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One of the big challenges in robotics is to endow agents with autonomous and adaptive

capabilities. With this purpose, we embedded a cerebellum-based control system into

a humanoid robot that becomes capable of handling dynamical external and internal

complexity. The cerebellum is the area of the brain that coordinates and predicts the

body movements throughout the body-environment interactions. Different biologically

plausible cerebellar models are available in literature and have been employed for motor

learning and control of simplified objects. We built the canonical cerebellar microcircuit

by combining machine learning and computational neuroscience techniques. The control

system is composed of the adaptive cerebellar module and a classic control method; their

combination allows a fast adaptive learning and robust control of the robotic movements

when external disturbances appear. The control structure is built offline, but the dynamic

parameters are learned during an online-phase training. The aforementioned adaptive

control system has been tested in the Neuro-robotics Platform with the virtual humanoid

robot iCub. In the experiment, the robot iCub has to balance with the hand a table with

a ball running on it. In contrast with previous attempts of solving this task, the proposed

neural controller resulted able to quickly adapt when the internal and external conditions

change. Our bio-inspired and flexible control architecture can be applied to different

robotic configurations without an excessive tuning of the parameters or customization.

The cerebellum-based control system is indeed able to deal with changing dynamics

and interactions with the environment. Important insights regarding the relationship

between the bio-inspired control system functioning and the complexity of the task to

be performed are obtained.

Keywords: biomimetic, cerebellar control, motor learning, humanoid robot, adaptive system, forward model,

bio-inspired, neurorobotics
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1. INTRODUCTION

Controlling a robotic system that operates in an uncertain
environment can be a difficult task if the analytical model of the
system is not accurate. Models are the most essential tools in
robotic control (Francis andWonham, 1976), however, modeling
errors are frequently inevitable in complex robots, for instance
humanoids and soft robots. Such redundant modern robots
are mechanically complex and often interacts with unstructured
dynamical environments (Nakanishi et al., 2008; Nguyen-Tuong
et al., 2009). Traditional hand-crafted models and standard
physics-based modeling techniques do not sufficiently take
into account all the unknown nonlinearities and complexities
that these system present. This lack consequentially leads to
a reduced tracking accuracy or, in the worst case, to unstable
null-space behavior.

Modern autonomous and cognitive robots are requested to
adapt not only the decisions but also the forces exerted in any
varying condition and environment. The selected movement can
not be executed properly if the robot does not adjust the forces
according to the changing dynamics. Because of this, modern
learning control methods should automatically generate model
based on sensor data streams, so that the robot is not a closed
entity, but a system that interacts, and evolves through the
interaction with a dynamic environment.

In this paper, we intend to design an adaptive learning
algorithm to control the movements of a complex nonlinear
dynamical system. In particular, we assume that: the Jacobian
poorly describes the actual system; the robot interacts with one or
more unmodeled external objects; the sensor-actuator system is
distributed and not all the states are observable or can be describe
with parametric function designed off-line; the action/state space
is continuous and high-dimensional. The control system should
solve the inverse dynamics control problem of a multiple-
joint robotic system affected by static and dynamic external
disturbances during the execution of a repeated task. The
controller is envisioned to reduce the tracking accuracy of each
actuator through force-based control input.

In early days of adaptive self-tuning control, models were
learned by fitting open parameters of predefined parametric
models (Atkeson et al., 1986; Annaswamy and Narendra,
1989; Wittenmark, 1995; Khalil and Dombre, 2002). Although
this method had great success in system identification and
adaptive control techniques (Ljung, 2007), the estimation of
the open parameters can lead to several problems, such as:
slow adaptation; unmodeled behavior and persistent excitation
issue (Narendra and Annaswamy, 1987); inconsistency of the
estimated physical parameters (Ting et al., 2006); unstable
reaction to high estimation error. In recent years, non-parametric
approach has been shown to be an efficient tool in the resolution
and prevention of the aforementioned problems thanks to
the adaptation of the model to the data complexity (Nguyen-
Tuong and Peters, 2011), and several methods have been
proposed (Farrell and Polycarpou, 2006), such as neural
networks (Patino et al., 2002), and statistical methods (Kocijan
et al., 2004; Nakanishi and Schaal, 2004; Nakanishi et al., 2005).

In the eighties, Narendra’s research group at Yale University
exploited the adaptability of artificial neural networks (ANNs)
to identify and control nonlinear dynamical systems (Narendra
andMukhopadhyay, 1991a,b, 1997; Narendra and Parthasarathy,
1991). Their experiments showed that the versatility of the
ANNs resulted beneficial for controlling the different behaviors
that characterize complex dynamical systems. Although the
robustness of the classic parametric method in most of the
control scenarios, ANNs were largely used in adaptive control to
overcome uncertainties, unmodeled nonlinearities and to handle
more complex state space systems (Glanz et al., 1991; Sontag,
1992; Zhang et al., 2000; Patino et al., 2002; He et al., 2016, 2018).
As matter of fact, the non-linear components and the layered
structure that distinguish the ANNs facilitate the mapping and
constrain the effects of nonlinearities. Furthermore, the on-
line adjustment of the parameters respect to the input-output
relationship without any strict structural parameterization results
advantageous for adapting to time-dependent changes.

In the Nighties thanks to the extended application of ANNs
in robotics, Juyang Weng introduced the Autonomous Mental
Development approach (AMD) to artificial intelligence (Weng
et al., 1999a; Weng and Hwang, 2006). Weng theories were
mainly inspired by how the biological systems efficiently calibrate
their movements under internal and environmental changes.
Accordingly to AMD the robot have to be embodied in
the environment, and its processing is not preprogrammed
but is the result of the continuous and real-time interaction
within the two systems (Weng et al., 1999b, 2000; Weng,
2002). Respect to classic parametric approaches, the developing
artificial agent creates and adapts models describing itself
and its relation with the environment rather than learning
and estimating parameters of a mathematical model built off-
line. These theories found large application for high level
cognition tasks (see Vernon et al., 2007 for a review) but
were also applied to low level control in visually-guided
robots (Metta et al., 1999; Ugur et al., 2015; Luo et al., 2018).

