SC11 respectively)] to ridges having an angle of −45◦, 0◦, and 45◦ relatively to the direction

orthogonal to stimulus-finger relative motion. (Right) schematic diagram of second order neuron implementation for edge orientation processing. Two different

mechanosensors inputs (green and red spike trains, MS1, and MS2) for a single stimulation sequence converge to the same cuneate nucleus neuron (CNi, 2nd order

neuron), through specific conduction delays along the pathway. In the illustrated example, CN1 generates output spikes (blue spike trains) only when it receives MS

inputs that coincide. (B) The other CNs (CN2 and CN3) respond to different angle stimuli, depending on the set of conduction delays and subsequent temporal

relations formed between the inputs.

USA). Whereas, the other end of compliant wrist carries the
tactile sensor (Figure 1A). The design of the wrist was aimed at
realizing a soft joint, enabling adaptation upon contact (between
the fingertip and the external surfaces). Such a compliant element
also prevents damage to the tactile sensor without affecting its
sensitivity. The structure of the compliant wrist was shaped
as a cylinder with a diameter and height of 40 × 60mm.
Moreover, the soft wrist was realized with helicoidally flextures
to increase its flexibility. The joint was manufactured through
molding of a polymeric viscous material, namely Dragon Skin
(10 medium, Smooth-on, USA). Two metallic plates were used
on the top and bottom surfaces of the cylinder, as a mechanical
interface between the robot end-effector and the tactile sensor.
Under the typical loads for this specific application (in the
order of 1N), analyses with a finite element model (COMSOL
Multiphysics, COMSOL Inc., USA) showed a compressive
stiffness of 2.5 N/mm and a stiffness of 0.14 N/mm along the
tangential directions (Figures 3A,B).

Stimuli
We used 9 rectangular shaped ridges as stimuli with dimension of
0.5 × 0.5mm (height and width). Each of this ridge is fabricated
with an inclination angle, ranging from 0 to 40◦ angles with
a step of 5◦ (Figures 1C, 4A). These ridges were fabricated
using 3D printing technology. For these experiments, we printed
three ridges with consecutive angles onto a single stimuli bar,
resulting in total 3 stimuli bars bearing the 9 stimuli (as shown in
Figure 1C). As these ridges are printed on three different stimuli
bars, they have slightly varied physique because of different
bending and other small deformations that occur in stimuli
due to the 3D printing technology. This further pose additional
challenges in the generalization abilities of the developed neuro
bioinspired architecture.

Experimental Protocol
We adopted an active touch protocol, where the stimuli are

kept fixated on a rig and the robot end-effector (hooked
with tactile fingertip) is maneuvered across the surface of

the stimuli (as illustrated with blue arrows in Figure 1A;

Supplementary Video). The robot is controlled using a real-time

industrial controller (IC3173, programmed with NI LabVIEW,

LabVIEW Real-Time and LabVIEW FPGA, along with C5G
COMAU robot controller), that received position control

commands. The robot default home position was put just above

(along z-axis of the robot) the surface of the tactile stimuli.
Further, the robot end-effector was moved along its z-axis

(toward the stimuli), until a reference sensing force (force exerted

between the tactile fingertip and stimuli) of ∼200 mN was
reached. This is considered as the initial z-axis position (Z1, in
Figure 3C) for all the stimuli.

Once the “Z1” position reached, keeping the z-axis of the robot

locked, the fingertip was slid across the surface of stimulus (robot

end-effector translated in cartesian space) for a length of 15mm
with a fixed sliding velocity, covering the whole surface of the

ridged stimuli. The fingertip was held still for 1 s in this position,

at the end of sliding. Finally, the fingertip was retracted away
from the stimulus along the z-axis. This trajectory (Figure 1B,

red dotted line) was maintained across all the ridges. Once the

sliding was finished across all three ridges, the robot was brought

back to the home-position. The robot was progressed 0.5mm in

z-axis (toward the stimulus) from the previous z-axis position
(Z1–4) to generate varied sensing/contact forces, but without

implementing precise force-feedback control. This experimental

protocol was repeated 5 times across each stimulus, in-order to
assess the repeatability of the system. In the following study we

have presented and validated the neuro-inspired architecture for
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FIGURE 3 | Normal and shear stiffness of the compliant wrist and resulting

sensing force between the tactile sensor and stimuli. (A) Tangential stiffness

(across x-axis) of the compliant wrist displacement as the function of applied

force. (B) Compressive stiffness (across z-axis) of the compliant wrist

displacement as the function of applied force. (C) Sensing forces recorded

during finger contact with all stimuli (1–9) associated to the different z-axis

positions of the robot (Z-positions 1–5). The z-positions are obtained with a

progressive increase by a step of 0.5mm toward the stimuli from home

position (as described in Methods). The boxplot illustrates the range of force

across 5 mechanical repetitions and all 9 stimuli. The forces are recorded using

a loadcell that is placed between the compliant wrist and the robotic arm.

