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It is well-established that human decision making and instrumental control uses multiple

systems, some which use habitual action selection and some which require deliberate

planning. Deliberate planning systems use predictions of action-outcomes using an

internal model of the agent’s environment, while habitual action selection systems learn to

automate by repeating previously rewarded actions. Habitual control is computationally

efficient but are not very flexible in changing environments. Conversely, deliberate

planning may be computationally expensive, but flexible in dynamic environments.

This paper proposes a general architecture comprising both control paradigms by

introducing an arbitrator that controls which subsystem is used at any time. This

system is implemented for a target-reaching task with a simulated two-joint robotic arm

that comprises a supervised internal model and deep reinforcement learning. Through

permutation of target-reaching conditions, we demonstrate that the proposed is capable

of rapidly learning kinematics of the system without a priori knowledge, and is robust

to (A) changing environmental reward and kinematics, and (B) occluded vision. The

arbitrator model is compared to exclusive deliberate planning with the internal model and

exclusive habitual control instances of the model. The results show how such a model

can harness the benefits of both systems, using fast decisions in reliable circumstances

while optimizing performance in changing environments. In addition, the proposed model

learns very fast. Finally, the system which includes internal models is able to reach the

target under the visual occlusion, while the pure habitual system is unable to operate

sufficiently under such conditions.

Keywords: machine learning, reinforcement learning, supervised learning, habitual controller, planning, internal

models, decision making

1. INTRODUCTION

Much of the current reinforcement learning (RL) literature implements model-free control. Such a
learning agent learns a value function from interacting with the environment, usually updating
a proposed value function from a temporal difference between the previous expectation and a
new experience (Mnih et al., 2013, 2015). The value function is like a big lookup-table that can
quickly supply evaluations for possible actions and hence provide guidance for actions in a fast
and somewhat automated way. Such a decision system can be characterized as habitual. While
habitual action selection takes time to learn and requires that similar previous situations have
been encountered sufficiently, the advantage is that decisions and corresponding actions can be
generated in a timely manner.
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In contrast, a system that has some internal models of the
environment can be used to derive a value function on demand
for a specific situation. A prime example is a Markov decision
problem where the reward function and transition function of
the agent are known so that the Bellman equations can be
used to calculate the optimal value function for every state
action pair without the need to explore the environment. Of
course, this system requires learning of the internal models,
which requires previous interactions with the environment. The
learning of internal models can be achieved through some form
of supervised learning. Once the models have been learned, the
model-based system is able to calculate a value function on the fly.
This resembles some form of internal deliberation. The advantage
of such a system is its flexibility to new situations. However,
deliberations take time so that a habitual system is preferable
when it comes to situations that benefit from a higher degree
of automation.

In this paper, we introduce a learning system that we call
the Arbitrated Predictive Actor-Critic (APAC) that combines
a habitual reinforcement learning system with a supervised
learning system of internal models. Most importantly, we
introduce an arbitration system that mediates between their
usage. We specifically discuss a situation in which both systems
alone can solve an exemplary task so that we can study the
consequences of their direct interactions in relation to their
exclusive use. We show that this system is responsive to changes
in the environment and that it can learn the reward function very
fast. Our results demonstrate how the learning paradigm tend to
rely on habits after learning the reward function. Our results are
in line with evidence of human behavior mentioned above.

2. THEORETICAL PREMISES

There is a lot of behavioral and neurophysicological evidence
for different types of control systems in the brain that are
usually termed habitual or model-free and goal-directed or
model-based (Balleine and Dickinson, 1998; Gläscher et al.,
2010; Daw et al., 2011). In particular, one control system
associated with the prefrontal cortex (Miller and Cohen, 2001)
predicts action-outcomes using an internal model of the agent’s
environment and hence can be associated with a control system
that uses deliberative planning. We will use in this paper the
term deliberative planning instead of goal directed model-based
control tominimize the possible confusion between themodels of
the environment from the models of the value function. Another
control pathway in the brain is associated with the dorsolateral
basal ganglia (Houk and Barto, 1995) learns to repeat previously
rewarded actions that resemble a habitual system.

Some research showed that the two different control systems
are used in different situations and can be simultaneously active
(Poldrack et al., 2001; Lengyel and Dayan, 2008). For example, in
the brain, the cortical system represents a generalized mapping
of input distributions while hippocampal learning is an instance-
based system (Lengyel and Dayan, 2008). Moreover, when the
model of the environment is known and there is sufficient time
to plan, the best strategy is deliberate planning (Daw et al., 2005),

but when the decision should be taken very fast the habitual
controller is used (Blundell et al., 2016). Other work shows that
cooperation and competition between different control systems
in the brain happens especially when outcomes of each control
system disagree, that is, if a deliberated planning task does not
align with a habitual skill (Daw et al., 2005, 2011; Daw and
O’Doherty, 2013; Lee et al., 2014).