With the aim of mimicking artificially the motor efficiency of
the biological system, James S. Albus proposed a neural network-
based learning algorithm for robotic controller based on
theories of central nervous system (CNS) structure and function:
the “cerebellar model articulation controller," commonly
known as CMAC module (Albus, 1972). Several studies in
literature demonstrated that, the anatomy and physiology of the
cerebellum is suitable for the acquisition, development, storage
and use of the internal models describing the interaction within
body and environment (Wolpert et al., 1998). Moreover, the
cerebellum is composed by separated regions which functionality
relies both on the internal structure of the circuit and on
the connection with other CNS areas (Houk and Wise, 1995;
Caligiore et al., 2017): each region receives both the desired
movements from the cortex and the sensory information from
tendons, joints and muscles spindles and elaborates a signal
that corrects whereas other CNS region are lacking. As matter
of fact, subjects affected by cerebellum damage often present
motor deficit, such as uncoordinated and ballistic multiple-joint
movements (Schmahmann, 2004). For this reason in the last
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decades, scientists tried to explain the roles of the cerebellum in
motor control, especially its contribution to sensory acquisition
and timing and its involvement in the prediction of the sensory
consequences of action. Moreover, this adaptive control nature
motivated several researchers toward a deeper understanding of
the cerebellum for robotics application.

Two main research lines born since Marr and Albus proposed
the first artificial cerebellum-like network as pattern-classifier
for controlling a robotic manipulator (Marr, 1969; Albus, 1972):
the first research line focuses on purely industrial application
and has as major representative W. Thomas Miller; the second
research line, mainly represented byMitsuo Kawato, deep-rooted
in neuroscience and kept investigating on the biological evidence
of the cerebellum structure and functionalities in relation to other
CNS areas (Kawato et al., 1987; Kawato, 1999).

Miller applied the CMAC module in a closed loop vision-
based controller to solve the forward mapping with direct
modeling (Miller, 1987). Although the advantages, such as
the rapid algorithmic computation based on least-mean-square
training and the fast incremental learning, this approach lack of
generalization and is sensitive to noise and large error (Miller
et al., 1990). Over the years, researchers have been focusing on
solving these drawbacks and the CMAC module has been mostly
used as non-linear function approximator to boost the tracking
accuracy of the adaptive controller and mitigate the effects of
the approximation errors (Lin and Chen, 2007; Chen, 2009;
Guan et al., 2018; Jiang et al., 2018). Although the promising
results obtained by these applications of the CMAC network,
this industrial research line did not completely exploit the overall
capabilities and components of the cerebellum. It is worthy to
note that the CMAC module mimic the cerebellar circuit only at
the granular-purkinje level, for this reason only the mapping and
classification functionalities are exploited.

The neuroscientific research line has been investigating
mainly on the layered structure of the cerebellar circuit proposing
several synaptic plasticity models (Luque et al., 2011, 2014, 2016;
Casellato et al., 2015; D’Angelo et al., 2016; Antonietti et al.,
2017), network models (Chapeau-Blondeau and Chauvet, 1991;
Buonomano and Mauk, 1994; Ito, 1997; Mauk and Donegan,
1997; Yamazaki and Tanaka, 2007; Dean et al., 2010), adaptive
linear filter model (Fujita, 1982; Barto et al., 1999; Fujiki et al.,
2015), and combination of both (Tolu et al., 2012, 2013).
These cerebellar-like models were embedded into bio-inspired
control architectures to analyze how the cerebellum adjusts the
output of the descending motor system of the brain during the
generation of movements (Kawato et al., 1987; Ito, 2008), and
how it predicts the action, minimizes the sensory discrepancy
and cancels the noise (Nowak et al., 2007; Porrill and Dean,
2007). The experiments regarded the generation of voluntary
movements with both simulated and real robots, e.g., eye blinking
classical conditioning (Antonietti et al., 2017), vestibulo-ocular
task (Casellato et al., 2014), the gaze stabilization (Vannucci
et al., 2016), and perturbed arm reaching task operating in
closed-loop (Garrido Alcazar et al., 2013; Tolu et al., 2013;
Luque et al., 2016; Ojeda et al., 2017). From the analysis of
the literature, it then emerged that research groups have treated
the robots as stand-alone systems without interactions with the

environment, while the real world is more complex and every
external interaction counts. It is worth mentioning that the
previous works have been employed for motor learning and
control of simplified objects.

In this paper we present a robotic control architecture
to overcome modeling error and to constrain the effects of
uncertainties and external disturbances. The proposed controller
is composed of a static component based on a classic feedback
control methods, and of an adaptive decentralized neural
network that mimic the functionality and morphology of the
cerebellar circuit. The cerebellar-like module add feed-forward
corrective torque to the feedback controller action (Ito, 1984;
Miyamoto et al., 1988). A non-parametric nonlinear function
approximation algorithm have been employed to map on-line
and to reduce the high dimensional and redundant input
space. The algorithm creates the internal model describing
the interaction within system and environment. This model is
kept under development throughout the execution of the task.
The neural network mimic the composition of the cerebellar
microcircuit. The layered structure of the network constrains
the effects of nonlinearities and external perturbations. The
network weights are based on non-linear and multidimensional
learning rules that mimic the cerebellar synaptic
plasticities (Garrido Alcazar et al., 2013; Luque et al., 2014).