five different sensing forces (Figure 3C, with P < 0.001, using
ANOVA test) and five different sensing velocities (5, 10, 15, 20,
and 25 mm/s).

Neuron Model (Mechanoreceptors, 1st
Order Neurons)
The tactile sensor analog data was fed as virtual current input
(Iinput) to a custom implementation of the Izhikevich neuron
model (Izhikevich, 2003) to generate the mechanosensors-
like spatiotemporal spike responses (Figures 3A, 4B, 1st order
neurons). The Izhikevich neuron model was chosen in order
to reproduce the adaptation dynamics, which is an important

TABLE 1 | Izhikevich neuron model parameters.

A B C Cm a b c d

0.04s−1V−1 5 s−1 140 Vs−1 1F 0.02 s−1 0.2 −65mV 8 mV

characteristic that is observed in mechanoreceptors (Johansson
and Flanagan, 2009). The basic Izhikevich neuron model was
defined by the following nonlinear differential equations, where
v is membrane potential and u is the adaptation variable.

v̇ = Av2 + Bv+ C − u+
Iinput

Cm

u̇ = a(bV − u) (1)

When the membrane potential reached the spike threshold of 30
mV, an output spike was produced followed by a reset,

if V ≥ 30mv, then

{

v ← c
u ← u+ d

(2)

A, B, C are the standard Izhikevich model parameters, whereas
the a, b, c, and d parameters were chosen as specified in Table 1,
to reciprocate regular spiking behavior.

Neuron Model (Cuneate Neurons, 2nd
Order Neurons)
The cuneate neurons (CNs) were also modeled as regular spiking
Izhikevich neurons, based on the similar differential equations
described above (Equations 1, 2). Whereas, the input current
(Iinput)to the CNs was modeled as the summation of current-
based post-synaptic potential(PSPtot , Equation 4) (Cavallari et al.,
2014) from mechanosensor neurons along with addition of
specific differential conduction delays (1T) (Figure 3). At each
given spike time of mechanosensor output (t∗i ) is converted to a
single PSPi, who’s kernel was given by Equation (3).

PSPi =
τl

τd − τr
×

[

exp

(

−
t − τl − t∗i

τd

)

− exp

(

−
t − τl − t∗i

τr

)]

(3)

PSPtot =
∑

i ∈pre

PSPi (4)

The parameters, decay time (τd), rise time (τr) and latency time
(τl) defines the shape of the PSPi kernel. The basic configuration
values τd = 12.5ms, τr = 4ms, and τl = 21ms (constant to
calculate the ratio) are chosen based on the previous assumptions
of calcium concentration induced in the synapse as presented
in our previous work (Rongala et al., 2018b). t∗i gives the input

spike-time from ith mechanosensor.

Conduction Delays
A conduction delay is the time step (1 T) that was added
to the whole output spike-train of mechanoreceptors (1st
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FIGURE 4 | Processing stimuli orientation. (A) Representation of all 9 stimuli, with ridge angles ranging from 0 to 40◦ with a step of 5◦. (B) Artificial mechanosensors

spike train responses (MS1 and MS2, 1st order neurons) encoded using Izhikevich neuron model based on the tactile sensor data input (MS1 and MS2 responses

associated to the analog data from sensory channel 8 and 11, SC8 and SC11 from Figure 1). The five spike train responses for each mechanoreceptor, show the 5

experimental repetitions for each stimulus. (C), Cuneate neurons (CNs, 2nd order neurons) responses for all 9 stimuli (S1–9), across a range of differential conduction

delays varying between 175 and −700ms, with a step of 1ms. The illustrated responses of MSs and CNs are for a single sensing force (Z1 from Figure 3C) and

sensing velocity (5 mm/s) of the experimental protocol.

order neurons) along the afferent pathway. These delays
bear a resemblance to the conduction times in nerves that
connects tactile afferents (in hand) to the cuneate neurons (in
brainstem) of humans (Johansson and Flanagan, 2009). We
tested differential conduction delays ranging from 175ms (MS1
ahead of MS2) to −700ms (MS2 ahead of MS1) with a step of
1ms, constituting for 876 conduction delays.

