
ORIGINAL RESEARCH
published: 16 October 2019

doi: 10.3389/fnbot.2019.00084

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2019 | Volume 13 | Article 84

Edited by:

Pascual Campoy,

Polytechnic University of

Madrid, Spain

Reviewed by:

Subramanian Ramamoorthy,

University of Edinburgh,

United Kingdom

Michael Beyeler,

University of Washington,

United States

*Correspondence:

Florian Mirus

florian.mirus@bmwgroup.com

Received: 15 January 2019

Accepted: 26 September 2019

Published: 16 October 2019

Citation:

Mirus F, Blouw P, Stewart TC and

Conradt J (2019) An Investigation of

Vehicle Behavior Prediction Using a

Vector Power Representation to

Encode Spatial Positions of Multiple

Objects and Neural Networks.

Front. Neurorobot. 13:84.

doi: 10.3389/fnbot.2019.00084

An Investigation of Vehicle Behavior
Prediction Using a Vector Power
Representation to Encode Spatial
Positions of Multiple Objects and
Neural Networks
Florian Mirus 1,2*, Peter Blouw 3, Terrence C. Stewart 3 and Jörg Conradt 4

1 BMW Group, Research, New Technologies, Garching, Germany, 2Department of Electrical and Computer Engineering,

Technical University of Munich, Munich, Germany, 3 Applied Brain Research Inc., Waterloo, ON, Canada, 4Department of

Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden

Predicting future behavior and positions of other traffic participants from observations

is a key problem that needs to be solved by human drivers and automated vehicles

alike to safely navigate their environment and to reach their desired goal. In this paper,

we expand on previous work on an automotive environment model based on vector

symbolic architectures (VSAs). We investigate a vector-representation to encapsulate

spatial information of multiple objects based on a convolutive power encoding. Assuming

that future positions of vehicles are influenced not only by their own past positions

and dynamics (e.g., velocity and acceleration) but also by the behavior of the other

traffic participants in the vehicle’s surroundings, our motivation is 3-fold: we hypothesize

that our structured vector-representation will be able to capture these relations and

mutual influence between multiple traffic participants. Furthermore, the dimension of

the encoding vectors remains fixed while being independent of the number of other

vehicles encoded in addition to the target vehicle. Finally, a VSA-based encoding allows

us to combine symbol-like processing with the advantages of neural network learning.

In this work, we use our vector representation as input for a long short-term memory

(LSTM) network for sequence to sequence prediction of vehicle positions. In an extensive

evaluation, we compare this approach to other LSTM-based benchmark systems using

alternative data encoding schemes, simple feed-forward neural networks as well as a

simple linear prediction model for reference. We analyze advantages and drawbacks

of the presented methods and identify specific driving situations where our approach

performs best. We use characteristics specifying such situations as a foundation for

an online-learning mixture-of-experts prototype, which chooses at run time between

several available predictors depending on the current driving situation to achieve the

best possible forecast.

Keywords: vehicle prediction, long short-termmemories, artificial neural networks, vector symbolic architectures,

online learning, spiking neural networks

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00084
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00084&domain=pdf&date_stamp=2019-10-16
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:florian.mirus@bmwgroup.com
https://doi.org/10.3389/fnbot.2019.00084
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00084/full
http://loop.frontiersin.org/people/641661/overview
http://loop.frontiersin.org/people/760584/overview
http://loop.frontiersin.org/people/183507/overview

Mirus et al. Vehicle Prediction With Vector-Powers

1. INTRODUCTION

The race to autonomous driving is currently one of the main
forces for pushing research forward in the automotive domain.
With highly automated vehicle prototypes gradually making their
way to our public roads and fully-automated driving on the
horizon, it seems to be a matter of time until we see robot taxis
or cars navigating us through urban traffic or heavy stop-and-go
on highways. One major reason for this development in recent
years is the rapid progress of artificial intelligence (AI), especially
the success of deep learning, which has shown remarkable results
in tasks essential for automated driving like object detection,
classification (Ciresan et al., 2012) and control (Bojarski et al.,
2016).

Predicting future behavior and positions of other traffic
participants from observations is essential for collision avoidance
and thus safe motion planning, and needs to be solved by
human drivers and automated vehicles alike to reach their desired
goal. However, future positions of vehicles not only depend on
each vehicle’s own past positions and dynamics like velocity
and acceleration, but also on the behavior of the other traffic
participants in the vehicle’s surroundings. Motion prediction
for intelligent vehicles in general has seen extensive research
in recent years (Polychronopoulos et al., 2007; Lawitzky et al.,
2013; Lefèvre et al., 2014; Schmüdderich et al., 2015) as it is a
cornerstone for collision-free automated driving. Lefèvre et al.
(2014) classify such prediction approaches into three categories,
namely physics-based, maneuver-based, and interaction-aware,
depending on their level of abstraction. Physics-based and
maneuver-based motion models consider the law of physics
and the intended driving maneuver, respectively as the only
influencing factors for future vehicle motion and ignore inter-
dependencies between the motion of different vehicles. There
exist a growing number of different interaction-aware approaches
to account for those dependencies andmutual influences between
traffic participants or, more generally, agents in the scene.
Probabilistic models like costmaps (Bahram et al., 2016) account
for physical constraints on the movements of the other vehicles.
Classification approaches categorize and represent scenes in a
hierarchy (Bonnin et al., 2012) based on the most generic ones
to predict behavior for a variety of different situations.

Data-driven approaches to behavior prediction mainly rely on

long short-term memory (LSTM) neural network architectures
(Hochreiter and Schmidhuber, 1997), which have proven to

be a powerful tool for sequential data analysis. Alahi et al.
(2016) model interactions in the learning network architecture
by introducing so-called social-pooling layers to connect several
LSTM each predicting the distribution of the trajectory position
of one agent at a time. Deo and Trivedi (2018a) adapted
the combination of LSTM networks for encoding vehicle
trajectories and (convolutional) social-pooling layers to account
for interactions to vehicle prediction in highway situations.
Altche and de La Fortelle (2017) use a LSTM network as
well, but they account for interaction by including distances
between the target vehicle and other agents directly in the
training data rather than adapting the network architecture.
A similar approach is proposed by Deo and Trivedi (2018b),

but they combine LSTM networks with an additional maneuver
classification network to predict future vehicle motion. One issue
in data-driven approaches to behavior prediction accounting for
relations between agents is that the number of other vehicles
is variable. If information about vehicles other than the target
are encapsulated in the input of the neural network, typically a
specific number of other vehicles of interest are manually chosen
a priori to avoid this issue (Altche and de La Fortelle, 2017; Deo
and Trivedi, 2018b). If the information about other vehicles is
encapsulated in the network architecture, it might be necessary
to train several networks depending on the situation at hand.