This manuscript extends the previous works under three
main aspects: 1. cerebellar-like network topology and input
data; 2. feedback control-input; 3. dynamic control under
external changing conditions. With the aim at giving more
insights into the capacity of the cerebellum of generating
control terms in the framework of accurate control tasks, the
following research questions come naturally to mind: can a
control system be generalized to control robotic agents by
endowing them with adaptive capabilities? Can accurate and
smooth actions in a dynamic environment be performed by
the extrapolation of valuable sensory-motor information from
heterogeneous dynamical stimuli? Does this sensory-motor
information extrapolation facilitate the motor prediction and
adaptation in changing conditions? The tests were carried out
in the Neuro-robotics Platform (Falotico et al., 2017) with the
virtual humanoid robot iCub. The robot arm has to follow
a planned movement overcoming the disturbances provoked
by a table attached to the hand and a ball running on it. A
similar example was solved by employing a conventional control
law together with computer vision techniques (Awtar et al.,
2002; Levinson et al., 2010). However, this approach assumes a
fixed robot morphology defined and described before running
the experiment, and there is no run-time adaptation to the
“biological changes” as we see in human beings. Balancing
a table with a ball running on it is a relevant example of
how humans learn to calibrate, coordinate, and adapt their
movements, hence, we investigate how robots can achieve this
task following the biological approach. Probst et al. (2012) also
followed the biological approach; they tackled the problem taking
into account the dynamics of the system, four different forces
are found by means of a liquid state machine and applied in
four different points of the table to achieve the balancing task.
A supervised learning rule is used for the training step, which
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FIGURE 1 | (A) The figure illustrates the main components of the functional architecture scheme and the link with the artificial robot agent and the external system. (B)

The humanoid Icub holding the table-ball system in the simulation environment NRP. (C) Three controlled joints: wrist prosup ϑ0, wrist yaw ϑ1, wrist pitch ϑ2.

concludes that after 2,500 s no further improvement of the
performance is obtained.

Hence, the main advantages of our model are: the low amount
of (sometimes implausible) prior information for the control,
a fast reactive robotic control system, an on-line self-adaptive
learning system. Thanks to these features the robot can perform
a determinate physical task and adapt to changing conditions. In
conclusion, this approach introduces a fast and flexible control
architecture that can be applied to different robotic platforms
without any/excessive customization.

In the first section that follows, we present the control
architecture, the adopted cerebellar-like model and the
description of the method. In the second section, we report
the experimental setup as well as the results of the comparison
study of four control system approaches including the respective
analysis. Finally, we will discuss the main findings of the study
correlating them to previous literature.

2. MATERIALS AND METHODS

In this section, we present our bio-inspired approach to solve
the problem of controlling the right arm of the ICub humanoid
robot despite the occurrence of an external perturbation. The

experiment consists of a simulated humanoid robot that executes
a requested movement using three controlled joints of the right
arm. During the simulation, a ball is launched on the table that
is attached to the robot’s right hand; the ball is free to roll on the
table, as illustrated in Figure 1B. The movements of the ball are
provoked by the shaking of the robot arm and consequentially
of the table. The key information about the external system
components (e.g., the ball and table) are reported in Table 1.

The proposed control architecture (Figure 1A) is composed
of three main building blocks: the robotic plant, which is the
physical structure (section 2.1); the motor primitive generator,
which is responsible of the trajectory generation (section 2.2); the
controller, which elaborates the torque commands to move each
motor to the desired set point (section 2.3).

2.1. Robotic Plant
The Icub humanoid robot is 104 cm tall and it is equipped with a
large variety of sensors (such as gyroscopes, accelerometers, F/T
sensors, encoders, two digital cameras) and 53 actuated joints
that move the waist, head, eyes, legs, arms, and hands. During
the experimental tests, eight revolute joints of the right arm
were actuated: four joints were kept constant to maintain the
arm up (e.g., elbow, shoulder roll, shoulder yaw, and shoulder
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TABLE 1 | External system features.

Mass [Kg] Volume [m3] Static friction

coefficient

Dynamic friction

coefficient

Ball 0.01 6.54× 10−5 0.02 0.01

Table top 0.1 9× 10−4 0.01 0.01

pitch), and three joints were controlled in effort by the proposed
control system (namely wrist prosup, wrist yaw and wrist pitch).
The axis orientation of the controlled actuators are illustrated in
Figure 1C. Additional information about the actuated joints are
reported in Table 2. In this work, we used the encoder to only
read the state of the controlled joints (e.g., angular position, and
velocity) and save it in the process variables,

Qc
N×1(t) =





ϑc,0(t)
...

ϑc,N(t)



 where N = 2, (1)

Q̇
c
N×1(t) =





ϑ̇c,0(t)
...

ϑ̇c,N(t)



 where N = 2, (2)

2.2. Motor Primitive Generator
The motor primitive generator plans the trajectory for each
actuated joint and communicates the reference value to the
control system at each time step. The reference angular position
and velocity of each joint are defined as oscillators with fixed
amplitude, natural frequency and phase,

Qr
N×1(t) =





ϑr,0(t)
...

ϑr,N(t)



 =





A0 · sin(2π ft + ϕ0)
...

AN · sin(2π ft + ϕN)



 , (3)

Q̇
r
N×1(t) =





ϑ̇r,0(t)
...

ϑ̇r,N(t)



 =





2π fA0 · cos(2π ft + ϕ0)
...

2π fAN · cos(2π ft + ϕN)



 , (4)

where N = 2. The temporal frequency is f = 0.25Hz, while the
oscillations A amplitude and ϕ phase of each joint are set to:

A1×N =
[

A0, A1, A2
]

=
[

0.1727, 0.1363, 0.0345
]

rad

ϕ1×N =
[

ϕ0, ϕ1, ϕ2
]

=
[

0.5π , 0.5π , 0.0
]

rad.

2.3. Controller
The controller block (Figure 1A) is composed of a static
component based on classic control methods (section 2.3.1),
and of an adaptive decentralized block representing the bio-
inspired regulator, i.e., the cerebellar-like circuit (section 2.3.2).
Both sub-blocks receive information about the Qc, Q̇

c
process

variables measured from the encoders located in the robotic
plant (Equations 1, 2), and the Qr ,Q̇

r
reference trajectory

signals from the motor primitive generator (Equations 3, 4).