Classification Algorithm
Given the characteristics of the data we have chosen a linear
discrimination method trained with supervised learning. The
classifier was trained and tested using a 5-fold cross-validation,
which was repeated for 100 iterations to ensure the robustness of
the classifier and training procedure. We have taken advantage of
the inbuilt MATLAB R© functions to perform this computation.

A probability density of the CN spike responses is calculated
using the histogram function in MATLAB R©, with a binsize
of 10. Further, the median of this probability distribution was
chosen as an input vector to the above described classifier
(one-dimensional input). While considering single force-based
decoding (Figures 5B, 7B, 10A), the input vector data is binned
as 9 classes, representing all the 9 stimuli. The same followed for
generalized decoding (Figures 6B, 8, 10B), the input vector data
was binned as 9 classes (9 stimuli), irrespective of sensing forces.

RESULTS

To explore the possibility and the efficacy of a biomimetic
approach to tactile sensing, we developed an experimental set-up
comprising a biomimetic tactile sensor (Oddo et al., 2011) linked

FIGURE 5 | Classification of CNs responses across all 9 stimuli for fixed

sensing force. (A) Boxplot illustrating the spiking probability for CNs responses

(Figure 4C) across all the nine stimuli for a given force. The boxplot

demonstrates a gradual shift in the CNs spiking respective to the stimuli angle

and conduction delay. The spiking probability is calculated across 5

experimental repetitions of each CN. (B) Confusion matrix demonstrates a

decoding performance achieved across all the 9 stimuli (for a fixed sensing

force (Z1) and sensing velocity (5 mm/s)) based on CNs responses, using

supervised linear discrimination classifier. The decoding accuracy was 100%

across 5 stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9), and 88.2%

with a step size of 5◦.

to a customized soft wrist and 6 degree-of-freedom robotic arm
(Figure 1A). This interaction led to the efficient classification of
stimuli containing 9 angle ridges selected in a range from 0◦ to
40◦ with a step of 5◦ (Figure 1C) based on the contact with the
biomimetic fingertip (Figure 1C).
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FIGURE 6 | Classification of CNs responses irrespective of sensing forces. (A) Spiking probability across all the nine stimuli and five different sensing forces

(Figure 3C), for each conduction delays. These CNs responses are for a single sensing velocity (5 mm/s). This plot clearly demonstrates almost similar spiking

probability, robust to the variation of the sensing force, thus supporting generalization ability of the proposed approach. (B) Confusion matrix illustrating the decoding

performance achieved by CNs irrespective of forces (labeling stimuli irrespective of sensing force), across all the 9 stimuli. The decoding accuracy was 100% across 5

stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9), and 94.5% with a step size of 5◦.

FIGURE 7 | Processing stimuli orientation with noise. (A) Raster plot illustrates the responses of CNs (2nd order neuron) for all 9 stimuli (S1–9), across a range of fixed

conduction delays varying between 175 and −700ms, with a step of 1ms. The responses illustrated are for fixed sensing force and sensing velocity. Each CN model

is simulated for 5 experimental repetitions with an addition of 19 noise repetitions each, constituting a total of 100 repetitions for each CN configuration. The noise was

generated by a gaussian distribution with σ = 10ms. The continuous plot alongside each raster plot illustrates the density of spiking for that respective differential

conduction delay. The green line illustrates the theoretical value (Equation 5) of conduction delay. The median value of the density is indicated in red dot. The red line

across stimuli illustrates the linear shift of spiking probability across different conduction delays. (B) Confusion matrix illustrating the decoding performance that is

achieved by CNs across all the 9 stimuli (for a single sensing force and sensing velocity), using supervised linear discrimination classifier. The decoding accuracy was

100% across 5 stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9), and 91% with a step size of 5◦.