Moreover, feedback to learning systems can differ in different
situations and can be provided from different modalities
such as vision or auditory input. In machine learning, it is
common to distinguish different learning paradigms. One is
supervised learning where a teacher gives feedback from the
knowledge of a desired behavior. The system can be trained
by comparing the actual output of a leaner to the desired
output provided by the teacher. The teacher is basically a critic
who can quantify an objective function that a leaner needs to
optimize. Another slightly more general learning paradigm is
reinforcement learning where the environment only provides
some indication of value, often only after a series of actions
have been chosen by a learning agent. Reinforcement learning
is thus more general in that it can be applied to a lot of
more typical learning situations of an agent in an environment.
The subsystems in our model align in our implementation
with a supervised paradigm to learn internal models and a
reinforcement learning paradigm to learn habitual control.

Habitual reinforcement learning which is based on TD
learning (Sutton, 1985) has been very successful in explaining
experimental evidence from the animal learning literature and
dopamine-based learning in the brain (Barto, 1995; Schultz
et al., 1997). Such models which have originally been formulated
with tubular methods based on discrete state action spaces are
now commonly combined with neural networks as a function
approximator that broadens the range of practical applications
to be solved using RL, especially for control problems with
continuous states/actions spaces (Waltz and Fu, 1965; Barto
et al., 1990). Barto, Sutton and Anderson introduced the Actor-
Critic architecture that was implemented by neural networks
(Barto et al., 1983). Later, Barto (1995) represented an adaptive
critic which has similar behavior to the dopamine neurons
projection to the Striatum and frontal cortex. The adaptive
critic uses the internal sensory information to learn an effective
reinforcement signal.

It has long been hypothesized that the brain builds an internal
representation of the world and its body (Miall et al., 1993;
Miall and Wolpert, 1996; Wolpert et al., 1998; Kawato et al.,
2003), and evidence shows that “forward” and “inverse models”
exist in the brain (Miall et al., 1993; Kawato et al., 2003). The
internal model is used to perform in the environment and
learn a new task. Flanagan and Wing (1997) showed that the
internal model can predict the load force and the kinematics of
a hand movement that depends on the load. Moreover, when
learning how to use a new tool, humans make a transient
change in the internal model of the arm as well as making an
internal model of the tool (Kluzik et al., 2008). Furthermore,
imitation experiments show that a direct mapping develops
between observation and the internal model (Iacoboni et al.,
1999). Another advantage of having an internal representation
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FIGURE 1 | Overview of the Arbitrated Predictive Actor-Critic (APAC) model.

is obtaining a reliable source of information for the agent
to perform accurately even if there are no other sources of
information (e.g., visual information) available (Wolpert et al.,
1998; Kawato et al., 2003).

In this paper, we propose a model to study the cooperation
and competition between a habitual and planning-based
control components with an arbitrator component. The general
architecture of the proposed Arbitrated Predictive Actor-Critic
(APAC) is shown in Figure 1. In this model, each control
paradigm implies a specific type of teaching feedback. The
deliberative planning controller incorporates internal models
that are usually trained with supervised errors so that we
consider here an explicit state predictions error. In contrast,
the habitual action selection system is a common deep
reinforcement learner which learns from reward prediction
errors. The new component here is an arbitrator that mediates
between these systems that can select the command given
to the controlled system, the agent or in the plant in the
common language of control theory. Of course, it is possible
that both decision systems are trained with a combination
of supervised and reinforcement learning, but this is not
the crucial point in this paper. The model is designed to
study how a combined control system behaves in different
environmental situations. In the following section we apply
this general model to a specific motor control task in which
both systems can be trained on the same feedback signal,
but in which the execution would follow a habitual or
planning implementation.

3. APAC FOR TARGET REACHING

In this section, we apply the APAC model to the motor
control task of target reaching. We choose this task as it is a
good example of a minimal control task while being complex
enough to highlight the advantages and disadvantages of the two
principle control architectures discussed in this paper. Target
reaching lives in a continuous state and action space with 6
degrees of freedom when considering a shoulder and elbow
yaw, pitch and roll, although we simplify this here even more
to a 2-dimensional system with only one angle for the elbow
and one the shoulder. Learning the reaching task in this 2D
environment is learning a non-linear mapping function that

FIGURE 2 | The robotic arm set up in the environment. The solid black line

indicates the robot arm. Blue and red circles display the end-effector and the

target locations respectively. Colored contours illustrates reward function.