The controller directly sends the τ tot total control input to
the robot servo controller which actuates the joints for δt =

0.5s. The τ tot total control input is expressed as the result of a
feed-forward compensation (as the AFEL architecture proposed
by Tolu et al., 2012),

τ totN×1 =





τ tot0
...

τ totN



 =





τPID0 + 1τDCN0
...

τPIDN + 1τDCNN



 , (5)

τ totwhere τPIDn and 1τDCNn (where n = 0, ...,N) are the
contributions from the static and the adaptive bio-inspired
controller respectively.

2.3.1. Feedback Controller

The static control system refers to the classic feedback control
scheme with PID regulator. It is defined static due to its time-
constant control terms. The closed-loop system continuously
computes the eϑ̇n

angular velocity error of each joint as the

difference between the ϑ̇r,n reference (Equation 4) and the ϑ̇c,n

process variable (Equation 2),

evelN×1 =





eϑ̇0

...
eϑ̇N



 =





ϑ̇r,0 − ϑ̇c,0

...
ϑ̇r,N − ϑ̇c,N



 . (6)

The eϑ̇n
error (where n = 0, ...,N) is used to apply correction to

each controlled joint in terms of effort,

τPIDN×1 =
[

τPID0 , ... , τPIDN

]T
, (7)

according to the independent joint control law expressed as:

τPIDn (t) = KP,n · eϑ̇n
+ KI,n ·

∫ t

t−1t
eϑ̇n

(t′)dt′ + KD,n ·
dϑ̇n(t)

dt

for n = 0, ... ,N , (8)

where the integration time window is 1t = 10 samples. The
regulator is tuned to weakly operate in a linearized condition
which excludes the presence and disturbance of the ball, hence
the proportional, integrative and derivative terms are static and
set respectively to,

KP =
[

KP,0, KP,1, KP,2
]

=
[

2.9000, 2.3000, 2.3500
]

KI =
[

KI,0, KI,1, KI,2
]

=
[

1.9400, 1.9000, 1.9000
]

KD =
[

KD,0, KD,1, KD,2
]

=
[

0.0050, 0.0001, 0.0004
]

.

2.3.2. Cerebellar-Like Model

The proposed cerebellar-like network has been designed to solve
robotic problems (Figure 2). In particular, the sensory input
and the corrective action in output refer to entities regarding
the actuated motors, such as motor angular position, velocity
or effort. Electrophysiological evidence about the encoding
of movement kinematics has been found at all levels of the
cerebellum; for example, in this review (Ebner et al., 2011),
reported that the mossy fibers (MF) inputs encode the position,
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TABLE 2 | Actuated joints information: the wrist actuators (highlighted in yellow) are controlled in effort while the elbow and shoulder motors are kept to a constant

angular position.

Min ϑ [rad] Max ϑ [rad] Max ϑ̇ [rad · sec−1] Control Value

Wrist prosup n = 0 –0.8726 0.8726 100 Effort Controlled variable

Wrist yaw n = 1 –0.4363 0.4363 100 Effort Controlled variable

Wrist pitch n = 2 –1.1344 0.1745 100 Effort Controlled variable

Elbow 0.0959 1.8500 100 Position Constant = 1.14 [rad]

Shoulder roll 0.0000 2.80649 100 Position Constant = 0.1 [rad]

Shoulder yaw –0.645772 1.74533 100 Position Constant = –0.1 [rad]

Shoulder pitch –1.65806 0.0872665 100 Position Constant = –0.9 [rad]

FIGURE 2 | Proposed cerebellar-like circuit in analogy with D’Angelo et al. (2016). (A) canonical micro-circuit. Proposed cerebellar-like neural network (B) structural

partition and (C) details.

direction, and velocity of limb movements. Moreover, many
hypotheses suggest that the cerebellum directly contributes
to the motor command required to produce a movement.
In our model, the input-output relationship is based on the
previous suggestions and the signal propagation throughout
the cerebellar network layers is in accordance with the robotic
control application. The main design concept is that the signal
propagating inside the circuit have the same dimension of the
1τDCN output signal from the Deep Cerebellar Nuclei (DCN).
The propagated signal is modulated inside the network by other

signals that are correlated with the intrinsic features of the
controlled plant, such as position and velocity terms, in order to
have a complete description of the state.

The neural network structure is divided into separated
modules (Figure 2B), or namely Unit Learning Machine
(uml) (Tolu et al., 2012, 2013). Assuming that the robot
plant is composed by N controllable object, then each uml
is specialized on the n-th controlled object (where n =

0, ...,N), or rather the DCN output of the uml will be the
cerebellar contribution for the specific object. The uml itself is
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separated into M sub-modules which represent the canonical
cerebellar microcircuit (ccm). Each ccm is specialized with
respect to a specific feature describing the behavior of the n-th
controlled object. The overall umls and other structures, that are
dedicated to the dimensionality reduction and mapping of the
sensory information, compose together the Modular Cerebellar
Circuit (MCC).

In the proposed experiment, the canonical cerebellar
microcircuits (ccm) of each controlled object are specialized in p
position and in v velocity. In details, the Purkinje layer of each
n−th uml presents a pair of Purkinje cells (PC) (Figure 2C),
specialized in position Pcn,p and velocity Pcn,v respectively
through different climbing fibers (ion,p, and ion,v). Moreover, the
bio-inspired controller receives the same sensory information

FIGURE 3 | Functional architectures representing the proposed experiments.