A two layer neuro-computational model was used in
processing these tactile sensory information. In the first layer
we make use of the Izhikevich neuron model to convert
the output of the 16-channel tactile sensor data to multiple
neuron spiking responses (Figure 2A) (Rongala et al., 2017).
This allowed mimicking the response properties of human
mechanosensors (MSs). In the second layer, we emulate cuneate
neurons (CNs), again as regular spiking Izhikevich neurons. The
inputs to CNs were modeled as summation of current based post-
synaptic potentials from the MSs (see Methods). The key of the
decoding mechanism is the connectivity between the two layers.
This connectivity embodies a model of event-based encoding
of tactile responses (Figure 2A), emulating the discrimination
properties of cuneate neurons (CNs) based on pathways with
differential delay lines (Figure 2A). The CN is considered in

this model as a coincidence detector (Johansson and Flanagan,
2009), meaning that a specific CN responds when there is a
superimposition of input mechanosensor spike timing. Based on
this hypothesis, each CN encodes a specific angle, depending on
the match of the stimulus-driven delay between the activation
of the MSs with the difference between their conduction delays,
which results in a synchronized and thus effective stimulation
of the appropriate CN recipient (Figure 2A). Thanks to this
mechanism, the probability of each CN to respond to a certain
stimulus depends of the combination of specific conduction
delays connecting it to its presynaptic MSs (Figure 2A).

To validate this approach, initially we conducted the
experimental protocol across all the 9 stimuli with a single
sensing force (Z1, Figure 3C) and a single sensing velocity
(5 mm/s, V1). Two sensory channels data (SC8 and SC11,
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FIGURE 8 | Classification of CNs responses with noise, irrespective of sensing

forces and for a given sensing velocity (5 mm/s). The confusion matrix

illustrating the generalized decoding performance achieved by CNs

irrespective of sensing force, across all the 9 stimuli. The decoding accuracy

was 100% across 5 stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9),

and 94.7% with a step size of 5◦.

Figure 2A, see Material and Methods for details) were selected as
inputs to the neuronal processing to emulate mechanosensors-
like responses (MS1 and MS2, Figure 4B). These spike trains
were then fed into CNs, with a given conduction delay time
(1T). The second layer was constituted by 876 different cuneate
neurons, each identified by a specific conduction delay between
the inputs received from MS1 to MS2. The conduction delays
are ranged from 175 to −700ms with a step size of 1ms.
Figure 4C show the responses of CNs based on the MS1 and
MS2 inputs for a given differential conduction delay, across all
stimuli. The CNs responses demonstrated in Figure 4C (raster
plots) are for all 5 experimental repetitions. Further, in order
to test the effectiveness of the designed system we analyzed the
spike distribution probability across all the CNs for each stimulus
(Figure 5A). The spiking distribution illustrated in Figure 5A,
are based on the CNs responses shown in Figure 4C. We found
a gradual shift in the median of the spiking probability across
the range of conduction delays, as a function of the stimuli
ridge orientation (Figure 5A). This shift in probability illustrates
that certain CNs respond more to a specific stimulus, i.e., those
whose differential conduction delay tends to compensate the
theoretical latency (TTheory) between the spiking activation of the
related MSs.

TTheory = SP ×
tan (RA)

V
(5)

Where, SP denotes the Sensor Pitch (see Methods), RA denotes
the Ridge Angle (edge orientation angle of the stimuli), and

V defines the sensing velocity. This relationship suggests that
it might be possible to invert the process and decode the
presented orientation, looking at the distribution of firing across
the CNs population. This decoding strategy was inspired by that
hypothesized in humans (Johansson and Flanagan, 2009), where
the vast amount of information from 10,000’s of tactile afferents
across the hand is reduced into a small and useful sensory
dimension, and then further transmitted to higher level cognitive
processing. For validation of the information content in CN
responses we used a linear classification technique (see Methods
for details), which yielded 88.2% accuracy in decoding across all
the 9 stimuli (Figure 5B, chance level 11.1%). As demonstrated in
the confusionmatrix (Figure 5B), in some cases only consecutive
stimuli are confounded, which is also contributed by the
little angle difference between two stimuli along with dynamic
sensing conditions in real time robot operation. Whereas, we
achieved 100% correct classification (for all 5 sensing forces)
restricting the decoding across five stimuli, with stimuli angle
variation of 10◦ (S1, S3, S5, S7, and S9). This led us concluding
that the actual accuracy of our device is better than 10◦