Black circle shows the target zone. The dashed green line represents the

internal model of the arm at very early stages of learning.

maps joint angles of the robot arm onto a location of the
end-effector in the environment. An example image of our
simulated robot arm is shown in Figure 2 with the black line.
The contour plot shows the distance to the target while the
dotted green line shows an internal model of the robot arm early
in learning.

The refined control architecture of our APAC model for the
reaching tasks is shown in Figure 3. For this application, the
state is defined as the position of the elbow, the end-effector,
and the target. The planning component is now implemented
as a combination of deep forward and inverse models, while the
habitual system is implemented as a deep actor-critic model. An
integrator is used to derive the training signals that are used
for the feedback. In the following, we specify each subsystem
in detail.

3.1. Habit Learning Control System
The habitual controller is implemented as a deep deterministic
policy gradient model (DDPG) following the work of
Lillicrap et al. (2015). The arm position is given by the
vector X with two vector components, the position of the
end-effector Xend and the position of the elbow Xelbow.
The arm position together with the target location Xtarget

defines the current state st = [Xend,Xelbow,Xtarget] of
the agent.

The critic Q(st , at; θ
Q) is implemented as a deep neural

network, where st is the current state at time t, at is the
action taken at time t, and θQ are the parameters of the
critic network. The goal of the critic is to approximate the
accumulation of the environmental reward (sometimes called
return) that can be expected from a certain state action
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FIGURE 3 | Arbitrated predictive actor critic: The actor receives the current state defined as the current location of the robot arm and the target location, and provides

an action that is the change in angles for shoulder and elbow. The inverse model takes the current state and predicts another action. The output of the inverse model

and the actor goes to the arbitrator. Then the arbitrator selects one of these actions. The output of the arbitrator along with the current state is the input to the critic

from which the critic predicts a reward. The forward model receives the selected action and the current position of the agent and predicts the future state of the agent.

The agent takes the selected actions and transfers to the next state. The predicted future state from the forward model is integrated with the estimation of the actual

state of the plant after taking the action and obtains a new current state for the system.

combination. The critic is learned through temporal difference
(TD) learning (Sutton, 1988; Schultz et al., 1997).

Q(st , at; θ
Q)← Q(st , at; θ

Q)+ l1δ, (1)

δ = rt + γ max
a′

Q
′(st+1, a

′
; θQ)

︸ ︷︷ ︸

estimated reward

−Q(st , at; θ
Q)

︸ ︷︷ ︸

actual reward

, (2)

where l1 is the learning rate of the critic network, rt is the actual
immediate reward received from the environment at time t, γ is
a discount factor, and Q′ represents the estimation of the value
of a state-action pair. As in DDPG, we use the main network for
training but we use a target network for predicting, which is a less
frequently updated copy of the main network to avoid oscillation.
More precisely, DDPG actually has two target networks, one for
the critic network and one for the actor network. We follow
directly the smooth update for the target networks as in DDPG
(Lillicrap et al., 2015),

θ ′ = θ ′ × (1− τ )+ θ × τ , (3)

with change parameter τ ≪ 1. The parameters θ ′ represents the
target network parameters, and θ is the parameter of the main
network, either the actor or the critic.

The computation in Equation (2) is done in the TD
component. To train the critic using the TD rule, the error needs
to be back-propagated through the critic. The error between
estimated value and the actual value is used to compute the loss
function of the critic (Equation 4),

LQ = 1/N
∑

(δ)2. (4)

DDPG takes advantage of the experience memory replay which
is a memory to store and reuse past experiences. The memory
replay is in form of R(st , at , rt , st+1,Tt), where st is the current
state at time t, at is the action taken at time t, st+1 is the next
state, rt is the reward received at time t, and Tt indicates whether
the state at time t + 1 is a terminal or not. The replay memory is
a queue-like buffer with a finite size. The agent will forget older
experiences and it will update its parameters based on its recent
experiences. At each time step, a random batch of N samples is
selected from the experience memory replay, and this batch is
used to train both the actor and the critic.

The actor (π) receives the current state (st) and predicts future
actions to be taken (at).

π(st; θ
π ) = at , (5)

where at = [α1,β1] and α1 and β1 are motor commands sent to
the shoulder and elbow, respectively. The actor is implemented
as a deep network where θπ indicates the parameter of the actor
network and is trained using the deterministic policy gradient
method (Silver et al., 2014). Note that the main actor network
is used for training, however, the target network of the actor is
used for the action prediction.