FIGURE 4 | Angular position and velocity wrist prosup: comparison experiment I and II (A), with zoom on the angular position (C); comparison experiment I and II (B),

with zoom on the angular position (D). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The

vertical green line indicates the moment in which the cerebellar-like controller starts giving the corrective action (t = 40s). The vertical purple line indicates the instant

the ball is launched on the table (t = 5s).
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FIGURE 5 | Wrist prosup experimental results. Resulting angular position error eϑ0
, comparison experiments I and II (A), comparison experiments III IV (B). Control

input τ tot0 evolution, comparison experiments I and II (C), comparison experiments III IV (D). Control input contributions in experiment IV comparisons between: τ tot0

and τPID0 (E); τ tot0 and τDCN0 (F). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The vertical

green line indicates the moment the cerebellar-like controller starts giving the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

of the feedback controller (section 2.3.1), but it is intended
to correct the eϑn angular position error, whereas the PID
corrects the eϑ̇n

angular velocity error. This is solved through
the connection inferior olive-deep cerebellar nuclei (IO-DCN),
which conveys information about the angular position error. An
additional aspect, the inferior olive signals differs from Kawato’s
feedback error learning theory (Kawato, 1990) and our previous
experiments (Tolu et al., 2012, 2013), because the Jacobian does
not correctly approximate the system, therefore the required
conditions are not satisfied and it is not efficient to compare the
motor signals.

The mossy fibers transmit the information about
the current and reference state of the controlled

joints in terms of angular velocity to the granular
cells (Gr),

MF2N×1(t) =





mf0(t)
...

mf2N(t)



 =

[

Q̇
r
N×1(t)

Q̇
c
N×1(t)

]

=

















ϑ̇r,0(t)
...

ϑ̇r,N(t)
ϑ̇c,0(t)
...

ϑ̇c,N(t)

















. (9)

The granular layer-parallel fibers network is the circuit
area committed to the mapping of the mossy fibers signals
and to the prediction of the next output given the current
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FIGURE 6 | Angular position and velocity wrist yaw: comparison experiment I and II (a), with zoom on the angular position (c); comparison experiment I and II (b),

with zoom on the angular position (d). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The

vertical green line indicates the moment the cerebellar-like controller starts giving the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

sensory input (Marr, 1969; Albus, 1971). As in our previous
works (Tolu et al., 2012, 2013), we artificially represented this
network with the Locally Weighted Projection Regression
algorithm (LWPR) (Vijayakumar and Schaal, 2000). The
LWPR resulted an efficient method for the fast on-line
approximation of non-linear functions in high dimensional
spaces. Given the MF(t) mossy fibers input vector (Equation 9),
the LWPR creates G local linear models that in our
scheme represent the Grg granular cells (for g = 0, ...,G).

Each linear model employs the MF(t) to make a τ̂
gr
n,g(t)

prediction of the control input τ totn (t − 1) (where n=1,...,N).
The total output of the granular-parallel fibers network
is the weighted mean of all the linear models specialized
in velocity,

τ̂PFn (t) =

∑g=G
g=1 w

gr
n,g(t) · τ̂

gr
n,g(t)

∑g=G
g=1 w

gr
n,g(t)

for n = 1, ...,N, (10)

wherew
gr
n,g and τ̂

gr
n,g are defined inVijayakumar and Schaal (2000).

In our scheme, there are two Purkinje cells per controlled

joint Pcn,p and Pcn,v (where n = 0, ...,N). The w
pf−pc
n,p

1

synapses connecting the parallel fibers and the Pcn,p (PF-PC
connection) (Garrido Alcazar et al., 2013), are modulated by the

1wpf−pc weighting kernel parameters: LTDmax = 10−3, LTPmax = 10−3, α = 170.

ion,p inferior olive (IO) signal,

ion,p(t) = ẽϑn (t), (11)

that transmits the information about the ẽϑn normalized angular
position error of the n−th joint,

eϑn (t) = ϑr,n(t)− ϑc,n(t), (12)

while the w
pf−pc
n,v

1 synaptic strengths between the parallel fibers
and the Pcn,v, are modulated by the ion,v inferior olive signal,

ion,v(t) = ẽϑ̇n
(t), (13)

that transmits the information about the ẽϑ̇n
normalized angular

velocity error of the n−th joint (Equation 6). Thewpf−pc(t, io0(t))
weighting kernel tends to support the control actions that lead to
an error lower than a specific threshold ethresh,

e
thresh,pc
ϑ =







e
thresh,pc
ϑ0

...

e
thresh,pc
ϑN






=







w
pf−pc
0,p (t, io

p
0(t) = 0) ·max(eϑ0 )

...

w
pf−pc
N,p (t, ioN,p(t) = 0) ·max(eϑN )







=





0.012
0.008
0.002



 [rad], (14)
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FIGURE 7 | Wrist yaw experimental results. Resulting angular position error eϑ1
, comparison experiments I and II (A), comparison experiments III IV (B). The τ tot1

control input evolution, comparison experiments I and II (C), comparison experiments III IV (D). Control input contributions in experiment IV comparisons between: τ tot1

and τPID1 (E); τ tot1 and τDCN1 (F).The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The vertical

green line indicates the moment the cerebellar-like controller starts providing the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

e
thresh,pc

ϑ̇
=







e
thresh,pc

ϑ̇0

...

e
thresh,pc

ϑ̇N






=







w
pf−pc
0,v (t, iov0(t) = 0) ·max(eϑ̇0

)
...

w
pf−pc
N,v (t, ioN,v(t) = 0) ·max(eϑ̇N

)







=





0.012
0.008
0.002



 [rad · sec−1]. (15)

Respect to our previous work (Tolu et al., 2012, 2013) the output
signals of the Purkinje cells are directly function of the τ̂PFn (t)
prediction instead of the w

gr
n,g weights,

τPCn,p (t) = w
pf−pc
n,p (t, ion,p(t)) · τ̂

PF
n (t) (16)

τPCn,v (t) = w
pf−pc
n,v (t, ion,v(t)) · τ̂

PF
n (t). (17)