ridge identification.
In the real world the sensing conditions might change,

hence we wanted to test that the performance of our device
was not restricted to a particular force of contact. For this
generalization test we conducted experiments similar to the one
described above, but with 5 different levels of target sensing
forces and a fixed sensing velocity (5 mm/s, V1). To further
stress the generalization ability, these 5 target force levels were
not generated by precise force-feedback control, but by setting
5 different z-axis positions of the robot end-effector (Figure 3C,
see Methods for details). We then computed the CNs spiking
probability across all the 9 stimuli and 5 forces (Figure 6A).
We grouped then across all the forces the median of spiking
probability belonging to same stimulus and used it as the feature
vector for classifier to validate the CNs responses across all
stimuli irrespective of sensing forces. We attained 94.5% correct
decoding across all the nine stimuli (Figure 6B), with a stimuli
angle variation of 5◦. This shows that high level of accuracy
can be achieved independently of the variations of the sensing
force. This highly-generalized decoding performance proves our
encoding strategies to be robust to varying sensing forces, thanks
to an architecture mimicking the intelligence embodied in the
neural pathways from periphery to the brain.

To further stress the robustness of our neuromorphic device,
we introduced temporal jitters (with a gaussian noise of σ =

10ms) in each experimental repetition. This contributed 100
repetitions of each CN encoding for each stimulus and sensing
force level. Figure 7A shows the responses of CNs to these 100
repetitions, along with the spiking density for each conduction
delay (continuous plot beside raster plot). We observed a
coherent phenomenon of gradual shift in spiking intensity across
the range of conduction delays for each stimulus (Figure 7A,
red dot depicting the mean of spiking intensity) even with
additional temporal noise. We also observed that the mean
spiking intensity across each stimulus (Figure 7A red dotted
line) fell near to the theoretically estimated conduction delays
(Figure 7A green dotted line) based on Equation (5). We then
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FIGURE 9 | Processing stimuli orientation across varying sensing velocity for a fixed sensing force (Z1, Figure 3C). (A) Artificial mechanosensors (MS1 and MS2, 1st

order neuron) spike train responses for all 9 stimuli, across 5 different sensing velocities. (B) Boxplot illustrates the probability of spiking across all the stimuli for 5

varying sensing velocities, for a range of conduction delays. The spiking probability is calculated on the CNs responses. Each CN model is simulated for 5 experimental

repetitions with an addition of 19 noise repetitions each (gaussian distribution with σ = 10ms), constituting a total of 100 repetitions for each CN configuration.

yielded a high decoding accuracy for these CN responses across
all the 9 stimuli, even in the presence of the introduced temporal
noise in MS spiking activity. In this condition with added spike
jitter we attained a correct decoding between 91% and 100%
across nine stimuli, for individual sensing force and fixed sensing
velocity (Figures 7B, 10A). Further, we attained a decoding
accuracy of 94.7% irrespective of sensing forces and fixed sensing
velocity (Figure 8).

Further, we have also tested our system for five different
sensing velocities (5, 10, 15, 20, and 25 mm/s) for a given
sensing force. The mechanosensor spike responses (MS1 and
MS2) demostrate a gradual shift in their spike timing with respect
to the stimuli, along with homogenous transformation of total

spike time with respect to the sensing velocities (Figure 9A).

Further we analyzed the spiking probability of CNs responses

for each stimulus and given sensing velocity (Figure 9B). We

found a gradual shift in the median of the spiking probability
across the range of conduction delays (Figure 9B), showing that
some CNs are sensitive to a specific stimulus, under an optimal
sensing velocity.

In order to evaluate the effect of these dynamic sensing
conditions on our neuromorphic device, we have performed

stimulus classification based on the CNs responses (with
additional temporal jitter in the MSs) for a combination of all
5 sensing forces and 5 sensing velocities. We achieved more than
90% correct decoding in 20 out of 25 experimental conditions
(Figure 10A). A low decoding performance was observed at
high sensing velocities with high sensing forces, where the
spiking probability boundaries overlap. Further, we attained a
high decoding performance irrespective of sensing force, for
each sensing velocity (Figure 10B). This high decoding accuracy
proved that the proposed architecture was highly robust to noise
and dynamic sensing conditions.

