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Giving a robot the ability to perceive emotion in its environment can improve

human-robot interaction (HRI), thereby facilitating more human-like communication.

To achieve emotion recognition in different built environments for adolescents, we

propose a multi-modal emotion intensity perception method using an integration of

electroencephalography (EEG) and eye movement information. Specifically, we first

develop a new stimulus video selection method based on computation of normalized

arousal and valence scores according to subjective feedback from participants. Then, we

establish a valence perception sub-model and an arousal sub-model by collecting and

analyzing emotional EEG and eye movement signals, respectively. We employ this dual

recognition method to perceive emotional intensities synchronously in two dimensions.

In the laboratory environment, the best recognition accuracies of the modality fusion

for the arousal and valence dimensions are 72.8 and 69.3%. The experimental results

validate the feasibility of the proposed multi-modal emotion recognition method for

environment emotion intensity perception. This promising tool not only achieves more

accurate emotion perception for HRI systems but also provides an alternative approach

to quantitatively assess environmental psychology.

Keywords: electroencephalograph (EEG), eye movements, human-robot interaction (HRI), adolescents,

environmental emotion perception

1. INTRODUCTION

Human-robot interaction (HRI) refers to the process of communication between a user and a
robot, in which the user interacts with the robot via a certain “dialogue” language (Sloman, 2009;
Nishiguchi et al., 2017; Khan et al., 2018). To date, HRI methods have been widely applied to the
design of service robots, amusement robots, healthcare robots, and so on (Royakkers and van Est,
2015; Li et al., 2018; Zhang et al., 2019). Those robots are able to perfectly execute interactions
with the user; however, they have a limited ability to adjust the interaction mode in response
to the user’s psychological states owing to their weak emotion perception (Pessoa, 2017; Cavallo
et al., 2018). Effective recognition of users’ emotional states will be important for improving
the performance of HRI (Breazeal, 2003; Schaaff and Schultz, 2009; Boucenna et al., 2014a,b).
For instance, if a healthcare robot could accurately perceive the user’s emotional state, it could
perform the corresponding feedback to enhance rehabilitation effectiveness. Therefore, establishing

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00046
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00046&domain=pdf&date_stamp=2019-06-26
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kjlz@ahu.edu.cn
https://doi.org/10.3389/fnbot.2019.00046
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00046/full
http://loop.frontiersin.org/people/628072/overview
http://loop.frontiersin.org/people/590222/overview


Su et al. Multimodal Adolescents Environmental Emotion Perception

an emotional HRI method, especially for the social environment,
has become a research hotspot in the field of robotics.

To achieve this purpose, bioinformation-based emotion
perception and evaluation have received increasing attention
(Picard et al., 2001; Kim and André, 2006, 2008; Wackermann
et al., 2014; Peng and Lu, 2017). Generally, the acquisition
of emotion-related bioinformation can be categorized into
contact-free and contact methods. Contact-free methods refer
to the recognition based on speech, facial expressions, human
postures, etc. This type of method has the advantages
of simple signal acquisition and a high comfort level for
participants. However, when the participants intend to hide
their emotions, contact-free methods cannot make a correct
adjustment because the real emotion is not consistent with
the external performance. By contrast, contact methods can
effectively overcome the above-mentioned problem owing to
the undeceptiveness of physiological signals. Currently, the
main peripheral physiological signals acquired from contact
bio-electrodes are electrocardiogram (ECG), electrooculography
(EOG), electromyography (EMG), skin conductance (SC), and
respiration. This bio-information has been applied to evaluate
psychological effects, restorative results, and satisfaction degree
in different environments (Hartig et al., 2003; Tyrväinen et al.,
2014; Wang et al., 2016).

Electroencephalography (EEG) signals generated from the
brain in the central nervous system have shown better
performance in emotional HRI than peripheral bio-signals (Lin
et al., 2010; Ravindra and Castellini, 2014; Wang et al., 2014).
Besides, as a non-invasive measurement, EEG has become a
valuable research tool for landscape architects in environmental
science (Le Van Quyen, 2011; Righi et al., 2017). At present,
EEG-based emotion perception approaches can be classified
into two categories. One approach is to analyze emotion-
related brain activities by observing the raw signal output,
especially alpha wave and prefrontal asymmetry. For instance,
Ulrich et al. compared the physical and psychological states of
two groups living in a built natural environment and a built
business/industry environment, respectively. They showed that
the sample group in the natural environment had a higher
alpha ratio than the other group, by integrating the results of
questionnaires, interviews, brain activities, heart rate, and blood
pressure (Ulrich et al., 1991). Nakamura and Fujii analyzed the
quantity of alpha and beta rhythms induced by two different types
of fence, i.e., consisting of closely growing bushes and concrete
blocks, respectively. They concluded that the alpha ratio in the
former case was higher than the latter (Nakamura and Fujii,
1992). Another approach is to obtain emotional states by feature
extraction and classification of EEG signals collected in different
environments. For example, Aspinall et al. used the commercial
equipment Emotive to record five-channel emotion EEG signals
in two dimensions while the participants were walking in a
commercial street and a green space, respectively (Aspinall et al.,
2015). Roe et al. (2013) confirmed that green space resulted in
lower arousal and higher positive preference than an urban scene.