Afterwards, the τPCn,p (t) τPCn,v (t) Purkinje cells signals are scaled

by the synaptic weights w
pc−dcn
n,p and w

pc−dcn
n,v

2 (Garrido Alcazar
et al., 2013), that are modulated by the Purkinje cells and the deep
cerebellar nuclei activities (PC-DCN),

w
pc−dcn
n,p = f (t, τPCn,p (t),1τDCNn (t − 1)), (18)

w
pc−dcn
n,v = f (t, τPCn,v (t),1τDCNn (t − 1)). (19)

resulting in the input signals,

τPC−DCN
n,p (t) = w

pc−dcn
n,p · τPCn,p (t) (20)

τPC−DCN
n,v (t) = w

pc−dcn
n,v · τPCn,v (t). (21)

2wpc−dcn weighting kernel parameters: LTDmax = 10−4, LTPmax = 10−4, α = 2.
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FIGURE 8 | Angular position and velocity wrist pitch: comparison experiment I and II (A), with zoom on the angular position (C); comparison experiment I and II (B),

with zoom on the angular position (D). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The

vertical green line indicates the moment the cerebellar-like controller starts providing the corrective action (t = 40s). The vertical purple line indicates the instant the ball

is launched on the table (t = 5s).

In addition, the deep cerebellar nuclei receives the input signals
τMF−DCN
n,p , τMF−DCN

n,v from the mossy fibers and τ IO−DCN
n,p from

the inferior olive. In our proposed circuit, the mossy fibers
connected to the deep cerebellar nuclei (MF-DCN) conveys the
information about the τ totn (t − 1) last control input sent to each
controlled joint (Equation 5). This input is scaled by the synaptic

weights w
mf−dcn
n,p and w

mf−dcn
n,v

3 (Garrido Alcazar et al., 2013),
modulated by the respective n−th Purkinje cells activities,

τMF−DCN
n,p (t) = w

mf−dcn
n,p (t, τPCn,p (t)) · τ

tot
n (t − 1), (22)

τMF−DCN
n,v (t) = w

mf−dcn
n,v (t, τPCn,v (t)) · τ

tot
n (t − 1). (23)

The τ IO−DCN
n,p inferior olive contribution in the deep cerebellar

nuclei (IO-DCN) is given by the ion,p (Equation 11), which is

modulated by the wio−dcn
n,p

4 synaptic weight (Luque et al., 2014),

τ IO−DCN
n,p = wio−dcn

n,p (t, ion,p(t)) · ion,p(t). (24)

3wmf−dcn weighting kernel parameters: LTDmax = 10−4, LTPmax = 10−4, α = 2.
4wio−dcn

n,p weighting kernel parameters: MTDmax = −10−4, MTPmax = −10−5,
α = 100.

The final 1τDCNn cerebellar corrective term is the result of the
τMF−DCN
n modulated control input subtracted by the τPC−DCN

n

prediction modulated by the current error together with the
τ IO−DCN
n,p modulated contribution of the error itself,

1τDCNn = (τMF−DCN
n,p + τMF−DCN

n,v )− (τPC−DCN
n,p + τPC−DCN

n,v )

+ τ IO−DCN
n,p , (25)

or rather,

1τDCNn = (τn(ϑn, τ
tot)+ τn(ϑ̇n, τ

tot))− (τ̂ totn (eϑn )+ τ̂ totn (eϑ̇ ))

+ τn(eϑn ).

2.4. Proposed Experiments and
Performance Measures
The proposed control scheme has been applied in four different
experiments with the aim at analyzing the advantages of the
bio-inspired controller in presence of dynamical disturbances. In
details, the four experiments differ from the presence of the ball
and the cerebellar-like controller contribution (Figure 3):

• Experiment I: control input without both cerebellum
contribution and ball disturbance,

τ tot = τPID (no ball); (26)
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FIGURE 9 | Wrist pitch experimental results. Resulting angular position error eϑ2
, comparison experiments I and II (A), comparison experiments III IV (B). The τ tot2

control input evolution, comparison experiments I and II (C), comparison experiments III IV (D). Control input contributions in experiment IV comparisons between: τ tot2

and τPID2 (E); τ tot2 and τDCN2 (F). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The vertical

green line indicates the moment the cerebellar-like controller starts providing the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

• Experiment II: control input with cerebellum contribution,
without ball disturbance,

τ tot = τPID + 1τDCN (no ball); (27)

• Experiment III: control input without cerebellum
contribution, with ball disturbance,

τ tot = τPID (ball); (28)

• Experiment IV: control input with both cerebellum
contribution and ball disturbance,

τ tot = τPID + 1τDCN (ball). (29)

The performance of each experiment will bemeasured by analysis
of the mean absolute error (MAE) evolution computed for the
angular position error of each controlled joint (Equation 12),

maeϑn (k) =

∑t+T
i=t

∣

∣eϑn (i)
∣

∣

T
for n = 0, ...,N. (30)

The MAE is computed for every trajectory period T =

8 s (Equation 3).

3. RESULTS

The software describing the system is based on the ROS (Quigley
et al., 2009) messaging architecture and is integrated in
the Neurorobotics Platform (NRP) (Falotico et al., 2017).
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TABLE 3 | The mean absolute error (MAE) of the initial and final period (T = 4 s).

Ball No ball

Cerebellum No cerebellum Cerebellum No cerebellum

Initial Final Initial Final Initial Final Initial Final

maeϑ0
[rad]

µ 0.4136 0.0241 0.4148 0.1104 0.4068 0.0188 0.4136 0.1037

σ 0.0181 0.0085 0.0273 0.0242 0.0120 0.0017 0.0319 0.0075

maeϑ1
[rad]

µ 0.3148 0.0689 0.3168 0.3123 0.3139 0.0671 0.3172 0.3130

σ 0.0048 0.0093 0.0070 0.0018 0.0012 0.0031 0.0016 0.0005

maeϑ2
[rad]

µ 0.4380 0.0042 0.4395 0.0019 0.4437 0.0037 0.4401 0.0020

σ 0.0045 0.0012 0.0063 0.0001 0.0026 0.0003 0.0013 2.9177e-05

The results express the mean value µ and standard deviation σ of the 20 tests run for the four experiments.