The changes of the weights of the actor corresponded to the
changes in expected reward with respect to the actor’s parameters,

θπ
t ← θπ

t + l2
∂Q(st , at; θ

Q)

∂π(st; θ
π
t )

∂π(st; θ
π
t )

∂θπ
t

, (6)

where l2 here is the learning rate of the actor. The plant, which
is the simulated arm in our example, takes the action and
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transitions to its new position [Zend
t+1,Z

elbow
t+1 ], which forms the

new state st+1 when combined with the target location. Like
DDPG we apply noise to the environment using an Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein, 1930) that results
in new samples.

3.2. Internal Models for Planning
For the planning controller, we need to learn the transition
function of the plant to build the model of the environment. Here
we use supervised learning to learn the internal representation
of the agent. More specifically, we used a supervised learning
controller that uses past experiences to generalize an inverse
model of the arm and a forward model of the arm. The training
examples used in our implementation are obtained from the same
experience replay memory that is used for the habitual controller.

A combination of a forward and an inverse model is used
for planning the next actions. The forward model fF is a
neural network that receives the current position of the arm
[Xend

t ,Xelbow
t ] and the action at and predicts the future position

of the arm [X′endt+1 ,X
′elbow
t+1 ]. We can train the network from the

discrepancy between the predicted future position [Zend
t+1,Z

ellbow
t+1 ]

and the actual position from visual feedback. For training we use
the loss function

LfF =
1

N

∑

t

([X′endt+1 ,X
′ellbow
t+1 ]− [Zend

t+1,Z
ellbow
t+1 ])2, (7)

where N is the number of selected samples in a batch of
experiences stored in the replay memory. The size of the batch
to train the forward model and the inverse model is the same as
the one used for the actor and the critic.

An inverse model is another deep network, fI(st; θ
fI ). The

aim of the inverse model is to provide a proper action to reach
the target by minimizing the error between predicted action (a′t)
with the actual action taken (at) that transfers the agent from the
current position to its next position. This network is then trained
on the loss function:

LfI =
1

N

∑

t

(at − a′t)
2. (8)

The aim of having the forward model is learning to predict
future positions of the agent by taking specific actions. Such a
model enables the agent to perform the task even with occluded
vision. When the inverse model has been trained well, it can
be used to produce a suitable action to transfer the agent
from its current state to the target location by replacing Xtarget

with Zend
t . Hence, the inverse model can be trained with the

input [Xend
t−1,X

elbow
t−1 ,Zend

t ] and predicting the proper actions on

[Xend
t−1,X

elbow
t−1 ,Xtarget]. Note that [Xend

t−1,X
elbow
t−1 ] are part of states

st in the replay memory while Zend
t is taken from st+1 in the

replay memory.
Another component of the overall system is “the integrator”

module. In general, the integrator could be a Bayes filter such
as a Kalman filter which estimates the best estimated position
from the available information that combines an internal model
prediction with external sensory feedback. Since we use a reliable

visual feedback in our case study we simplify this to an integrator
that passes the actual location of the plant in case visual
information is available. With occluded vision, the prediction of
the forward model is used as the estimated actual position of
the agent. In our previous work (Fard et al., 2015), we showed
how to implement a Kalman Filter with Dynamic Neural Fields
(Amari, 1977). The integrator is the explicit critic in this example,
which provides the state prediction error for the forward model
(see Figure 1).

A training session of the system includes an infant phase that
uses “motor babbling” (Iverson and Fagan, 2004; von Hofsten,
2004; Demiris and Dearden, 2005; Iverson et al., 2007; Caligiore
et al., 2008). During the babbling phase, the plant produces
random movements with random actions to produce actual
samples to be stored in the experience memory. In the babbling
phase, the actual position of the arm after taking an action is
considered the target location. Therefore, all samples in this case
reach the terminal state and will gain the maximum reward value.
The babbling phase is used to provide valid examples to train both
control systems.

3.3. Arbitration Between Habitual and
Planning Controllers
A novel component of APAC is an arbitrator. The arbitrator
receives action predictions from the deliberative planning
module (the inverse model), and the habitual action selection
module (the actor), and makes the final decision of which action
to use. This selected action is transferred to the actuators of
the plant to bring the agent into its new position resulting
in a new state when combined with the target location. The
arbitrator’s decision is also fed into the forward model and the
critic for training purposes. As inDDPG, noise from anOrnstein-
Uhlenbeck process is added to both proposal actions provided by
the inverse model and the actor.

In our implementation of the APAC, we consider discrete
action steps so that both controllers (habitual and planning)
create actions at each step. However, it is known that the habitual
controller is faster than deliberative planning. Therefore, to imply
the time constraint we set the arbitrator to give priority to the
habitual controller. Moreover, the arbitrator is set to always take
the action that is provided by the habitual system for the first two
steps of every episode. However, from the third step on, the actor’s
prediction is taken if the habitual controller is reliable, meaning
that the reward prediction error for the last experience is smaller
than a threshold.We use abs(δ) < 1 in the following experiments.
Otherwise, the action from the inverse model is selected.