DISCUSSION

We developed an artificial tactile system, with a bioinspired
tactile sensor mounted onto a traditional 6 degrees-of-freedom
industrial robot using a compliant wrist, that allowed adaptation
to irregular sensing dynamics present in the surrounding tactile
world. Further, we used a neuroinspired two-layer architecture to
process the tactile sensory information. Thanks to such a synergy,
we achieved an excellent orientation decoding performance
(100% for 10◦ and 94.9% across 5◦ orientation step, for
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FIGURE 10 | Effect of sensing dynamics on decoding. (A) The decoding

performance achieved by CNs neurons across all the 9 stimuli, for a given

combination of sensing force and sensing velocity. The confusion matrix for

each given decoding performance is illustrated in Supplementary Figure 1.

(B) Generalized decoding performance (irrespective of sensing force),

achieved by CNs for a given sensing velocity. The decoding accuracy was

presented across all 9 stimuli (S1–S9) with a step size of 5◦, and across 5

stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9).

stimuli ranging from 0◦ to 40◦). This is an excellent result as
compared to the state-of-art orientation detection in robotic
applications (Martinez-Hernandez et al., 2013; Ponce Wong
et al., 2014). Taking advantage of the precisions in existing
tactile sensors and computational systems, and combining them
with biomimetic architectures can lead to building functional
systems that are more capable in sensing when compared
to the psychophysical studies that report about 20◦ angular
perceptual threshold in humans (Bensmaia et al., 2008b). Further,
exploiting neuromorphic hardware systems to build spiking
neuronal networks across the population of sensors enabled a
computationally efficient implementation of a functional tactile
system. Moreover, we were able to capture another peculiarity of
human tactile detection, i.e., to perform decoding in a way largely
irrespective of sensing forces, across different sensing velocities.

The multiple experimental sensing conditions, the
irregularities of 3D printed stimuli, the intrinsic limitations
in robot precision along with soft compliance in wrist,
created a versatile sensing condition that generated a variety
of sensory responses. The tactile system presented in this
research, capable to cope with such realistic variability
in experimental conditions, plays a keen role in robotic
applications. Such biomimetic approach will allow the robots to
adapt and perform effectively irrespective of the continuously
changing environments.

Note that in this research study we considered nerve
conduction delays that are larger thanwhat have been observed in
mammals (Johansson and Flanagan, 2009). In this study what we
were interested into was to reproduce the principle of differential
delay matching the encoding of the stimulus orientation. As the
pitch of our tactile sensors was much larger than in humans,
where each hand is densely populated with 10,000s of tactile
sensors afferents, we used proportionally larger conduction
delays coherently with the prediction of Equation (5). Anyway,
the used sensor density allowed achieving a high decoding
across the varied set of stimuli considered, providing evidence
that robotics technology can benefit of neuroscientific advances
and in turn robotics science can contribute to investigating
neurophysiological hypotheses (Yang et al., 2016).

AUTHOR CONTRIBUTIONS

UR, AM, and CO conceived and designed the study, analyzed
data, discussed the results, and wrote the paper. UR and
MC performed experiments. UR, MC, DC, MM, LM, GC,
SR, PD, and CO developed the experimental setup. UR
implemented the cuneate-based model. CO ideated the cuneate-
based model, supervised, and coordinated the study. All authors
contributed to manuscript revision, read and approved the
submitted version.

FUNDING

This work was supported in part by the Tuscany Region by
means of the CENTAURO project (CUP D88C15000210008)
funded under the FAR-FAS call for proposals, by the NEBIAS
European project (NEurocontrolledBIdirectional Artificial
upper limb and hand prosthesis; EU-FP7-ICT-611687), by
the NanoBioTouch European project (Nano-resolved multi-
scale investigations of human tactile sensations and tissue
engineered nanobiosensors; EUFP7-NMP-228844), and by the
PARLOMA project (SIN_00132) funded by the Italian Ministry
of Universities, Education and Research within the Smart Cities
and Social Innovation Under 30 program. This project received
seed funding from the Dubai Future Foundation through
Guaana.com open research platform.