In this paper, we expand our previous work (Mirus et al.,
2018) on an automotive environment model based on VSAs
(Gayler, 2003). In contrast to the representation shown in Mirus
et al. (2018), this paper introduces a more sophisticated way of
encapsulating spatial information of multiple objects in semantic
vectors of fixed length. Therefore, we employ generalized
exponentiation of high-dimensional vectors, referred to as the
convolutive power, based on the VSA’s binding operation,
which in our case is circular convolution. We hypothesize that
structured vector representations will be able to capture relations
and mutual influence between traffic participants. For instance,
in a situation as shown in Figures 1A–C, the behavior of the
target vehicle, as depicted by a solid blue and dotted orange
line for past and future positions, respectively, is influenced
by the surrounding vehicles, as illustrated by solid and dotted
gray lines for past and future positions, respectively. The target
vehicle is approached from behind by a faster vehicle causing
it to eventually change its lane to the right, which, for now, is
still occupied by the ego-vehicle and another vehicle. All of these
external influences have an impact on the target vehicle’s motion
(and vice versa). As we aim for a model-free data representation,
we avoid introducing any physical constraints or restrictions
regarding our data-representation or the predicting models.

In this work, we consider our main contributions to be the
following: we present a representation of spatial information for
multiple objects in semantic vectors of fixed length using the
convolutive power.We use this representation as input for simple
feed-forward neural networks and more sophisticated LSTM-
based models and compare them against each other and a linear
predictor as the simplest baseline. We conduct a thorough and
detailed analysis for all of these models and show that by using
our vector representation with a simple network architecture
we can achieve results comparable to more complex models.
This is particularly interesting for mobile applications, such as
automated driving: combining our vector representation, which
allows to encode spatial positions of several objects as well
as efficient implementation in spiking neural networks (SNNs)
(Eliasmith, 2013), with a simple feed-forward SNN would allow
future deployment on dedicated, energy-efficient neuromorphic
hardware. In case the performance of the simpler feed-forward
networks is close enough to the more sophisticated ones, the
possibility of efficient deployment could be an advantage over
LSTMnetworks, which are by design harder to apply to dedicated
computing hardware (Chang and Culurciello, 2017). Finally,
we present a prototype of a mixture-of-experts online learning
system, that chooses at run-time between several models, which

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 1 | Data visualization of one driving situation example from the On-board data set D1 (A–C) and one example from the NGSIM data set D2 (D–F). The dots

indicate the position of the vehicles and color-code the vehicle type (red = motorcycle, green = car, blue = truck, black = ego-vehicle), blue and orange lines show past

and future motion of the target vehicle whereas gray lines depict the other vehicles’ motion.

have been pre-trained offline, to achieve the best possible forecast.
We show, that this online learning approach is able to improve its
performance compared to the individual prediction models.

2. MATERIALS AND METHODS

2.1. Vector Symbolic Architectures
The term vector symbolic architectures (VSAs)—first coined by
Gayler (2003)—refers to a family of approaches for cognitive
modeling making use of distributed representations. The basic
idea behind all of those approaches is to represent structure
(e.g., cognitive concepts, symbols, or language) in a high-
dimensional vector space by mapping each entity to be
represented to a (possibly random) vector. One strength of VSAs
is that they offer the possibility to manipulate their entities
through algebraic operations, typically one addition-like and
multiplication-like operation each. Vectors, which represent basic
concepts not intended to be further decomposable and thus are
not constructed from other vectors using the VSA’s algebraic
operations, are called atomic vectors.

2.1.1. Prerequisites
In this paper, we adopt the semantic pointer architecture
(SPA) (Eliasmith, 2013), a variant of holographic reduced
representations (HRRs) originally introduced by Plate (1994),
to encode automotive scenes in high-dimensional vectors (note:

the source-code for all models presented in this paper can
be found at https://github.com/fmirus/spatrajectoryprediction).
Thus, atomic vectors are picked from the real-valued unit sphere
and the dot product serves as a measure of similarity. We
call two vectors similar, if their dot-product is higher than a
certain similarity threshold. The distribution of the dot-product
of two randomly chosen unit vectors has a mean of 0 and a
standard deviation of 1√

D
(Widdows and Cohen, 2014). Thus, the

similarity threshold is typically chosen as c√
D
for some constant

c, which is a similarity value that we would expect from two
randomly chosen vectors and only depends on the dimension
D of the vector space. Furthermore, the algebraic operations are
component-wise vector addition ⊕ and circular convolution ⊛,
which is defined as

z = v⊛ w with zj : =
D−1
∑

k=0

vkw(j−k) mod D (1)

for any two D-dimensional vectors v,w. One important property
of this operation is the fact (Bracewell, 2000, Chapter 6), that
circular convolution can efficiently be computed using the
discrete Fourier transform:

v⊛ w = IDFT
(

DFT(v)⊙ DFT(w)
)

, (2)

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2019 | Volume 13 | Article 84

https://github.com/fmirus/spa_trajectory_prediction
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

where ⊙ denotes element-wise multiplication, DFT and IDFT
denote the discrete Fourier transform and inverse discrete
Fourier transform, respectively. The neutral element regarding
circular convolution is 111 = (1, 0, · · · , 0). Furthermore, for any
vector v, the vector v̄ = (v0, vD−1, . . . , v1) is a pseudo-inverse
element with respect to circular convolution, meaning that the
vector derived from convolving them is similar to the neural
element, i.e., v ⊛ v̄ ≈ 1. Although we can also find an exact
inverse element v−1 for most vectors with v⊛ v−1 = 1, it is often
more useful to work with pseudo-inverses instead of exact inverse
elements, as they can become unstable in certain situations.
However, we call the special class of vectors for which the pseudo-
and exact inverse element coincide unitary vectors, i.e., v−1 = v̄.