The aforementioned emotion perception methods mainly
concern the recognition of discrete emotions (such as
sadness, joy, depression, anger, etc.). However, in the field

of environmental psychology, it is difficult to use these discrete
emotional states to describe emotional activities sufficiently,
owing to their complexity. Besides, such emotion recognition
methods focus on exploration of the relationship between a
general group and a specific environment (e.g., green space or
commercial region), while ignoring the relationship between
the general environment and a specific group (e.g., adolescents
or the elderly). In fact, the latter has a more important role
than the former in the design of HRI with “social intelligence.”
Owing to the inseparable relationship between EEG and human
emotions, EEG-based emotion recognition has attracted the
attention of many researchers. In recent years, a large number
of studies have demonstrated its superiority and stability
(Nie et al., 2011; Jirayucharoensak et al., 2014; Zheng et al.,
unpublished). Studies have also shown that eye movement
characteristics (i.e., blink frequency, saccade duration, pupil
diameter, etc.) can reflect current emotional state to a great
extent, and provide an efficient approach to recording users’
behaviors (Lu et al., 2015). Considering the fact that adolescents,
as a special group, may be sensitive to particular environments,
we therefore selected different living environments to which they
are often exposed as research objects. On this basis, we propose
a new multi-modal environment emotion intensity perception
method using information from EEG and eye movements
for implementation of an emotional HRI. Specifically, we
first design a stimulus selection method to induce different
emotional states. Subsequently, we non-linearly scale the
emotion intensity into five levels based on responses to different
stimulus videos. Furthermore, we develop a dual method
comprising a valence perception sub-model and an arousal
sub-model to synchronously perceive emotion intensities in both
two dimensions.

This paper is organized as follows. Section 2 introduces the
generation of EEG signals as well as the emotion classification
method. Section 3 depicts the procedure of data preparation,
including the stimulus selection method and the experimental
paradigm design. Section 4 details the proposed emotion
intensity perception method using EEG and eye movement
signals. The experiments are described in section 5 and section
6 concludes the paper.

2. PRELIMINARIES

2.1. EEG Generation
The brain consists of the cerebellum and the brain stem. The
two hemispheres are separated by the longitudinal crack and
connected by a large fibrous band named the corpus callosum
in the middle. The surfaces of the brain are particularly complex
and separated into pieces by a number of fissures, the largest
of which are the Rolandic and Sylvian. The complex fissures
make the surface area of the brain more than twice the size
of a smooth one, and so are the number of neurons. A gray
structure composed of nerve cells covers the surface of the
cerebral hemisphere and forms the cerebral cortex, which is
the center of the advanced nervous system. Subcortical nerve
fibers access the brain and other parts of the body. Parts of
the cortex are involved in specific functions, for example, visual
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FIGURE 1 | Fundamental principles of EEG generation. The potential

presenting on the surface of the cerebral hemispheres is generated by the

summed activity of hundreds of nerve cells. The bio-electrodes (black points)

placed on the cerebral cortex are used to collect these potentials.

information is dealt with by the occipital area, and auditory
information is processed by the temporal lobe. For instance,
the potential generated by the summed activity of hundreds or
thousands of nerve cells will present on the surface of the cerebral
hemispheres when the individual is viewing scenes or listening to
sounds. Furthermore, this spontaneous potential can be collected
by bio-electrodes placed on the cortex and recorded as EEG
signals (Cooper et al., 2014). Figure 1 illustrates the generation
principles of EEG.

2.2. Emotion Classification
With the development of emotional generation and expression
theories, various emotion classification models have been
presented in the field of affective computing (Picard, 2000).
Inspired by the Darwinian theory, Ekman defined six basic
emotional states: happiness, surprise, anger, disgust, sadness, and
fear. Generally, an individual’s emotions are a mixture of two
or more discrete representations. For instance, disappointment
can be expressed as a combination of surprise and sadness
(Ekman et al., 1987). However, there is a limitation to this
approach, in that Ekman’s definition cannot exactly describe
complex emotional states. To address this issue, psychologists
have employed n-dimensional spaces to represent emotion.
For instance, a two-dimensional (2-D) valence/arousal space
model (see Figure 2) is widely adopted in environmental
psychology analysis (Russell, 1979; Russell and Snodgrass,
1987). Specifically, the “VALENCE” axis is associated with a
negative or positive situation, which ranges from unpleasant
to pleasant; the “AROUSAL” axis is related to the intensity
of excitement (from calm to excited) according to the sensory
stimulation. In this way, emotion categories, such as joy, fear,
anger, sad, depression, contentment, and relaxation can be
expressed in four quadrants in response to the degree and
intensity of the two dimensions. Considering the complexity
of emotional states induced by different built environments,
we used a 2-D model to describe emotion intensity in the
current research.