FIGURE 10 | Comparison of the angular position MAE: (A) wrist prosup, (B) wrist yaw and (C) wrist pitch. The plots show the results of the 20 tests in terms of mean

value (solid line) and 95% confidence interval (colored area). The vertical green line indicates the moment the cerebellar-like controller starts providing the corrective

action (t = 40s or iteration = 10).

The NRP is a simulation environment based on ROS and
Gazebo (Koenig and Howard, 2004) which includes a variety
of robots, environments and a detailed physics simulator. The
three wrist motors are controlled in effort through the Gazebo
service ApplyJointEffort, while the elbow and the three shoulder
motors are controlled in position through their specific ROS
topic. The sensory information from the encoders are received
with a sampling frequency of fsampl = 50 Hz. The computer
used for the test has theUbuntu 16.04 Operating system (OS type
64 − bit), the Intel CoreTM i7 − 7700HQ CPU@2.80GHz × 8
processor, and the GeForce GTX 1050/PCIe/SSE2 graphics card.

Each experiment was performed 20 times with a total duration
of about 3 min. The recorded data was saved in.csv files and
processed for the analysis. The results are expressed as mean
value of the 20 tests, and σ standard deviation or 95% confidence
interval. In each experiment, the cerebellar-like circuit is

activated after t = 40 s (or 10th iteration), which is the moment
all the actuated joints reach a stable configuration (included the
shoulder joints and the elbow). In experiments II and IV, the ball
is launched on the table after t = 5 s (purple vertical line in
the figures).

The comparison of the 4 experiments for each controlled
joint are presented separately in 3 parts. In each part, we
analyze the joint states, i.e., ϑc,n(t) angular position and ϑ̇c,n(t)
velocity (Figures 4, 6, 8), respect to the control action (Figures 5,
7, 9). Moreover, we compared the mean absolute error MAE to
measure the performance of the different cases (as reported in
Table 3 and illustrated in Figure 10).

3.1. Wrist Prosup
In the details of Figures 4A,B, the corrective action of the
cerebellar-like circuit (Experiments II, IV) leads ϑc,0 faster to
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the desired trajectory ϑr,0 with respect to the case without
corrections (Experiments I, III). ϑc,0(t) starts getting closer to the
desired position in about one period T = 4 s after the activation
of the cerebellum (Figures 4C,D). In Figures 5A,B it is evident
how the angular position error eϑ0 drops when the cerebellum
action grows (Figures 5C,D). In particular, the mean absolute
error drastically decreased by the 95 and 94% in experiment II
and IV respectively, while it only decreased by the 74 and 73%
in Experiment I and III (Figure 10A, the numerical results are
reported in Table 3). The main difference between experiments
with and without ball is the σ standard deviation. In the final
period, the experiments with the ball present a larger standard
deviation which is 30% (without cerebellum) and 19% (with
cerebellum) respect to the NO ball-case.

3.2. Wrist Yaw
The wrist yaw joint is the most affected by the cerebellum action.
In Figure 6, it is evident how with only the PID contribution
ϑc,1(t) presents a constant and large offset with respect to ϑr,1(t).
As soon as the cerebellum contribution 1τDCN1 grows (around
the 50 s, Figures 7C,D) the error descends (Figures 7A,B). The
mean absolute error decreases by the 78% in experiment II and
IV, while it only drops 1% in experiments I and III (Figure 10B).
In the last period, the experiments with the ball have a standard
deviation 30–33% larger than the NO ball-cases.

3.3. Wrist Pitch
On the other hand, the wrist pitch gains from the cerebellar
action only when the error is larger than ethreshϑ2

, which is around
40–60 s (Figure 8), taking into account that the cerebellum is
started at t = 40 s. The 1τDCN1 gets more silent (Figures 9C–E)
when the angular position error is small (Figures 9A,B). In
Figure 10C is more evident how the cerebellum accelerates the
corrective action between iteration 10 and 15 where the MAE
with the cerebellum (experiment II) is 17% lower respect to
experiment I (in experiment IV the MAE is 16% lower respect
to experiment III).

4. DISCUSSIONS

In this work, a bio-mimetic control scheme is presented in the
framework of a robotic task, in which simultaneous control of
the object dynamics and of the internal force exerted by the
robot arm to follow a trajectory with the object attached to it is
required. To addressmulti-joint corrective responses, we induced
and combined three-joint wrist motions. Thus adaptation skills
are required especially to deal with an external perturbation
acting on the robot-object system. The main observation is
that plastic mechanisms given by a feed-forward cerebellum-like
controller effectively contribute to the learning of the dynamics
model of the robot arm-object system and to the adaptive
corrections in terms of torque commands applied to the joints.
These cerebellar torque contributions, together with feedback
(PID) torque outcome, allow the progressive error reduction
by incorporating distributed synaptic plasticity based on the
feedback from the actual movement.