Using Equation (2), we define the convolutive power of a vector
v by an exponent p ∈ R as

vp : = ℜ
(

IDFT
((

DFT0 (v)p
)

, . . . ,
(

DFTD−1 (v)p
)))

, (3)

whereℜ denotes the real part of a complex number and DFTi (v)

denotes the ith component of the vector DFT (v). Denoting the
set of unitary vectors by U, we state three essential properties

• All elements of U have unit length, i.e., we have ‖u‖ = 1 for
any vector u ∈ U.

• U is closed under convolutive exponentiation, i.e., up ∈ U for
any u ∈ U and p ∈ R.

• Convolution with unitary vectors preserves the norm, i.e.,
‖v‖ = ‖v⊛ u‖ for any v and any unitary vector u ∈ U.

2.1.2. Convolutive-Power Representation
In this paper, we adopt and improve the vector representation
for automotive scenes introduced in earlier work (Mirus et al.,
2018). Here, we introduce the convolutive vector-power shown
in Equation (3) for encoding spatial positions of multiple vehicles
and focus on investigating its expressive power. To create a
vocabulary V of atomic vectors, we assign a random real-valued
vector from the unit sphere to each category of dynamic objects
(e.g., car, motorcycle, truck) as well as random unitary vectors X
and Y to encode spatial positions. We use unitary vectors for X
and Y as they have unit length and are closed under convolutive
exponentiation. Therefore, by encoding spatial positions with
powers of unitary vectors, we avoid exploding lengths of
our final scene vectors, which would lead to additional noise
and unwanted behavior when using them as input for neural
networks. Furthermore, we use additional random ID-vectors
TARGET and EGO representing the target object to be predicted
and, if applicable, the ego-vehicle, respectively.

Given a situation as shown in Figure 1A with a sequence
of prior positions (xt , yt) for the target vehicle at time step
t ∈ {t0, . . . , tN} and equivalent sequences (xobj,t , yobj,t) for other
traffic participants, we encapsulate this positional information in
a scene vector

St = TARGET⊛ TYPEtarget ⊛ Xxt ⊛ Yyt

︸ ︷︷ ︸

target-vehicle

⊕
∑

obj

TYPEobj ⊛ Xxobj,t ⊛ Yyobj,t

︸ ︷︷ ︸

other objects

(4)

for each time step t. This yields a sequence of semantic scene
vectors St for t ∈ {t0, . . . , tN} encoding the past spatial
development of objects in the current driving situation. Figure 2
depicts the aforementioned scene vector representation: the left
plots show similarities (depicted as heat map) between the vector
St encoding the scene from Figure 1A and the vectors vi =
TARGET ⊛ TYPEtarget ⊛ Xx̄i ⊛ Yȳi for a sequence of discrete
position samples x̄i, ȳi. Similarly, the right plots show similarities
between St and CAR ⊛ Xx̄i ⊛ Yȳi visualizing all other objects
in the scene of type car. We observe clear peaks (bright yellow
areas) of higher similarities at the true positions of the encoded
objects depending on their type (e.g., car or truck) or if the object
is the target object of interest. Hence, we can encode spatial
information of several different objects in a sequence of semantic
vectors and reliably decode it back out. This allows us to encode
automotive scenes with varying number of dynamic objects in a
vector representation of fixed dimensionality.

2.2. Models
2.2.1. LSTM Networks
In this work, we use a long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) network-architecture for
the prediction of vehicle positions. Our network consists of
one LSTM encoder and decoder cell for sequence to sequence
prediction, which means that the input and the final result of our
model is sequential data. The encoder LSTM takes positional data
for 20 past, equidistant time frames as input. That is, the input
data is a sequence of 20 items of either positions of the target
vehicle or a sequence of high-dimensional vectors encoding
this positional data (see sections 1, 2.3.4 for further details).
Thus, the resulting embedding vector encodes the history of
the input data over those 20 time frames. This embedding
vector is concatenated with additional auxiliary information
to aid the model when predicting the future trajectory of the
target vehicle. This auxiliary data is information, that is available
to the system when the prediction is to happen, i.e., sensory
data available at prediction time or future data about the ego-
vehicle, such as its own planned trajectory (see section 3.1.1 for
further details on this auxiliary data). Finally, the embedding
vector is used as input for the decoder LSTM to predict future
vehicle positions. The output of each model is a sequence of 20
positions of the target vehicle predicted over a certain temporal
horizon into the future. We use the same network architecture
for all encoding schemes of the input data and for both data
sets. However, the dimensionality of the input varies over the
different encoding schemes while the auxiliary information used
to enrich the embedding vector is different depending on the
data set (since only one data set is recorded from a driving
ego-vehicle). We describe these implementation choices in more
detail in section 3.1.1. Figure 3 visualizes the architecture of
our LSTM models indicating modules that change when varying
the encoding scheme by a dashed red border whereas parts
that change with the data set are highlighted through a dashed
blue border.

2.2.2. NEF Networks
As an alternative to the LSTM-models, we also considered a
much simpler single-hidden-layer network defined using the

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 2 | Visualization of the convolutive vector-power representation of one particular driving situation over time at selected time-steps as a heat map of similarity

values for 512-dimensional vectors. The red circles indicate the measured position of the target vehicle.

neural engineering framework (NEF) (Eliasmith and Anderson,
2003). While this is usually used for constructing large-scale
biologically realistic neuron models (Eliasmith et al., 2012),
the NEF software toolkit Nengo (Bekolay et al., 2014) also
allows for traditional feed-forward artificial neural networks
using either spiking or non-spiking neurons. Spiking neurons
are of considerable interest for vehicle prediction algorithms
due to the potential for reduced power consumption when
run on hardware that is optimized for spiking neurons (i.e.,
neuromorphic hardware).