ACKNOWLEDGMENTS

The authors thank the partners of the CENTAURO project,
namely Piaggio & Co. SpA, Robot System Automation srl, Roggi

Frontiers in Neurorobotics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 44

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rongala et al. Edge Orientation Neuronal Tactile Decoding

srl and Robotech srl. The authors thank Dr. Andrea Aliperta,
for contribution toward preparation of multimedia material. The
authors also thank Mr. Davide Bray, Mr. Tommaso Rizzo, Mr.
Francesco Bruni, and Mr. Lorenzo Collodi, for the technical
contributions given in the development of the compliant wrist.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2019.00044/full#supplementary-material

REFERENCES

Abraira, V. E., and Ginty, D. D. (2013). The sensory neurons of touch. Neuron 79,

618–639. doi: 10.1016/j.neuron.2013.07.051

Beccai, L., Roccella, S., Arena, A., Valvo, F., Valdastri, P., Menciassi, A.,

et al. (2005). Design and fabrication of a hybrid silicon three-axial force

sensor for biomechanical applications. Sens. Actuators A Phys. 120, 370–382.

doi: 10.1016/j.sna.2005.01.007

Bensmaia, S. J., Denchev, P. V., Dammann, J. F., Craig, J. C., and

Hsiao, S. S. (2008a). The representation of stimulus orientation in

the early stages of somatosensory processing. J. Neurosci. 28, 776–786.

doi: 10.1523/JNEUROSCI.4162-07.2008

Bensmaia, S. J., Hsiao, S. S., Denchev, P. V., Killebrew, J. H., and Craig, J. C.

(2008b). The tactile perception of stimulus orientation. Somatosens. Mot. Res.

25, 49–59. doi: 10.1080/08990220701830662

Bologna, L. L., Pinoteau, J., Passot, J. B., Garrido, J. A., Vogel, J., Vidal, E. R., et al.

(2013). A closed-loop neurobotic system for fine touch sensing. J. Neural Eng.

10:046019. doi: 10.1088/1741-2560/10/4/046019

Cavallari, S., Panzeri, S., and Mazzoni, A. (2014). Comparison of the

dynamics of neural interactions between current-based and conductance-

based integrate-and-fire recurrent networks. Front. Neural Circuits 8:12.

doi: 10.3389/fncir.2014.00012

Gollisch, T., and Meister, M. (2010). Eye smarter than scientists believed:

neural computations in circuits of the retina. Neuron 65, 150–164.

doi: 10.1016/j.neuron.2009.12.009

Hay, E., and Pruszynski, J. A. (2018). Synaptic integration across first-order tactile

neurons can discriminate edge orientations with high acuity and speed. bioRxiv.

doi: 10.1101/396705

Hsiao, S. (2008). Central mechanisms of tactile shape perception. Curr. Opin.

Neurobiol. 18, 418–424. doi: 10.1016/j.conb.2008.09.001

Ijspeert, A. J. (2014). Biorobotics: using robots to emulate and investigate

agile locomotion. Science 346, 196–203. doi: 10.1126/science.12

54486

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Johansson, R. S., and Flanagan, J. R. (2009). Coding and use of tactile signals from

the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359.

doi: 10.1038/nrn2621

Lee, W. W., Kukreja, S. L., and Thakor, N. V. (2017). Discrimination of dynamic

tactile contact by temporally precise event sensing in spiking neuromorphic

networks. Front. Neurosci. 11:5. doi: 10.3389/fnins.2017.00005

Martinez-Hernandez, U., Metta, G., Dodd, T. J., Prescott, T. J., Natale, L., and

Lepora, N. F. (2013). “Active contour following to explore object shape with

robot touch,” in Proceedings of the 2013 IEEE World Haptics Conference

(Daejeon), 341–346.

Oddo, C. M., Controzzi, M., Beccai, L., Cipriani, C., and Carrozza, M. C. (2011).

Roughness encoding for discrimination of surfaces in artificial active-touch.

IEEE Trans. Robot. 27, 522–533. doi: 10.1109/TRO.2011.2116930

Oddo, C. M., Raspopovic, S., Artoni, F., Mazzoni, A., Spigler, G., Petrini,

F., et al. (2016). Intraneural stimulation elicits discrimination of textural

features by artificial fingertip in intact and amputee humans. Elife 5:e09148.

doi: 10.7554/eLife.09148

Osborn, L. E., Dragomir, A., Betthauser, J. L., Hunt, C. L., Nguyen, H. H., Kaliki, R.