FIGURE 2 | A simplified 2-D emotion model based on Russell’s theory with

horizontal dimension “VALENCE” and vertical dimension “AROUSAL.”

3. DATA PREPARATION

3.1. Stimuli Selection
During the selection of stimulus videos, we are concerned
with an HRI aiming at adolescents’ living environments. The
contents of the video database include both indoor space
(e.g., bookstores, classrooms, libraries, shopping malls, KTV,
bars, restaurants) and outdoor environments (e.g., commercial
streets, urban roads, green spaces, playgrounds, garbage). We
also present the everyday state of each scene as much as
possible, not avoiding the occurrence of people and sounds.
For example, the green space near a lake has a breeze, the
library is relatively static, commercial street is mussy, etc. A
total of 180 original video clips were used, and the duration
was about 35 min. One hundred and twenty one different living
scenes were recorded; the rest were collected from movies.
In order to ensure effective elicitation of different emotional
states, the stimuli used in our experiments were selected by the
following steps.

First, to avoid different emotional states being induced in
the same video segment, we kept the clips as short as possible.
Thus, 55-s highlighted video segments with maximum emotional
content from each of the original stimuli were manually
extracted. Then, we selected 120 test clips preliminarily from
180 highlighted videos using self-assessment software designed in
our laboratory. Employing this software, the user can control the
mouse to click on different checkboxes to express the intensity
of their emotional response after viewing a stimulus video.
Furthermore, to determine the emotional intensity in response
to the different built environments, we scaled the emotions into
five levels based on the degree of arousal and valence dimensions,
as follows.

• Arousal dimension: low degree arousal (level 1), low-medium
degree arousal (level 2), medium degree arousal (level 3),
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medium-high degree arousal (level 4), high degree arousal
(level 5);

• Valence dimension: low degree valence (level 1), low-medium
degree valence (level 2), medium degree valence (level 3),
medium-high degree valence (level 4), and high degree valence
(level 5).

On this basis, we further chose the 40 most representative
stimulus videos from the 120 optimized test clips to improve the
effectiveness of the stimulus video. Specifically, we first displayed
these stimuli videos at random and asked each subject to view
them as many times as he/she desired. Next, we computed
the normalized arousal scorea(x) and valence scorev(x) for each
stimulus video using the following equation:

scorea(x) =
µax

σax
, scorev(x) =

µvx

σvx
(1)

where µax and µvx denote the mean rating, and σax and σvx
indicate the standard deviation. The stimulus selection method
is illustrated in Figure 3.

In the proposed emotion perception method, we non-linearly
scaled the emotions into five levels according to the arousal and
valence intensities. As can be seen in Figure 4, some extreme
emotional states were seldom induced because the story plots
were not included in the visual built environments. As a result,
fewer stimulus videos were located in the areas of low valence and
high arousal (the corresponding emotion is “Anger,” as shown
in Figure 2) compared with other areas. In accordance with
this distribution, we selected five representative areas on each
dimension of the 2-D model and determined eight optimum
sample points as training data in each area, as follows.

• On the arousal dimension: eight training samples that were
closest to the origin on the horizontal axis were chosen as
level 3 (medium) stimuli, videos that were closest to ±2.5 on
the horizontal axis were chosen as level 1 (low) and level 5
(high) stimuli, and videos that were closest to ±0.7 on the
horizontal axis were chosen as level 2 (low-medium) and level
4 (medium-high) stimuli, respectively;

• On the valence dimension: eight training samples that were
closest to the origin on the vertical axis were chosen as level 3
(medium) stimuli, videos that were closest to −1.5 and 3 on
the vertical axis were chosen as the level 1 (low) and level 5
(high) stimuli, and videos that were closest to −0.4 and 1 on
the vertical axis were chosen as level 2 (low-medium) and level
4 (medium-high) stimuli, respectively.

Compared with the arousal dimension, the divisions on the
valence dimension were asymmetric because the stimulus
distribution tended toward higher emotion intensity.