For these NEF networks, we use a single hidden layer
containing N neurons, with randomly generated (and
fixed) input weights, and use least-squares optimization
to compute the output weights. That is, given the hidden
layer spiking activity ai for the ith neuron (i.e., a sequence
of spikes)

ai
(

x(t)
)

=
mi∑

j=1

h(t) ∗ δ(t − tj) =
mi∑

j=1

h(t − tj), (5)

where δ denotes the delta function, h(t) is the post-synaptic
current produced by a single spike and tj are the mi spike times
of the ith neuron, we compute the network output y with output
weights di as

y(t) =
N
∑

i=1

ai
(

x(t)
)

di. (6)

If we have a desired y(t) for every given input to the network,
then we can provide that input, measure the resulting hidden
layer activity for each input, and then find the optimal di
values to make the network output match the desired output.
This is a much faster alternative to using gradient descent

rules (such as backpropagation). In particular, we find the di
that minimize

E =
∫
(

y(t)−
N
∑

i=1

ai
(

x(t)
)

di

)2

dx(t). (7)

As with any traditional network, we can have any number
of input, output, and hidden neurons, all following this
same process. The goal here is to provide a simple baseline
for comparison to the LSTM networks, to see what (if
any) performance gain is produced by the more complex
network approach.

2.2.3. Mixture-of-Experts Online Learning
Given that we have multiple models pi for i = 1, . . . ,M for
predicting vehicle positions, we also define mixture-of-experts
models. These are models where the output is a weighted sum
of the outputs from other models

vmix,t =
∑

p

Wp,tvp,t , (8)

where Wp,t is the weight and vp,t is the output value of the
prediction model p for prediction time t. If each model produces
a prediction of the x and y positions atN different time steps into
the future and we haveMmodels, w will be anM×N× 2 tensor.
In other words, the particular weighting of models for predicting
0.5 s into the future may be very different from the weighting
when predicting 5.0 s into the future.

The simplest way to generate these weights is to use standard
delta-rule learning

1Wp,t = κvp,t (vobserved,t − vmix,t)
︸ ︷︷ ︸

=ǫt

= κvp,tǫt . (9)

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 3 | Visualization of our LSTM-based learning architecture. Modules that change with varying encoding scheme of the input data are highlighted through

dashed red borders whereas parts that change when varying the data set are highlighted through dashed blue borders.

FIGURE 4 | Visualization of the network architecture of the context-sensitive mixture-of-experts online learning system. Yellow boxes indicate the individual

components of the model, while the solid red line depicts the connection to decode out the weights Wp,t for the individual expert predictors from the neural population

encoding the context c as indicated by the green circles in the context component. The dotted green arrow indicates that the error signal is used to update the

weights of this connection using delta-rule learning.

where κ is a learning rate and ǫt = vobserved,t−vmix,t is the current
prediction error, that is, the error between the mixture model’s
output vmix,t and the target vehicle’s actual position vobserved,t . For
this paper, we initialize the weightsWp,t to be 1/M (i.e., an equal
weighting across allM models).

The above model attempts to find the best weighting of the
offline models based only on the prediction error. However,
it is also possible to learn a weighting that is based on the
current context. That is, instead of learning W, we can learn
the function fW(c) = W, where c is some currently available
sensor information.

Since neural networks are good function approximators, we
implement this context-sensitive mixture-of-experts model as
a single-hidden-layer artificial neural network (ANN) whose
inputs are c and whose outputs are W. As with the context-
free mixture-of-experts model, we initialize the output to
always produce 1/M, and then train the network based on the
prediction error.

Importantly, this context-sensitive mixture-of-experts model
is meant to be trained online. That is, we do not pre-train it on
a large corpus of data and then fix the final weights. Instead,

we run the neural network training while the system is running,
just like the context-free version. Indeed, the context-free version
is equivalent to the context-sensitive model if the context is
kept constant.

While any neural network learning algorithm could be used
here, for simplicity we use delta rule again, and note that the
delta rule is the first step of the classic backpropagation neural
network learning algorithm. In other words, we only adjust the
weights between the hidden layer and the output layer, and leave
the other set of weights at their initial randomly generated values.
This greatly reduces the computation cost of performing the
online learning.

Figure 4 shows a schematic visualization of the mixture-of-
expert model’s architecture. Yellow boxes indicate the individual
components of the model, while the solid red line depicts the
connection to decode out the weights Wp,t for the individual
expert predictors from the neural population encoding the
context c as indicated by the green circles in the context
component. Finally, the dotted green arrow indicates that the
error signal is used to update the weights of this connection using
delta-rule learning.

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

2.3. Data and Pre-processing
In this work, we use two different data sets for training and
evaluation of our system, which we describe in more detail in
the subsequent sections. We refer to those data sets as On-
board or D1 (see section 2.3.1), which is our main data set, and
NGSIM or D2 (see section 2.3.2), which is a publicly available
data set used for reference and comparability. In this section,
we describe both data sets regarding available features, available
sources of information as well as their key differences and the
preprocessing procedure.

2.3.1. On-Board-Sensors Data Set
This is our main data set used in this work. It contains real-
world data gathered using the (ego-) vehicle’s on-board sensors
during test drives mainly on highways in southern Germany. The
data contains object-lists with a variety of features obtained from
different sensor sources. Apart from features about motion and
behavior of the dynamic objects in the scene like position, velocity
and acceleration, which are estimated from light detection and
ranging (LIDAR) sensors, there is also visual information like
object type probabilities or lane information, which is acquired
from additional camera sensors. More detailed information on
the test vehicle’s sensor setup can be found in Aeberhard et al.
(2015). The fused information about objects is available at a
frequency of roughly 5Hz. Themain feature of this data set is that
all information about other vehicles, such as position or velocity
are measured with respect to the ego-vehicle and its coordinate
system. The On-board data set contains 3,891 vehicles, which
yield a total length of roughly 28.3 h when adding up the time
each individual vehicle is visible.