The implementation of the arbitrator here is somewhat
a minimal model suitable for our experimental setting and
to highlight the consequences of such arbitration. Of course,
it is possible to implement a more dynamic realization of
such an arbitrator. For example, the threshold could itself be
modulated according to the tasks and in this way produces a
more rich speed-accuracy trade-off (Satel et al., 2005). Indeed,
such modeling will open the possibility to discuss behavioral
consequences with different system settings a ultimately compare
them to variations in populations or psychiatric disorders such
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as eduction and eating disorders (Huys et al., 2016). However,
the simple implementation discussed in this paper captures the
minimal assumptions as outlined above and is sufficient for the
following simulations.

3.4. Experimental Conditions and
Environment
To test the APAC model on a simulated robot arm with a target
reaching task (Figure 2), we simulated a two-joint robotic arm
whose range of motion at each joint was constrained to 180
degrees. The arm’s motion was limited to a 2D plane of width
30 and height 30, upon which the arm’s “shoulder” was fixed in
the center (15,15). The initial length segment from the shoulder
to the elbow was set to l1 = 5, and the initial length of the lower
segment (“hand” to “elbow”) is l2 = 8.

All experiments described herein had an episodic trial
structure. At the beginning, the arm’s position was set to zero-
degree angle at the shoulder and 180-degree angle at the elbow.
Time was discretized in the simulations, and the learning agent
was given only 30 action-steps per trial to achieve the designated
goal. We define a “target zone” as a circle centered at the target
location with a radius rtarget = 0.5. The target is defined as
“reached” once the robot arm is inside the target zone. If the goal
was not reached within 30 time-steps, the trial was aborted and a
new trial was started.

Importantly, the reward function is defined as the negative
Euclidean distance between the end-effector and the center of the
target area. This is for this example tasks the same information
as is given to the supervised learner. This was deliberatively done
so that the different systems are compared on the same feedback
situation. It is possible to learn this task from much simpler
feedback such as some reward if the target area is reached vs. no
reward otherwise, although this would then also need more time
to train the habitual system. The point of our study here is rather
the direct comparison of decision components based on a value
lookup vs. learning internal models.

Within this environment we define several conditions that
defined the variety of the different target-reaching tasks studied
here. These conditions include the target position (static target
vs. changing target at each episode), kinematics (arm dimensions
as static kinematics vs. changing kinematics), and vision
(occluded vision vs. perfect vision). We tested all combinations
of these factors.

Each experiment consisted of 1,000 episodes of maximal 30
action steps each. In the static target condition, the target is
initialized randomly and stays unchanged for all 1,000 episodes.
For the changing target condition, the target is located at a
random location at the beginning of every episode. As discussed
above, each episode was terminated when either (A) the target
was reached, or (B) 30 time steps had elapsed. Targets were
only placed within a reachable distance for the arm. The arm
dimensions were kept fixed in the case of static kinematics;
however, the length of both the upper and lower arm segments
were increased by 0.001 at each time step for the changing
kinematics condition. These changes were only started after the
100th episode of target reaching to provide some time for basic

training. As already mentioned, an environmental noise was
included in all experiments. In the occluded vision condition, the
location of the arm and the target was unavailable for the agent
during the movement. This task is also known as memory guided
target reaching (Westwood et al., 2003; Heath et al., 2004). We
repeated all static/changing kinematics and static/changing target
conditions with our proposed models for the reaching-target task
in the occluded vision condition. To examined the generalization
of the models under each condition, we trained each model when
targets are located only in a specific area that represents 2/3 of
whole reaching area, and tested with targets located in the other
part of the environment, which is the rest 1/3 of the reaching area.

4. RESULTS

We considered three versions of APAC that represent (a)
exclusive habits, (b) exclusive deliberate planning, and (c)
arbitration between habit and planning. Exclusive habit is when
the arbitrator is set to always pick the action from the habitual
system. In this case, the APAC behaves exactly like DDPG. If
the arbitrator always selects the action from the inverse model
for each step, then the APAC becomes an exclusive deliberate
planning controller which we call supervised predictive actor-
critic (SPAC) (Fard et al., 2017). The third model is when the
APAC is able to arbitrate between the actions provided by the
inverse model and the actor.