3.2. Experimental Paradigm Design
Before the experiment, all participants were informed about the
purpose of this experiment and told the meanings of the terms
“valence” and “arousal.” Then, they were trained to be familiar
with the self-assessment software and the interaction method.
To ensure the effectiveness of the induced emotion, the bias
caused by different emotional states was suppressed by displaying

a neutral video showing colored bands between different stimuli.
Specifically, each trial started with a 5-s neutral video, followed
by a 20 ms warning tone (“beep”). After 0.5 s, the videos were
displayed at random and EEG and eye movement signals were
recorded synchronously. During this step, the experiment could
be paused at any time if the subject was made uncomfortable
by the video content, experimental conditions, etc. When the
participant finished viewing the stimulus, they were asked to
evaluate their emotional intensity using the self-assessment
software. After completing the above steps, the participant was
allowed to relax to improve their performance on the next trial.
The duration of a single experimental paradigm was ∼95 s. This
duration includes the time required to show the neutral video,
to play the emotional clips, to perform the self-assessment, and
to have a break. Considering the availability of emotional data,
generally, the ideal total experimental time is <30 min in order
to avoid physical or physiological fatigue. A single experimental
paradigm is shown in Figure 4.

3.3. Data Acquisition
The EEG data used in our study were collected from healthy
participants. Most of whom were undergraduate or graduate
students from the College of Arts or College of Computer Science
at Anhui University. A 30-channel EEG acquisition instrument
(NeuroScan, Inc., El Paso, TX) was used, and the distribution
of electrodes was in line with the international 10–20 system
(Homan et al., 1987). The reference electrodes were placed
on the right and left mastoids, respectively, and the ground
electrode was arranged on the forehead. In the aspect of eye
movements acquisition, we used the SMI ETG 2w eye-tracking
glasses to record the participant’s natural gaze behaviors due
to its high robustness, mobility, and ease of use. Besides, it
could also automatically compute eye movement features, such
as saccade, fixation, and blink, which provided a convenience
for eye movement-based emotional features extraction. It was
worth noting that a specific trigging software developed in our
laboratory was used to start two acquisition devices in order to
record EEG and video eye movement signals synchronously.

4. METHODS

First, we synchronously collected the EEG and eye movement
signals induced by different stimuli. Then, we pre-processed
two modal signals and extracted their feature parameters using
time/frequency or spatial domain analysis. On this basis, we
established the valence and arousal perception sub-models,
respectively. In the recognition stage, we used this dual sub-
model to classify emotional intensities synchronously in two
dimensions, ranging from level 1 to 5. The overall architecture
of the proposed method is shown in Figure 5.

4.1. Preprocessing
4.1.1. Frame Blocking and Windowing for EEG

Signals
To ensure the short-term stationarity of the observation EEG
signals, frame blocking and sliding window techniques were used.
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FIGURE 3 | Illustration of stimulus selection method using a normalized 2-D valence/arousal space model. The x- and y-axis indicate the score values computed

using Equation (1) according to the valence and arousal dimensions, respectively. Each blue dot corresponds to a stimulus video. The red and blue rectangles

represent five predefined scopes for different emotion intensities in the arousal and valence dimensions, respectively.

FIGURE 4 | Demonstration of a single experimental paradigm.

Suppose that x(n) is a finite duration segment of emotional EEG
signals. Then the basic windowing procedure can be depicted as:

x̂(n) = x(n)ω(n) (2)

where x̂(n) denotes the windowed signals and ω(n) denotes
a window function. To reduce signal discontinuities between
each independent frame as much as possible, we adopted
the Hamming window as the window function, defined as
follows Lv et al. (2010):

ω(n) =

{

0.54− 0.46 cos[2πn/ (N − 1)], 0 ≤ n ≤ N − 1
0, otherwise

(3)

Considering the balance between computation load and online
performance, the number of overlapping samples was empirically
initialized to half the length of the frame. The basic windowing
procedure is illustrated in Figure 6.

4.1.2. Denoising
Emotional EEG and eye movement signals are susceptible
to interference from various sources of noises during data
collection. In order to preserve the effective emotional
component and suppress the influence of noise, we performed
a denoising operation. Specifically, for the EEG signals, we
manually removed any trials seriously affected by artifacts and
used a 32-order linear phase finite impulse response filter with
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FIGURE 5 | Overall architecture of the proposed environment emotion perception method for HRI using a combination of EEG and eye movements.

FIGURE 6 | EEG signals are windowed into frames of N samples and overlaps of M samples in the case of M = (1/2)N.

cut-off frequency of 0.5–60 Hz to process the windowed signals.
As the effects of illumination reflection on the diameter of
the pupil can influence emotional information, we also used
principal component analysis to estimate the illumination
reflection of the pupil diameter and remove this component
based on the original eyemovement data (Soleymani et al., 2012).

4.2. Feature Extraction
4.2.1. Time-Frequency Domain Features
EEG signals can be divided into six independent frequency
bands on the basis of the functions of the bands, i.e., delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), slow alpha (8–
10 Hz), beta (12–30Hz), and gamma (30–40 Hz). As these
frequency bands have been shown to be associated with the
variability of emotion (Ulrich et al., 1991; Droit-Volet, 2013),
we extracted the average power spectral (APS) and average
energy (AE) from the theta, alpha, beta, and gamma frequency
bands, respectively, as feature parameters. Given that the possible
asymmetry of parameters between the left and right hemispheres

is closely related to the degree of valence, the differential
average spectral power (DAPS, from all frequency bands other
than slow alpha wave) values between all symmetrical pairs of
electrodes were extracted as supplementary feature parameters.
The distribution of symmetrical pairs of electrodes is shown in
Figure 7. Consequently, we acquired 420 dimensions of (30∗ 6+
30∗6+12∗5) EEG features from an individual frame in the case
of a 30-electrode arrangement.