2.3.2. NGSIM US-101 Data Set
The next generation simulation (NGSIM) US-101 data set
(Colyar and Halkias, 2017) is a publicly available data set
recorded on a segment of ∼640m length with 6 lanes on the
US-101 freeway in Los Angeles, California. Although the data
set was originally intended for driver behavior and traffic flow
models (He, 2017), it has also been used to train trajectory
predictions models (Altche and de La Fortelle, 2017; Deo and
Trivedi, 2018b). The data set was recorded using cameras
observing freeway traffic from rooftops with trajectory-data
being extracted later from the obtained video footage. It holds
a total of 45min of driving data split into three 15min segments
of mild, moderate and congesting traffic conditions. Apart from
positional information in lateral and longitudinal direction (in
a global and local coordinate system), additional features like
instantaneous velocity, acceleration, vehicle size as well as the
current lane are available for each vehicle. The trajectory data is
sampled with a frequency of 10Hz. The main difference to the
On-board data set is the fact, that the NGSIM data set is recorded
with an external stationary camera instead of on-board sensors
of a driving vehicle. Thus, there is no ego-vehicle present in the
data and all information are available in absolute coordinates
instead of being measured relative to one particular ego-vehicle.
The NGSIM data set contains 5,930 vehicles and therefore a total
time of roughly 91.3 h when adding up the time each individual
vehicle is visible.

2.3.3. Pre-processing
In this section, we describe the preprocessing steps performed a
priori to prepare the information from our two data sets as neural
network input. Although we aim to keep these preprocessing
steps as consistent as possible across the data sets, there are
some mild differences, which we will also point out. We aim to
predict future positions of dynamic objects 5 s into the future
based on their positions 5 s prior to their current location.
As the two data sets are sampled at different frequencies, we
interpolate the available data over 20 equidistant steps to achieve
intervals of 0.25 s to improve consistency and comparability.
Furthermore, we translate the current position of the target
vehicle (the vehicle to be predicted) into the origin, i.e., position

(0, 0) (see Figure 1), to prevent our models from treating similar
trajectories differently due to positional variations. Finally, to
improve suitability of the data as input for neural networks, we
divide all x-positions by a factor of 10 such that x-/y-values are
scaled to a similar order of magnitude. Thus, one data sample
consists of a sequence of length 20 of positional information over
the past 5 s, which is used as input for our models with different
encoding, and a sequence of 20 positions 5 s into the future used
as labels or ground truth for the models to be trained with. For
the NGSIM data set D2, we use only every 10th data point, to
avoid the creation of too many overlapping, and therefore too
similar, data samples. Furthermore, we converted all values to the
metric system and swapped the dimensions of the positions in
D2 such that for both data sets x- and y-direction correspond
to longitudinal and lateral positions, respectively. For training
and evaluating our models, we split both data sets into training
Ti ⊂ Di and validation data Vi ⊂ Di containing 90% and 10% of
the objects, respectively to avoid testing our models on vehicles
they have been trained with.

2.3.4. Encoding Schemes
We use different encoding schemes of the positional input data
in this work. The main encoding scheme is the convolutive
vector-power representation as depicted in section 2.1.2. To
avoid accumulation of noise while focusing on the vehicles most
relevant for prediction, we only use objects closer than 40m to
the target vehicle in the On-board data set. For the NGSIM data
set D2, we additionally include only objects on the same lane as
the target vehicle and on adjacent lanes. Thereby, we aim for
consistency across both data sets and we keep the input data as
comparable as possible to what a driving vehicle could be able to
detect using its on-board sensors.

For the On-board data set D1, we use two different variants of
this representation, which differ in that the ego-vehicle’s position
is used or excluded in the other objects part of Equation (4),
yielding two sequences (S

ego
t)

tN
t0

and (St)
tN
t0
. We used Nengo’s SPA

package for implementation and therefore refer to these encoding
two schemes (St)

tN
t0

and (S
ego
t)

tN
t0

as “SPA-power” and “SPA-
power-with-ego,” respectively. As the NGSIM data set D2 does
not contain an ego-vehicle, we only investigate the “SPA-power”
encoding scheme there.

For a simple reference vector-representation, we add the
positional vectors X and Y scaled with the target vehicle’s prior
positions (xt , yt) at each time step t, yielding the sequence S̃t =

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

xt · X + yt · Y. Finally, we also use plain numerical position
values pt = (xt , yt) as input data. Note, that only the SPA-power
representation variants (St)

tN
t0

and (S
ego
t)

tN
t0

contain positional
information about vehicles other than the target.

3. EXPERIMENTS AND RESULTS

In this section, we describe the training process and parameters
of all our models and give a detailed analysis and evaluation
of the results achieved. The LSTM models are implemented in
Tensorflow (Abadi et al., 2016) whereas the NEF models and
the mixture-of-experts online learning model are implemented
using the Nengo software suite (Bekolay et al., 2014). We use
the root-mean-square error (RMSE) as our main metric for
evaluation purposes. In contrast to earlier work, we inspect the
RMSE for lateral and longitudinal directions separately to give
more detailed insights into the models’ behavior. Calculating the
RMSE of the Euclidean distance would absorb the influence of
the lateral RMSE since it is an order of magnitude smaller than
the longitudinal RMSE, while we consider both directions to
be at least equally important. The lateral RMSE is even more
informative regarding the models’ performance on, for instance,
lane change maneuvers. Note however, that this means that the y-
axes in Figures 5, 6, 8–11 show a different order of magnitude for
lateral (RMSE X) and longitudinal (RMSE Y) direction. Finally,
we investigate where the models shows their best performance
looking for correlations between prediction accuracy and specific
driving situations.

Table 1 summarizes the models evaluated in this section.
The models LSTM SPA 1–3 as well as LSTM numerical employ
the same network architecture as described in section 2.2.1
with sequential information as input data (using the different
encoding schemes presented in section 2.3.4) and are analyzed
in section 3.2.1. The models NEF SPA 1 and 2 employ the
simpler, single-layer, feed-forward architecture as described
in section 2.2.2 with a vector obtained as partial sum of
vectors from the whole sequence used as input for the LSTM
models (see section 3.1.2 for further details). Finally, mix
online denotes the mixture-of-experts online learning model as
described in section 2.2.3 using the predictions from some of
the aforementioned offline models as input (see section 3.1.3 for
further details). The models will be denoted in figure legends by
their short name given in Table 1.

In section 2.3.4, we have described the different encoding
schemes we will use to evaluate our models. We mentioned
that the models employing the convolutive power to encode the
input data are (i.e., LSTM SPA 1, 3 and NEF SPA 1 and 2) are
the only ones having access to information about objects other
than the target vehicle. Although these model therefore have
access to more data than the other reference models, such as
LSTM numerical, we are interested in evaluating the benefits
of encoding the interconnections between vehicles implicitly in
the input data using our semantic vector encoding instead of
introducing a more complex network architecture. Therefore, we
focus on the same network architecture for all encoding schemes
in this paper and leave a comparison with more sophisticated

network architectures, for instance, ones combining LSTM with
social pooling layers as in Deo and Trivedi (2018a) or Alahi et al.
(2016) for future work.