For each condition, we trained 50 independent instances of
each model for a total of 1,000 episodes. At the end of the
1000th episode, all network parameters were frozen and no more
training was applied. Subsequently, each of the independent
model instances performed 100 target reaching episodes under
the respective training conditions. In the case of the occluded
vision, sensory input (i.e., visual target position) was initially
presented at time step 0, and subsequently rendered unavailable.
Since DDPG has no internal model and requires visual input
throughout the task, we only compare APAC with SPAC in
the experiments with occluded vision. All experiments were
implemented and tested in Python (3.5) using the TensorFlow
(1.3) package (Abadi et al., 2016) on an NVIDIA GeForce GTX
960 graphical processing unit.

Figure 4 illustrate the percentage of trials that reach the target
within 30 action steps during training under different conditions
for 1,000 episodes each. The pure deliberate planning model
SPAC reaches almost near perfect performance very fast after 100
episodes. Furthermore, SPAC’s performance is very robust under
different conditions and neither changes in reward function
nor in kinematics effects the performance of SPAC very much.
DDPG learns to reach almost 100% of the targets only under
static target/static kinematics condition. Performance of DDPG
drops slightly under changing kinematics compared to static
kinematics; however, its performance drops dramatically (about
20%) under changing target conditions. This is of course expected
as habits become invalid solutions under changing environments.
Our point here is that APAC can reach almost all of the targets
both under static and changing targets as good as SPAC, although
it tends to use more habits than planning after a few trials of
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FIGURE 4 | Comparison of the proportion of trials in which the target was successfully reached during training between DDPG, SPAC, and APAC. (Top) highlights

differences in each respective model’s performance across the Target/Kinematic experimental combinations. APAC that arbitrates between planning and habits can

resist to changes in the target position and kinematic changes, while DDPG is not flexible under either changing condition. (Bottom) plots highlight differences

between models within each experimental combination of target position and kinematics. Performance of DDPG (pure habits) drops when target location is changing,

while this has no effect on SPAC (exclusive planning) and APAC (arbitrated).

FIGURE 5 | Success rate to reach targets during testing by three models

under different conditions, where “ss,” “sc,” “cs,” and “cc” stand for static

target/static kinematics, static target/changing kinematics, changing

target/static kinematics, and changing target/ changing kinematics,

respectively. The plot also displays the average number of steps to reach 100

targets after training.

learning(see Figure 6). The speed of learning in APAC is also
very high and comparable to SPAC. In this sense it combines the
benefits of DDPG and SPAC.

The above curves give an example of behavior of the
models during one learning trials. To study how these results
generalize we tested the performance of all three models after
learning over 50 different learning trials with random initial
conditions for the networks. For the static target location
we tested on the target location, that was randomly chosen

for each learning trial. However, with the changing target
location we decided to cover the possible target locations
more systematically and set target points on a regular grid
in angle space. Figure 5 displays average success rate over
the 50 learning trials to reach these targets. All three models
under the static target/static kinematics condition reach 100%
of the targets. DDPG and APAC have slightly less success
under static target/changing kinematics, while SPAC stays flexible
under this condition. The major difference between DDPG
and APAC become clear under changing target conditions,
where DDPG’s performance drops dramatically, while APAC
obtains very good performance. SPAC is still very flexible to
reach targets under changing target conditions. Overall it is
remarkable how close APAC stays to the overall performance
of SPAC in a situation where deliberative planning is the
better choice.

The overall success rate does show the entire range of the
solutions. We thus included the individual performances in
terms of the average number of steps to reach the target. As
can be seen, APAC needs to take sometimes more corrective
steps to reach the target while an exclusive planning system
can optimize the number of steps. This is interesting as this
allows for different strategies in solving the task, that of relying
somewhat on habitual control when the cost of the movement
initiation might be small vs. more deliberate planning when the
number of action steps might matter. This can explain a form of
speed-accuracy trade-off.
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FIGURE 6 | Arbitration between habitual and planning by the APAC: For each condition, the blue line indicates the average number of actions which are selected by

the habitual controller (i.e., the actor), while the red line demonstrates the average number of actions selected by the planning controller (i.e., inverse model). Results

illustrate that planning controller is used early in the training, while later agent tends to use the habits more.

FIGURE 7 | (Top) Average action steps to complete the reaching task by each model under different conditions. (Bottom) Average time steps to complete the

reaching task at each episode under different conditions when a three-times higher cost for a planning control compared to the habitual control is taken into account.

Figure 6 illustrates how APAC gradually shifts from a
planning to a habitual control approach with increasing
experience. After around 300 episode, more than 80% of APAC
actions were taken from the habitual controller.Of course, SPAC
uses planning control throughout the entirety of the task, so no
commensurate figure was generated for it.