To extract emotional features from the eye movement
information, we first applied a short-term Fourier transform
to obtain the power spectral density, as well as the differential
entropy of the pupil diameter data in terms of four frequency
bands (0.6–1.0, 0.4–0.6, 0.2–0.4, and 0.01–0.2 Hz) (Soleymani
et al., 2012). We also computed some conventional time-domain
features, such as the standard deviation and mean of duration
for three basic eye movement activities (i.e., saccade, blink,
and fixation). In order to obtain more potential emotional
information, the detailed event statistics were considered as
features. In this way, we acquired a total of 20 dimensions
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FIGURE 7 | Demonstration of symmetrical pairs of collection electrodes. The

same color located on the horizontal direction indicates a pair of electrodes;

circles with numbers represent the electrodes’ names and locations.

TABLE 1 | Descriptions of extracted time-frequency domain emotional features.

Features Dimensions Descriptions

EEG:

Average power

spectral (APS)

30*6 32: Number of bio-electrodes.

6: APS from delta, theta, slow alpha,

alpha, beta, and

gamma frequency bands, respectively.

EEG:

Average energy

(AE)

30*6 32: Number of bio-electrodes.

6: AE from delta, theta, slow alpha, alpha,

beta, and

gamma frequency bands, respectively.

EEG:

Differential APS

(DAPS)

12*5 12: Number of symmetrical pairs of

bio-electrodes, i.e.,

FP1-FP2, F7-F8, F3-F4, FT7-FT8,

FC3-FC4, T3-T4,

C3-C4, TP7-TP8, CP3-CP4, T5-T6,

P3-P4, O1-O2.

5: DAPS from all frequency bands except

slow alpha wave.

Eye movement:

Features of blink

1*2 2: Mean and deviation of duration,

respectively.

Eye movement:

Features of

saccade

1*3 3: Mean and deviation of duration, and

rotation angle,

respectively.

Eye movement:

Features of fixation

1*2 2: Mean and deviation of duration,

respectively.

Eye movement:

Statistical features

1*13 13: Frequency of saccade, blink, and

fixation;

duration maximum, duration average,

duration minimum, rotation angle

maximum,

and rotation angle average of fixation and

saccade.

of features from eye movement data. The details of the
features extracted from EEG and eye movements are listed
in Table 1.

4.2.2. Spatial Domain Features
We performed independent component analysis (ICA) on a
single trial xn (n=1,...,N), where N is the number of EEG trials.
The information maximization (Infomax) criterion and natural
gradient algorithmwere applied to optimize the unmixingmatrix
W (Wu et al., 2018). To acquire the maximum projected position
of ICs, we calculated the absolute value of the mixing matrix An

(An = W−1
n ) and saved the index of maximum values into a

matrix D1×30 according to each column vector |an
h
|(h=1,2,...,30)

of |An|. In particular, if thematrixD1×30 included the index of the
whole channel simultaneously, we inferred that the spatial filter
was valid. For a valid filterWn with conformed validity judgment,
we chose the corresponding columns in the filter according to
the values of D1×30. In this way, the ICA filter bank {Wn

1 ,...,W
n
30}

was established. We employed a mean filter (the mean value
of all valid filters) to linearly project each trial and extract ICs
(un1 ,...,u

n
30) for different emotional states. Letting Ŝ = [un1 ,...,u

n
30],

we performed singular value decomposition on Ŝ, with ES

regarded as the spatial features.

{

Ŝ = U6VT

ES = [λ1v1, ..., λ30v30]
(4)

where U, V are orthogonal matrices, 6 is a diagonal matrix, λ is
the diagonal element of 6, and v is a column vector of V.

Furthermore, in order to reduce differences among different
participants, all feature parameters were normalized within the
range of [0, 1]. That is, we first computed the absolute values
of all feature vectors from each participant, then subtracted the
minimum and maximum and calculated the difference values;
finally, each feature vector was divided by this difference value
to give the normalized results.

4.3. Multi-Modal Fusion and Classification
Strategy
In the proposed method, we performed a two-classification
scheme to perceive emotion intensity based on a support
vector machine (SVM). One classification was based on arousal
recognition for five levels: calmness (level 1) to excitement (level
5). The other classification was based on valence recognition,
ranging from unpleasantness (level 1) to pleasantness (level 5).
In the training phase, all of the training data were used to
classify the stimuli on the arousal and valence dimensions for
levels 1–5. In the recognition phase, when the new observation
sample was input, the trained SVM methods were used to
classify emotional intensity based on the arousal and valence
dimensions synchronously. In order to combine the EEG and
eye movement information, we applied two classifiers, for EEG
and eye movement signals, respectively. A decision-level fusion
[DLF; i.e., fuzzy fusion strategy (Murofushi and Sugeno, 1989)]
was used to integrate them in order to achieve high recognition
accuracy. The detailed procedure was as follows.