3.1. Model Training
3.1.1. LSTM Networks
We trained several instantiations of our LSTM-network
architecture as described in section 2.2.1 on the On-board data
set D1 in advance to find an optimal set of parameters. We varied
the number of layers, the number of hidden dimensions and the
number of epochs for the models to be trained. We found, that
increasing the number of layers does not improve the models’
performance on the validation data, even when training longer
using more epochs. On the contrary, models with more layers
needed more training time to achieve a performance on the
validation data comparable to the networks with less layers.
Thus, a LSTM model with one encoder and decoder cell each is
not only the simplest network architecture but also the best in
terms of accuracy as well as time needed for training.

For this architecture, we found that the network performs
best with 150 dimensions in the encoder and decoder cell each.
Furthermore, we employed early stopping, that is, we trained our
models for 10 epochs as we found that the models’ performance
stagnate on both, training and validation data sets, when training
for up until a total 20 epochs. Figure 5 visualizes this result by
showing the development of the RMSE of the LSTM SPA 1model
during the training process for the training set T1 (Figures 5A,C)
and validation setV1 (Figures 5B,D) of theOn-board data setD1.
On the y-axis of each sub-figure, we have the RMSE while the x-
axis from left to right depicts the result after each epoch during
the training process. Each colored line illustrates the RMSE of the
model for one particular prediction time step while all points with
the same value on the x-axis depict the model’s performance after
the respective epoch during the training process.

Using the aforementioned network architecture and
hyperparameter set, we train one model instantiation for
each encoding scheme mentioned in section 2.3.4, whereas
only the input dimensionality of the encoder cell changes when
varying the representation of the input data. Importantly, we
focus on positional information as the only input for our LSTM
models in this work for reasons of consistency to make all models
as comparable as possible. Hence, we neglect for example the
history of the target (or ego-) vehicle’s velocity or acceleration
as input here. Between the two data sets, the only difference
between models is the auxiliary data, that is used as additional
input to the LSTM decoder cell at each time step. For both data
sets, we use the instantaneous velocity of the target vehicle to
aid the model predicting the future trajectory at every time step.
As there is no ego-vehicle present, we use no further auxiliary
data for the NGSIM data set D2. For the On-board data set D1,
we use the ego-vehicle’s predicted acceleration and the estimated
curvature of the ego-vehicle’s current lane. Although this is future
information, we argue that it is solely about the ego-vehicle,
which we expect to be available at the time the prediction is to
happen. We assume, that an automated vehicle, in order to safely
navigate, will have an estimation of the future lane curvature as
well as the acceleration values of its own planned trajectory.

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

TABLE 1 | Summary of the evaluated models regarding architecture, input data, encoding, and training.

Short name Input Position encoding Network

architecture

Training Number of

units/Neurons

Data set

Linear Current position and velocity – Linear regression – – Both

LSTM numerical Sequence of positions – LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

Both

LSTM SPA 1 Semantic vector sequence Convolutive power LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

Both

LSTM SPA 2 Semantic vector sequence Scalar multiplication LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

Both

LSTM SPA 3 Semantic vector sequence Convolutive power incl.

ego-vehicle

LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

On-board

NEF numerical Sequence of positions – NEF single-layer Offline,

least-squares

3,000

neurons

Both

NEF SPA 1 Semantic vector sum Convolutive power incl.

ego-vehicle

NEF single-layer Offline,

least-squares

3,000

neurons

On-board

NEF SPA 2 Semantic vector sum Convolutive power NEF single-layer Offline,

least-squares

3,000

neurons

NGSIM

Mix online Predictions offline models – NEF single-layer Online, delta-rule 3,000

neurons

Both

3.1.2. NEF Networks
For our NEF networks, the main parameters influencing the
models’ performance are the number of neurons in the learning
population (i.e., the hidden layer in terms of traditional neural
networks), and the neuron model. For simplicity, we use Nengo’s
rate-variant of the leaky-integrate-and-fire (LIF) neuron model.
From the NEF-theory (Eliasmith and Anderson, 2003) we know
that increasing the number of neurons in a population yields
a more accurate representation of the data encoded in the
population’s activity. Thus, we expect more accurate predictions
when increasing the number of neurons. In our experiments, we
found that a number of 3,000 spiking neurons is sufficient and
further increasing the number of neurons does not improve the
model’s prediction accuracy. The neural weights are calculated
using Nengo’s default least-squares-optimization method with
the exception, that we calculate the weights over smaller subsets
of the input data for computational reasons.

We train two different variants of our simpler NEF-models
using numerical input (NEF SPA numerical) as well as the SPA-
power-with-ego (NEF SPA 1) and SPA-power encoding (NEF
SPA 2) for the On-board and the NGSIM data set, respectively.
Here, we adapt the input data such that for the model NEF
numerical, we use the vector (xt0 , . . . , xtN , yt0 , . . . , ytN , v) as input
with v denoting the instantaneous velocity of the target vehicle.
For the NEF SPA 1 and 2 models, instead of flattening the whole
sequence of vectors into a giant single vector, we created a single
semantic vector by summing the first, middle, and last element of
the original vector sequences

Ŝ = St0 ⊕ StN/2
⊕ StN = (ŝ0, . . . , ŝD−1). (10)

We only sum up these vectors instead of the whole sequence
(St)

tN
t0

to avoid the accumulation of noise in the vector
representation. Note that thereby the NEF model using the SPA-
power representation does not use the full trajectory history but
only selected time steps, namely those visualized in Figure 2.
To make these simpler models as comparable as possible to the
LSTM models in terms of information available to the network,
we add the instantaneously velocity v of the target vehicle as an
additional element to the input, which yields (ŝ0, . . . , ŝD−1, v) as
input of our model, since there is no intermediate embedding
vector here where it could be included.