Since a habitual system should be faster than deliberate
planning, this figure also illustrates that APACwould be less time-
consuming than the SPAC at the same task and under the same
condition. To visualize average time consumption by each model
under different conditions, we assumed that each action selected
by the deliberative planning takes three times longer than an
action selected by the habitual controller. The number here is
arbitrary and only chosen visualize the general effect. The top
row of plots in Figure 7 show the average number of action steps

that each of the three models need to complete the task at each
episode under different conditions. These plots demonstrate that
the number of steps are almost the same under static target/static
kinematics conditions. Under changing target conditions DDPG
needs more steps to complete the task than APAC and SPAC.
However, when including a higher cost for deliberative planning
in the plots shown in the bottom row of the Figure 7, the picture
for the average number of time that is needed to complete the
task changes. In this case, DDPG needs shorter time under static
target conditions. However, under changing target conditions,
APAC completes the task of reaching targets faster. DDPG takes
longer to finish the task as it needs more corrective actions.

Figure 8 shows all 50 runs to reach 100 targets of a reaching
test under changing target conditions, with (bottom row) and
without (top row) changing kinematics, for all three models.
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FIGURE 8 | Reaching examples of three models under changing target conditions. Blue lines show position of the end-effector at each time step toward the target,

while red dots are target locations during the testing phase.

The plots illustrate that DDPG has some difficulty reaching the
locations at the edges of the possible target area due to non-
linearity of the mapping between angles and locations. SPAC can
learn the mapping functionmuch better, and the quality of APAC
is similar to SPAC. Interestingly, although APAC tends to use
more habits than deliberate planning, this model can still reach
many more targets than DDPG, almost as good as SPAC.

We also tested a form of generalization of each model where
a whole area of the target zone was not seen during training.
This is a case of extrapolation compared to the interpolation trials
in the previous generalization experiments. More specifically, we
trained each model to reach the target located at a specific region
in the environment and we tested each model to reach targets
that are located on the unseen area of the environment (see the
left most plot in the Figure 9). The same distribution of target
locations has been used here and only those that are located in
the blue area are set as targets for this experiments. Therefore,
there are about 39 targets under static kinematics conditions
and 42 targets under changing kinematics conditions (because
of changing kinematics more targets will locate in the testing
area). The results show that under static target training, neither
model can reach even half of the targets. Their performance is
worse under static target and changing kinematics. However,
under changing target conditions, all models have obtained
a good generalization but they need to take more than one

step to reach any target. SPAC has again the best performance
among other models under all conditions, while DDPG has the
worst performance compared to other two models. These results
indicate that learning with a static target hinders generalization
as the learner overfits this specific target location.

Finally, we want to show results with occluded vision. Since
the habitual controller (DDPG) requires sensory input at all
times, only the SPAC and APAC models were compared under
this condition. In these experiments, the arm moves toward the
target when the target location is only visible at the first step.
When the forward model indicates that the agent has reached
the target it stops and the actual distance from the agent (here
the arm) is measured. Results of these occluded vision test are
summarized in Figure 10 under changing target conditions, since
the performance of bothmodels under static target conditions are
near perfect.

The target zone is marked by the red line in each plot, while
the average distance from the agent to the target location is
drawn as a black line. The blue area shows the range of the
distances that the arm has experienced during the occluded
trials when the forward model thinks that it has reached
the target. SPAC shows better performance under occluded
vision compared to APAC under all conditions. The average
actual distance of the end-effector to the target location under
changing target/ static kinematic with SPAC is only about a
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FIGURE 9 | (Left) The reaching area for arm under static kinematics conditions. The red area is used for training while the blue region is for testing. Around edges are

more colored since these points can be reached with many more sets of angles. (Right) Performance of each model is shown under different conditions to reach

about 40 targets located in the blue region. All models obtain a good generalization under changing target conditions.

FIGURE 10 | The actual distance from the agent to the target location under changing target conditions are shown for SPAC and APAC to reach 100 targets after

training over 50 runs. The black line shows the average distance to the target. The area between minimum distance to the maximum distance is colored in blue. The

red line indicates the target zone. In general, SPAC performs better under the dark compared to APAC.

distance of 0.4, which is less than the target zone radius.
However, the APAC model under the same conditions stays
about a distance of 1 away from the target. Under changing
target/changing kinematics, this average actual distance from
end-effector to the target is around 0.7 for SPAC and about
1.5 for APAC. It thus seems that any form of habit should be
suppressed in such situations, which could be achieved by a more
advanced arbitrator.