Definition 1. A fuzzy measure µ defined on a finite index set
X = {x1, x2, ..., xn} is a set function µ:G(X) →[0,1](G(X) is the
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power set of X) satisfying:

{

µ(∅) = 0,µ(X) = 1,

A ⊆ B ⇒ µ(A) ≤ µ(B)
(5)

In the present work, we use the discrete Choquet integral
proposed by Murofushi (Murofushi and Sugeno, 1989).

Definition 2.Assume thatµ is a fuzzy element on the index set
X. The discrete Choquet integral using the function f :X → R

+

regarding the variable µ can be defined as follows:

ζµ(f (x1), f (x2), ..., f (xn)) : =

n
∑

i=1

[f (x(i))− f (x(i−1))]µ(A(i)) (6)

Here, ·(i) indicates the index after permutation, which should
satisfy the following relationship:

0 ≤ f (x(1)) ≤ f (x(2)) ≤ · · · ≤ f (x(n)) ≤ 1 (7)

and

f (x(0)) = 0andA(i) : = {x(i), x(i+1), ..., x(n)} (8)

Suppose that C1,C2, ...,Cm, belong to m classes and XT =

[x1...xn] are composed of n-dimensional vectors. A confidence

factor will be obtained by the function 8
j
i(X

◦) for each classifier.
In order to combine all confidence factors, we further define a
global confidence factor as follows:

8µj (Cj;X
◦) : = ζµj (8

j
1,8

j
2, ...,8

j
n) (9)

where Cj” and uj(j ∈ {1, 2, ...,m}) indicate the class and
its importance, respectively. Finally, the class of the unknown
sample X◦ can be obtained by its correspondence to the highest
confidence factor.

The core problem is to acquire the fuzzy element µ with
m(2n − 2) coefficients. For clarification, we set the number of
classes to be 2 and compute µ by defining the minimizing error
function, that is,

J =

l1
∑

k=1

(8µ1 (C1;X
1
k)− 8µ1 (C2;X

1
k)− 1)2

+

l2
∑

k=1

(8µ2 (C2;X
2
k)− 8µ1 (C1;X

2
k)− 1)2 (10)

where l = l1 + l2 are training examples and their labels are

X
j
1,X

j
2, ...,X

j

lj
, j = 1, 2., respectively. We rewrite this in terms of a

quadratic optimization problem in the case of 2*(2n−2) variables
and 2n*(2n−1 − 1) constraints:

minimize
1

2
µTDµ + ŴTµ

under the constraint Aµ + b ≥ 0

(11)

where µ is a vector with 2 ∗ (2n − 2) dimensions, which involves
all of the fuzzy elements µ1,µ2,i.e., µ : = [µT

1 µT
2 ], with

µj
: = [µj({x1})µ

j({x2})...µ
j({xn})

µj({x1, x2})...µ
j({xn−1, xn})...µ

j({x2, x3, ..., xn})]
T

(12)

Consequently, we can obtain the optimum fuzzy elements
representing the level of importance for each classifier.

5. EXPERIMENTS AND RESULTS

Twelve participants (seven male and five female) aged between
17 and 26 years (mean = 22.3, SD = 4.1) were involved in our
experiments. Forty emotional trials were performed for each
participant. Experiments were carried out in an illumination-
controlled laboratory environment. Two dedicated computers
were employed: one (T6400 @ 2.00 GHz, 4 G RAM) was used to
record EEG signals, the other (i7-5500U @2.4 GHz, 8 G RAM)
was used to display the videos, perform self-assessment, and
transmit synchronization signals directly to the signal collection
computer. All selected stimuli videos were randomly displayed
on a 14-inch screen with 1280 × 1024 resolution and a 60-
Hz refresh rate. In order to further suppress the influence of
ocular artifacts, the screen resolution was set to 800 × 600
and the image filled approximately two-thirds of the screen.
Moreover, every participant was required to sit about 1.0 m
in front of the screen. Stereo loudspeakers were located on
the desktop and the sound volume was empirically set at a
reasonable level. Before the experiment, all participants were
required to preview 2–3 videos to become familiar with the
device and procedure. We also asked the participants whether
the experimental environment (e.g., the distance between subject
and screen, volume, indoor temperature) was comfortable. If the
environment was not comfortable, the settings were adjusted on
the basis of the participant’s feedback.