3.1.3. Mixture-of-Experts Online Learning
There are two different possible variants to our mixture-of-
experts online learning model. One issue of such a learning
system is that the actual position information of the target vehicle
vobserved,t and thus the error ǫt in Equation (9) is not available
at the time the model makes its predictions, since it is future
data. In this paper, we show a first prototype that, for simplicity,
ignores this delay issue and assumes that position information of
the target vehicle vobserved,t actually is available at prediction time.
In the future, we aim to investigate an online learning system
that updates its weights Wp,t once the error signal ǫt gradually
becomes available. However, the architecture of the model itself
remains the same. The only difference to the prototype shown
here is the time when Equation (9) is applied to update the neural
weights. For the context-sensitive mixture-of-experts model, we
use information about the current driving situation as identified
in section 3.2.1 and Figure 7 as context c for the learning system.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 5 | Development of the RMSE at every prediction time step during the training process of the LSTM model using the SPA-power-with-ego vector

representation (LSTM SPA 3) after each epoch on the training (A,C) and validation part (B,D) of the On-board data set. Each colored line illustrates the RMSE of the

model for one particular prediction time step while all points with the same value on the x-axis depict the model’s performance after the respective epoch during the

training process. One observes comparable trends on both training and validation set and that the RMSE stagnates after 10 epochs.

For the NGSIM data set, we use the distance between the target-
vehicle and the closest other vehicle as well as the number of
surrounding relevant vehicles as context information. Relevant
means that those vehicles that are included in the SPA-power
representation are counted (see section 2.3.4). For the On-board
data set, the distance between the target and the ego-vehicle is
additionally included in the context.

In this work, we employ the pre-trained LSTM models using
numerical inputs (i.e., LSTM numerical), the best-performing
SPA-power encoding scheme for each data set (i.e., LSTM SPA
3 for the On-board data set and LSTM SPA 1 for the NGSIM
data set), and a simple linear prediction as input experts for
our online learning prototype. For training the model, we
simulate online deployment by presenting the offline models’
predictions on the validation subsets to the system. Thereby, the
individual experts perform their prediction on previously unseen
data samples. We conduct individual simulation runs for both
data sets.

3.2. Evaluation
In this section, we evaluate the performance of our models and
conduct a thorough analysis of the results achieved. For all

evaluations in this section, we refer to the longitudinal and lateral
direction as x- and y-direction, respectively.

3.2.1. LSTM Models
Figure 6 visualizes the RMSE of all LSTM-based models on the
validation-set V1 ⊂ D1 of the On-board data set using 512-
dimensional vectors. Figures 6A,C show the performance on
the complete validation-set in x- and y-direction, respectively,
whereas Figures 6B,D depict only situations with at least 3 other
vehicles present, the distance between the target and the ego-
vehicle being lower than 20m and the distance between the
target and the closest other vehicle being <10m, again for x-
and y-direction, respectively. We observe that all approaches
yield comparable results with notable differences in certain
situations. Although the SPA-power encoding schemes (LSTM
SPA 1 and 3) tend to perform worst in x-direction, we observe
that they perform better in y-direction in crowded situations with
closely driving vehicles with LSTM SPA 3 ranking best along
LSTM numerical.

To further investigate this result, we evaluated certain metrics,
chosen to characterize crowded and potentially dangerous
situations, for items in the validation set, where the LSTM

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 6 | Visualization of the RMSE of all LSTM models on the complete On-board validation set V1 ⊂ D1 in x- (A) and y-direction (C) and on a subset of situations

with at least 3 other vehicles present and distance between the target and ego vehicle lower than 20m and between target and closest other vehicle lower than 10m,

again in x- (B) and y-direction (D).

SPA 3 model outperforms all other approaches with respect to
the RMSE in y-direction (see Figure 7). We observe that the
number of samples, where the distance between the target and
the ego vehicle and/or the closest other object being small is
significantly higher when the LSTM SPA 3 model outperforms
all other approaches. For samples where the LSTM SPA 3
model performs best, the number of samples with a distance
<20m between the target- and ego-vehicle is 50.5% higher
compared to samples where any of the other models performs
best. For distances <20m between the target vehicle and the
closest other vehicle, the number of samples is still 11.4%
higher when the LSTM SPA 3 model performs best. Finally, the
number of situations with at least 3 other vehicles present is
also 7.8% higher compared to samples where any other model
performs best. Thus, we consider these characteristics suitable
candidates to serve as context variables on which our online-
learning mixture-of-experts system could base its weighting
decision on. However, we aim to investigate more sophisticated
options, such as clustering methods in future work to uncover

other, potentially moremeaningful features compared to the ones
shown in this paper, distinguishing between situations where
LSTM SPA 3 performs best compared to another model showing
the best performance.

Figure 8 visualizes the RMSE of all LSTM-based models on
the validation-set V2 ⊂ D2 of the NGSIM data set for 512-
dimensional vectors (Figures 8A,C) and for 1,024-dimensional
vectors (Figures 8B,D). We observe, that all LSTM models
achieve a very similar performance (almost identical in y-
direction) with LSTM SPA 1 achieving the best performance
in x-direction being on par with the numerical encoding
for 512-dimensional vectors. For 1,024-dimensional vectors,
LSTM SPA 1 even slightly outperforms all other approaches in
x-direction, whereas we do not observe significant improvements
in y-direction.

3.2.2. NEF Networks
Figure 9 visualizes the RMSE of our NEF-network models on
both data sets. The NEF-network using the SPA-power encoding

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 7 | Metric evaluation specifying situations where the LSTM SPA 3 model outperforms all other approaches regarding the RMSE in y-direction on the

On-board data set D1. In the upper row (A–C), blue bars illustrate samples where LSTM SPA 3 performs better than all other models while the orange bars depict

samples where any other model performs best. Panel (A) illustrates the distance between the target vehicle and the closest other vehicle, (B) illustrates the distance

between the target and the ego-vehicle and (C) shows the number of vehicles other than the target. The lower row (D–F) illustrates the difference between the blue

and orange bars in the corresponding upper panel.

schemes processes 512-dimensional for the On-board (NEF SPA
1) and 1,024-dimensional vectors for the NGSIM data set (NEF
SPA 2). For reference, we included the performance of the most
relevant LSTM models, namely LSTM SPA 1 and 3 for the
NGSIM and On-board data set, respectively as well as LSTM
numerical, in Figure 9 as well. We observe that, despite a simpler
network architecture and learning algorithm, the NEF-networks
achieve a performance comparable to the more sophisticated
LSTMmodels on both data sets. For theNGSIM data set, the NEF
SPA 1 model performs on par with its LSTM model counterpart
LSTM SPA 3. In this case, the NEF-model is not only simpler,
but also has access to less information as its input data is a sum
of a subset of the input sequence used for the corresponding
LSTM-model.