R., et al. (2018). Prosthesis with neuromorphic multilayered e-dermis perceives

touch and pain. Sci. Robot. 3:eaat3818. doi: 10.1126/scirobotics.aat3818

Ponce Wong, R. D., Hellman, R. B., and Santos, V. J. (2014). Spatial asymmetry in

tactile sensor skindeformation aids perception of edgeorientation during haptic

exploration. IEEE Trans. Haptics 7, 191–202. doi: 10.1109/TOH.2013.56

Pruszynski, J. A., and Johansson, R. S. (2014). Edge-orientation processing in

first-order tactile neurons. Nat. Neurosci. 17, 1404–1409. doi: 10.1038/nn.3804

Rongala, U. B., Mazzoni, A., Camboni, D., Carrozza, M. C., and Oddo, C.

M. (2018a). “Neuromorphic artificial sense of touch: bridging robotics and

neuroscience,” in Robotics Research, eds A. Bicchi and W. Burgard (Cham:

Springer International Publishing), 617–630.

Rongala, U. B., Mazzoni, A., and Oddo, C. M. (2017). Neuromorphic artificial

touch for categorization of naturalistic textures. IEEE Trans. Neural Networks

Learn. Syst. 28, 819–829. doi: 10.1109/TNNLS.2015.2472477

Rongala, U. B., Spanne, A., Mazzoni, A., Bengtsson, F., Oddo, C. M., and

Jörntell, H. (2018b). Intracellular dynamics in cuneate nucleus neurons support

self-stabilizing learning of generalizable tactile representations. Front. Cell.

Neurosci. 12:210. doi: 10.3389/fncel.2018.00210

Saal, H. P., Delhaye, B. P., Rayhaun, B. C., and Bensmaia, S. J. (2017). Simulating

tactile signals from the whole hand withmillisecond precision. Proc. Natl. Acad.

Sci.U.S.A. 114, E5693–E5702. doi: 10.1073/pnas.1704856114

Weber, A. I., Saal, H. P., Lieber, J. D., Cheng, J.-W., Manfredi, L. R.,

Dammann, J. F., et al. (2013). Spatial and temporal codes mediate the tactile

perception of natural textures. Proc. Natl. Acad. Sci.U.S.A. 110, 17107–17112.

doi: 10.1073/pnas.1305509110

Yang, G.-Z., Bellingham, J., Choset, H., Dario, P., Fischer, P., Fukuda, T., et al.

(2016). Science for robotics and robotics for science. Sci. Robot. 1:eaal2099.

doi: 10.1126/scirobotics.aal2099

Conflict of Interest Statement: The authors have a pertinent patent

application pending.

The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Rongala, Mazzoni, Chiurazzi, Camboni, Milazzo, Massari, Ciuti,

Roccella, Dario and Oddo. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 44

https://www.frontiersin.org/articles/10.3389/fnbot.2019.00044/full#supplementary-material
https://doi.org/10.1016/j.neuron.2013.07.051
https://doi.org/10.1016/j.sna.2005.01.007
https://doi.org/10.1523/JNEUROSCI.4162-07.2008
https://doi.org/10.1080/08990220701830662
https://doi.org/10.1088/1741-2560/10/4/046019
https://doi.org/10.3389/fncir.2014.00012
https://doi.org/10.1016/j.neuron.2009.12.009
https://doi.org/10.1101/396705
https://doi.org/10.1016/j.conb.2008.09.001
https://doi.org/10.1126/science.1254486
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1038/nrn2621
https://doi.org/10.3389/fnins.2017.00005
https://doi.org/10.1109/TRO.2011.2116930
https://doi.org/10.7554/eLife.09148
https://doi.org/10.1126/scirobotics.aat3818
https://doi.org/10.1109/TOH.2013.56
https://doi.org/10.1038/nn.3804
https://doi.org/10.1109/TNNLS.2015.2472477
https://doi.org/10.3389/fncel.2018.00210
https://doi.org/10.1073/pnas.1704856114
https://doi.org/10.1073/pnas.1305509110
https://doi.org/10.1126/scirobotics.aal2099
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Tactile Decoding of Edge Orientation With Artificial Cuneate Neurons in Dynamic Conditions
	Introduction
	Materials and Methods
	Tactile Sensor
	Compliant Wrist
	Stimuli
	Experimental Protocol
	Neuron Model (Mechanoreceptors, 1st Order Neurons)
	Neuron Model (Cuneate Neurons, 2nd Order Neurons)
	Conduction Delays
	Classification Algorithm

	Results
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