5.1. Analysis of Raw EEG Signals
We performed EEG trials with three typical scenes (i.e., shopping
mall, green space, and dumpsite) to analyze the differences
in brain activities in different built environments. The average
values of APS, AE, and DAPS for all frequency bands are shown
in Table 2.

As can be seen in Table 2, there were clear variations in
brain activities in different built environments. For instance, the
participants retained relatively high valence in the shopping mall
scene, the average APS was 31.28, while DAPS was as low as
0.04. On the contrary, the degree of valence decreased when

TABLE 2 | Averaged APS, AE, and DAPS.

Scenes Valence Arousal

APS AE DAPS APS AE DAPS

Shopping mall 31.28 25.72 0.04 23.83 18.90 0.22

Green space 14.79 9.23 0.91 11.75 10.48 1.53

Dumpsite 7.23 20.63 3.25 9.68 16.61 3.09

Frontiers in Neurorobotics | www.frontiersin.org 8 June 2019 | Volume 13 | Article 46

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Su et al. Multimodal Adolescents Environmental Emotion Perception

they viewed the videos of the dumpsite (APS = 7.23, DAPS =
3.25). Similarly, the highest arousal values were recorded for the
shopping mall scene (APS = 23.83, DAPS = 0.22) and the lowest
values for the dumpsite scene (APS = 9.68, DAPS = 3.09). In
contrast to APS and DAPS, the minimum values of AE were
observed for the green space, i.e., 9.23 and 10.48, according to
the valence and arousal dimensions, respectively. Participants
reported that they felt calm and relaxed when watching the green
space scene. Therefore, the energy from neural sources would
be reduced compared with the other two scenes owing to the
intensity decrement of brain activities.

5.2. Emotion Intensities Recognition
In this experiment, the length of a frame was 500 sampling points
(duration was 2 s) and the overlap was 250 points (duration was
1 s). The ground truth was directly obtained from the results
of the self-assessment software. The linear radial basis function
(RBF) kernel function was applied to the SVM method, and the
penalty factor was empirically set to 1. The recognition results
were compared with the data labels to acquire the classification
accuracy ratio. If they were the same, the classification was
considered to be correct; otherwise, it was wrong. A 10∗5 cross-
validation method was also employed to improve the reliability
of the recognition results, as follows: all samples were sorted at
random and divided into five parts, then one part was taken
out as a test dataset and the remaining four parts were used
to train the classifier; this procedure was repeated 10 times for
each participants’ data. The average emotional recognition results
based on EEG, eye movements, and multi-modal fusion for
different emotional intensities are shown in Figure 8.

In Figure 8A, the recognition accuracies in the arousal
dimension are reported. The average emotion recognition
accuracy based on EEG was 70.6%, which showed an
increment of 6.9% compared with the eye movement
result. For the performance of modality fusion, we achieved
improvements of 2.2% and 9.1% for the EEG and eye movement
information fusion. Similarly, in Figure 8B, 65.5 and 56.6%
represent the average recognition ratios of EEG and eye
movements on the valence dimension, respectively. The result
obtained with the modality fusion method was 69.3%, higher
than those for any single modality. It is clear that the modality
fusion method showed superior performance to either the EEG
or eye movement modality.

6. DISCUSSION

The motivation of this work was to develop an environment
emotion HRI method by establishing a multi-modal emotion
perception algorithm combined with quantitative assessment of
environmental psychology. To ensure the diversity of the stimuli,
we considered the following factors in the design procedure:
(1) recording the indoor and outdoor videos under different
illuminations, weather conditions, and time periods in order to
ensure diversity of stimuli; (2) avoiding manual intervention as
far as possible when collecting stimulus videos so as to keep the
scenes in a natural state; and (3) using stimulus videos without
a storyline to ensure that the participant could focus effectively

on the visual environments themselves. Thus, the distributions of
emotional states presented unevenness in the 2-D emotionmodel
space because the built environments could not induce extreme
emotional responses, such as “anger” and “sadness” (located on
the extremes of Q2 and Q3 in Figure 2, respectively). On the
other hand, some types of intense emotions, such as “disgust”
could be induced by certain environments, such as the dumpsite.
The emotions induced by the built environments tended to be
subtler and more complex compared with those induced by
videos with specific content. In order to exactly describe the
emotional variations, we established a dual emotion recognition
model based on cognitive theory to perceive the intensities of
arousal and valence in the current work.

The experimental results, shown in Table 2, revealed that
the majority of adolescents presented higher intensity of brain
activities (i.e., high-level valence and arousal) when watching
the videos of shopping malls, sport games, or parties. That is,
a higher level of excitement was induced on both the valence
and arousal dimensions. Generally, short-term excitement can
reduce inhibition via endocannabinoids (Pezzulo et al., 2013),
which is beneficial to adolescents’ health. However, long-term
excitement may result in fatigue and even minor brain damage
(Kaplan, 1995). In our experiment, most participants presented
medium-low arousal and medium valence when viewing the
landscape, an ideal and satisfied emotional state. This result is in
line with the theory of green space as a restorative environment
(Cohen-Cline et al., 2015).