The results about the three controlled joints showed a fast
reactive control in the test cases when the cerebellum-like model
is active, which is even more evident when the ball (random
perturbation) is present as shown in Figures 4, 6, 8B,D. An
incremental velocity control input is then provided to the
controller of the system to deal with the perturbation. The
purpose of considering a heterogeneous stochastic dynamical
stimuli (board and ball) was to test and examine the activation
of incremental learning and adaptation of the cerebellum-like
controller and at the same time to confirm its coupling with
the feedback control inputs. Previous studies have shown that
the feedback processes are omnipresent in voluntary motor
actions (Scott et al., 2015) and rapid corrective responses occur
even for very small disturbances that approach the natural
variability of limb motion. In human beings, these corrections
commonly require increases in muscle activity generated i.e., by
applied loads (Nashed et al., 2015). By analogy, a similar effect
can be noticed at joint-level in our system. In the experimental
situation, the joints that are more influenced by the limb
dynamics (wrist prosup and yaw joints) under the effect of the
table and ball increase their control input activity as represented
in Figures 5, 7C,D, while the wrist pitch joint has a much more
reduced activity re influenced by the limb dynamics (wrist prosup
and yaw joints) under the effect of the table and ball increase their
control input activity as represented in Figures 9C,D compared
to the previous two joints. This phenomena is also reflected in the
control input provided by the cerebellum-like model. The bigger
the position error is at the beginning of the simulation with only
the PID control case (experiments I and III) themore effective the
cerebellar-like corrections are (experiments II and IV) as shown
in Figures 5, 7, 9A,B. It should be noted that for the wrist pitch
joint the PID controller leads to ∼0.0 (rad) MAE around 40 s
from the beginning of the simulation. However, among all the
joints, the fundamental role of the cerebellum in motor control is
confirmed by its anticipatory response for decreasing the error
as it is appreciated in Figure 10. The control system achieved
these result by creating up to 9 Gr receptive fields per uml at
the granular level (or rather LWPR). In Figure 11, it is possible
to appreciate how the IO inferior olive signals (in blue) of each
ccm promptly influence the synaptic weights (in red) between
the PF parallel fibers and the PC Purkinje cells (left column),
and the contribution of the inferior olive itself on the DCN Deep
Cerebellar nuclei corrective action (right column). In the IO-
DCN connection details, the synaptic weights rapidly increment
in the first tract around 40–60 s where the error is higher and
then keep increasing slowly for the final adjustments. On the
other hand, the PF-PC connection tends to not over-react at the
beginning of the simulation around 40–60 s, while it strengthen
when the error decline. We assume that this opposite influence
of the IO on the synaptic weights makes possible the filtering and
the dumping of any external disturbances or high error.

This control model proposes a plausible explanation on
how control feedback is used by the central nervous system
(CNS) to correct for intrinsic as well as external sources of
disturbances. Furthermore, the bio-mimetic model represents a
plausible control scheme for voluntary movements that can be
generalized to control robotic agents without mayor tuning of
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FIGURE 11 | Learning evolution of the cerebellar-like network in experiment IV: influence of the inferior olive on the PC-PF parallel fibers-Purkinje cells and IO-DCN

inferior olive-Deep cerebellar nuclei connections. The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval

(colored area).

the parameters. Our controller with distributed plasticity allows
efficient adjustment of the corrective signal regardless of the
dynamic features of the robot arm and of the way the added
perturbations affect the dynamics of the arm plant involved.
According to this, the controller (cerebellum-like and PID) is
adaptable by providing adjustable torque commands among the
joints to overcome external dynamic and stochastic perturbations
and to have a both fast and precise movement. This replies to our
question about if the sensory-motor information extrapolation
made by the cerebellum-like facilitates motor prediction and
adaptation in changing conditions. It should be noted that the
adaptation mechanism adopted here is not constrained to any
specific plant or testing framework, and could therefore be
extrapolated to other common testing paradigms.

D’Angelo et al. (2016) illustrated in their paper the schematic
representation of how the core cerebellar microcircuit is wired
inside the whole brain. The proposed cerebellar-like model has
been designed in analogy with it. In contrast with Garrido Alcazar
et al. (2013), Casellato et al. (2014), Antonietti et al. (2017), the

proposed model encodes the movement kinematics at the mossy
fibers level (Ebner et al., 2011), and presents a coupling at the
Purkinje layer for velocity and position terms representation.
Likewise, the synaptic strengths at PC-DCN level as well the
synaptic strengths at IO-DCN level are modulated by signals
related to position or velocity. The mossy fibers are connected
to the DCN and to some granular cells to convey the efference
copy or motor command information. The IO cells are devoted
to teaching signal error transmission in terms of position
and velocity errors. The teaching errors modulate the synaptic
strengths at PF-PC and IO-DCN levels.

Tokuda et al. (2017) postulated that high dimensionality
problem (high-dimensional sensory-motor inputs vs. low
training data) is accomplished by the cerebellum by regulating
the synchronous firing activities of the inferior olive (IO)
neurons. Though the implementation of coupling mechanisms
at the inferior olive cells would be an interesting work to have a
better explanation onmultiple joint control. This extension could
also provide additional insights into the internal connectivity
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of the cerebellar microcomplex. Further investigation will be
possible in the future of how specific properties of the cells,
of the network topology and synaptic adaptation mechanisms
complement each other in the bio-inspired architecture.

4.1. Neural Basis of Feedback Control for
Voluntary Movements
Feedback control of movement is essential to guarantee
movement success especially to compensate for perturbation
arising from the interaction with the external world. Different
brain areas (primary motor cortex, primary somatosensory
cortex, cerebellum, supplementary motor area, etc.) are involved
during a voluntary movement and cooperate in many levels
of hierarchy. Feedback control theory might be the key for
understanding how the previous areas plan and control the
movement hierarchically. By using control terminology, during
the voluntary movement of a limb, the primary motor cortex
acts as a controller, and the limb connected to neuronal circuits
becomes the controlled object.

The cerebellum learns and provides the internal models
that reproduce the inverse or direct dynamics of the body
part. Thanks to the cerebellar internal model learning, the
primary motor cortex performs the control without an external

feedback (Koziol et al., 2014). By our simulations, we suggest
that such behavior can be confirmed. Indeed, the cerebellar-
like contributions drive the feedback controller toward better
accuracy and precision of the movement. In the future,
a visual feedback input will be considered to probe the
sophistication of feedback control processing and cerebellar-like
learning consolidation.
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