5. CONCLUSION

This paper is about the study of a hybrid system with deliberate
planning system and habitual control. Habitual control will, of
course, be very good after long training in static environments.
It was hence important to study the model in changing
environments. We investigated the behavior of our proposed
model (APAC) under changing target conditions (to manipulate
the environmental reward function), changing kinematics of

the agent (to manipulate the learned transitional model), and
with and without vision. We also tested the model under
various generalization conditions to see how good they can
interpolate and extrapolate. The main results are classified
as below:

Adaptive to changes: Results show significant improvement
in performance when planning is available compared to the
pure habitual system under the conditions when of changing

environments that includes changing reward conditions and
changing kinematics of the agent. In comparison, SPAC and

APAC are flexible under these changes. These experiment shows

that having an internal model is a key to robustness on
changing environment.

Moving from planning to habits: By considering that
planning is costly, having another control system that is able to
provide less costly solutions can be useful. In this paper, there
is no inherent time constraint or computation time difference
between the habitual and planning controller. However, if we
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take this time constraint into account, the APAC is a better
model than pure planning (SPAC). Indeed, the overall number of
actions taken based on a planned action takes less time than the
arbitratedmodel than the number of planned actions taken by the
non-arbitrated model when considering some cost of planning.

Reaching under occluded vision: Since DDPG has no
internal model, it can not use any sort of planning to move
under occlusion. However, systems like SPAC and APAC build
an internal model of the environment that enables them to
anticipate and plan a target even when there is no visual
information available. Results show that SPAC can perform better
in the dark. This is a good example to show that a more
sophisticated arbitrator could take different circumstances into
account. For occluded vision, such an arbitrator should suppress
habitual actions.

Our application example focused on the implementation of
the habitual system as an actor-critic for reinforcement learning
and a planning system with a forward and inverse model
using supervised learning. There have been previous examples
of combining both, some form of supervised learning with
RL systems and the use of the internal model. In particular,
Dyna-Q (Sutton, 1991) and supervised actor-critic (Rosenstein
and Barto, 2002; Barto and Rosenstein, 2004) are examples
of models that bring the capacity of planning into a model-
free reinforcement learning space. For example, the supervised
actor-critic (Rosenstein and Barto, 2002; Barto and Rosenstein,
2004) is able to tune the actor manually and very fast when
it is needed. This solution is beneficial when dynamics of the
system changes dramatically or a new policy is needed to be
learned in a very short time. These authors used a gain scheduler
that weights the control signal provided by the actor from the
reinforcement learner and the supervised actor. In contrast to
supervised actor-critic, our proposedmodel autonomously learns
the internal model and arbitrates between the two controllers
automatically and not manually. The intention of our model
is to study the interaction of habitual and planning systems
in form of an arbitrator and ultimately to understanding
human behavior.

Sutton proposed Dyna-Q that is an integrated model for
learning and planning (Sutton, 1991). With respect to our
model, Dyna-Q is also a blend of model-free and model-
based reinforcement learning algorithms. Dyna-Q can build a
transition function and the reward function by hallucinating
random samples. Therefore, although it uses a model-free
paradigm at the beginning it becomes a model-based solution by
learning the model of the world using the hallucination. In our
model, the internal model is used to predict the future state of
the agent unlike Dyna-Q that uses the model to train the critic
and anticipate the future reward. Moreover, Dyna-Q starts from
model-free controller and becomes a model-based controller.
Hence, while Dyna-Q has focused on the utilization of internal
models to learn a reinforcement controller, our model and study
here is concerned with the arbitration of two control systems.
However, since APAC tend to select actions from the planning
controller that it learns very fast, it provides more accurate

samples in the experience replay memory. Therefore, similar to
the Dyna-Q, the habitual system takes advantage of learning from
more valuable samples that lead the habitual controller to a better
performance compared to the time that it is trained stand alone
(in pure habitual paradigm).

Another interesting approach by Uchibe and Doya (2005)
explores a collection of different controllers. Their work takes
also different times constrains into account. In contrast to
our model, the controllers are combined probabilistically in
a more collaborative way while our approach focuses more
specifically on understanding the competitive decision making
of a deliberative vs. habitual systems. The experiments are also
somewhat different. Even though the barriers in their experiment
are static, it seems that their habitual controller can not learn
this task. In our experiment we made sure that the experimental
task is learnable by both controllers in the static case. In
addition we study the performance with changing kinematics and
changing targets.

Not only have human decision-making studies supported
the notion that both habitual and planning controls are used
during decision-making (Daw et al., 2011; O’Doherty et al.,
2015), there is evidence that arbitration may be a dynamic
process involving specific brain regions Lee et al. (2014). Our
APAC model results suggest that such an arbitration strategy,
wherein the planning paradigm is used until the habitual system’s
predictions become reliable can result in performance that
is non-inferior to exclusive planning control in most cases.
Thus, our APAC model supports (A) the importance and
value of implementing predominantly planning control early
in behavioral learning and (B) the diminishing importance
of planning control with greater experience in a relatively
static environment.
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