The normalized confusion matrix over all participants is
shown in Figures 8C,D. The values presented on the diagonal
are correct recognition rates, and the off-diagonal denotes
substitution errors. The largest between-class substitution errors
were 0.142 and 0.161, while the smallest errors were 0.012 and
0.016 for the arousal and valence dimensions, respectively. By
analyzing all trials, we found that most of these errors were falsely
returned level 1 and 2 results.

Closer inspection of the confusion matrix revealed that the
accuracy of the experiment was associated with the stimulus
videos. As shown in Figure 8C, the between-class substitution
errors for level 1, 2, and 3 were 0.112 (false return level 3), 0.132
(false return level 1), and 0.087 (false return level 2), respectively.
In other words, the largest errors were all located within level
3. By analyzing the original stimulus videos, we observed that
emotions of medium-low arousal were mainly induced by the
calm-dominated videos (e.g., libraries, bookstores, green spaces).
These kinds of environment have similar characteristics to
medium-low arousal, that is, static space, quiet environment,
single-component elements, neutral and uniform colors, etc.
As a result, they are accepted by the participants as stimuli
with medium-low arousal by consensus. Owing to differences in
emotional tension and cognition, some unexpected classification
results occurred within a reasonable range (especially for level
3). Furthermore, the lowest recognition ratio was located in the
fifth column, while the largest between-class substitution error
(0.142) was located in the first row. This result indicates that
the probability of the highest arousal (excitement) being falsely
reported as the lowest arousal (calm) was higher here than in
other cases, which is consistent with the report published in 2012
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FIGURE 8 | Emotion recognition results and normalized confusion matrix over all participants. Average accuracies in (A) the arousal dimension and (B) the valence

dimension are presented, corresponding to EEG, eye movements, and multi-modal fusion (DLF), respectively. (C,D) show the confusion results for the arousal and

valence dimensions. Numbers 1–5 indicate the emotion intensities corresponding to the predefined levels described in section 3.1.

(Soleymani et al., 2012) to some extent. Based on information
regarding participants’ emotional responses after viewing the
stimuli, we speculate that discrepancies in adolescents’ perceptual
and rational choices may have had a major influence on
our results.

In Figure 8D, the largest between-class substitution errors for
level 1 and 5 are located on opposite sides: level 5 (0.153) and
level 1 (0.134). This confusion may be caused by differences
in the personalities and preferences of the adolescents. For
instance, some young individuals may prefer the atmosphere of
a music club or a bar, while others may be unwilling to stay
in such environments. In contrast to those for levels 1 and 5,
the recognition accuracy ratios are relatively stable for levels
2, 3, and 4. This reveals that the majority of adolescents have
similar views of stimuli with medium-high valences, as most such
stimulus videos depicted commercial complexes, playgrounds,
green spaces, etc.

Generally, the participants achieve a higher consensus on the
lowest level (level 1) for the arousal dimension, that is, they feel
calm when staying in a peaceful environment. On the contrary,
they present a bigger difference on the highest level (level 5) for
the arousal dimension. We speculate that this result is associated
with the cognition difference caused by character differences
(e.g., introverted or extroverted) for the adolescent individual. In
addition, different individuals may generate different cognitive
responses to the same thing owing to different preferences and
educational background. Therefore, the largest between-class
substitution error on the valence dimension presented the
opposite position, i.e., the right-top and left-bottom.

7. CONCLUSION

In the present work, we presented a multi-modal approach
for synchronously perceiving emotional intensities in both
the valence and arousal dimensions. On this basis, we
further investigated the influence of different environments on
adolescents’ psychology. The experimental results indicated that
the proposed method is a promising tool to implement an
emotional HRI. Future work should prioritize improvements to
perceive subtler emotions with less intervention for vulnerable
populations. We also hope that it can be used as an auxiliary
method to enhance the effectiveness of emotional restoration
in different open levels, color levels, enclosing form of
environmental types, etc. Using wearable EEG and eyemovement
equipment to detail emotional variation in healthy environments
(such as therapeutic landscapes, healing gardens, meditative
gardens, and restorative gardens) will be another important
research direction in the future.

As the proposed multimodal-based HRI method can establish
an effective emotional communication channel between human
and robot, it has high potential for development of the following
applications: (a) design of an intelligent e-healthcare robot to
implement monitoring, diagnosis, and prevention of mental
disorders; (b) development of an emotion safety evaluation
robot for people engaged in high-risk work (e.g., drivers, pilots,
soldiers); (c) implementation of a service robot for patients with
motor diseases, such as amyotrophic lateral sclerosis or motor
neuron disease, or injured vertebrae, who retain normal brain or
eye movement responses.
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