3.2.3. Mixture-of-Experts Online Learning
Figure 10 shows the RMSE on selected slices of the validation-
sets achieved by our context-sensitive mixture-of-experts online
learning prototype, which assumes the error signal is available
at the time the prediction needs to happen in comparison to
the offline models. The four left plots (Figures 10A,B,E,F) show
two data slices of the validation set D1 of the On-board data set:
Figures 10A,E show the RMSE at the start of training process
while Figures 10B,F show the RMSE performance on the first

70 vehicles. Similarly, the four right plots (Figures 10C,D,G,H)
show two data slices of the validation set D2 of the NGSIM
data set: Figures 10C,G show the RMSE at the start of the
training process while Figures 10D,H show the RMSE on the
first 92 vehicles. From Figures 10A,E,C,G we observe, that
the model needs some time for adapting its weights yielding
a RMSE performance worse than the individual experts for
both data sets. However, the model’s performance improves
quickly and clearly outperforms all individual experts in x-
direction while achieving RMSEs as low as the best individual
experts in y-direction after a comparably low number of
vehicles presented to the system. Figures 10B,F illustrate this
result for the On-board data set, while Figures 10D,H show
comparable results achieved by themixture model on theNGSIM
data set.

To get a better idea of how our model weights the individual
predictors, we inspect one example driving situation. Figure 11
visualizes the performance of our mixture-of-experts online
learning prototype on one particular example of the On-
board data set. We use a situation not directly after the start
of the training process, i.e., the mixture model was already
exposed to some vehicles and thus was able to consolidate its
weights. Figures 11A–C show the driving situation with the
vehicles’ true trajectories as well as the trajectory predictions

Frontiers in Neurorobotics | www.frontiersin.org 12 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 8 | Visualization of the RMSE of all LSTM models on the NGSIM validation set V2 ⊂ D2 using vectors of dimension 512 for the LSTM SPA 1 and 2 models in

x- (A) and y-direction (C) and using vectors of dimension 1,024 for the LSTM SPA 1 and 2 models in x- (B) and y-direction (D).

given by the offline models and the mixture-of-experts online
learning prototype. Figures 11D,E show the absolute error of
all approaches while Figures 11F,G visualize, how the model
weights the individual experts for every prediction time step
in this particular driving situation. We observe that the overall
trend of our model shows in this example as well. The mixture-
of-experts prototype achieves significant improvements in the
x-direction while achieving RMSEs comparably low as the best
individual expert in y-direction (Figures 11D,E). Furthermore,
Figures 11F,G show that the model weights the expert predictors
independently at individual time steps and hence is able to
pick the best possible predictor at each time step. However, we
also observe, that the error of the mixture-of-experts model in
the y-direction is higher than the best individual predictor and
that the weighting, especially for later prediction steps, could
be improved.

4. DISCUSSION

For both data sets used in this paper, we observe that already the
simple linear prediction models achieve solid accuracy, especially
in longitudinal direction. This makes sense as both data sets
almost exclusively contain highway driving situations, which in

turn consist mainly of straight driving and rather rare lane-
change maneuvers. For straight driving, linear prediction based
on a constant velocity assumption is already a solid prediction
approach, especially if all dynamic information (position, velocity
etc.) are given relative to an already moving ego-vehicle like with
the On-board data set D1. Table 2 summarizes the composition
of both data sets.

For the On-board data set, in 86.1% of all data samples the
target vehicle does not perform a lane, i.e., only 13.8% of all data
samples contain a lane change performed by the target vehicle.
We further distinguish between lane changes performed during
the trajectory history, i.e., the past 5 s before the current time step
(labeled as past in Table 2) and lane changes that are performed
in the future, i.e., the future 5 s from the current time step (labeled
as future in Table 2). For the NGSIM, the percentage of samples
without a target vehicle lane change is 95.1% while only 4.9% of
the samples contain a lane change performed by the target vehicle
at all. The amount of samples containing a future lane change
performed by the target vehicle is only 2.6% of all samples in the
NGSIM data set.

For the offline models, simple feed-forward NEF models and
more sophisticated LSTM models alike, we observe that most
improvements over the linear model are achieved in y-direction.
That makes sense as linear prediction is unable to account for

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 9 | Visualization of the RMSE in x- (A,B) and y-direction (C,D) of the NEF SPA 1 model on the On-board validation set V1 ⊂ D1 using 512-dimensional

vectors for the SPA-power vectors (A,C) and the NEF SPA 2 model on the NGSIM data set D2 using 1,024-dimensional vectors for the SPA-power vectors (B,D).

FIGURE 10 | Visualization of the RMSE of the context-sensitive mixture-of-experts online learning system on selected data-slices from the validation sets. The upper

row shows the RMSE in x-direction (A–D), while the lower row shows the RMSE in y-direction (E–H). Panels (A,E) show the RMSE on the On-board data set at the

start of training process while (B,F) show the RMSE performance on the first 70 vehicles. Similarly, panel (C,G) show the RMSE on the NGSIM data set at the start of

the training process while (D,H) show the RMSE on the first 92 vehicles.

lane-changes or driving curves, which are mainly characterized
by non-linear changes in lateral direction. We found that the
LSTM models based on our SPA-power representation (LSTM

SPA 1 and 3) achieve promising results on both data sets.
However, for the On-board data set, this encoding scheme
achieves its best result in crowded and potentially dangerous

Frontiers in Neurorobotics | www.frontiersin.org 14 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 11 | Visualization of the context-sensitive mixture-of-experts online learning system on one particular driving situation from the On-board data set. Panels

(A–C) depict the driving situation with the vehicles’ true trajectories as well as the trajectory predictions given by the offline models and the mixture-of-experts online

learning prototype. Panels (D,E) show the absolute error of all prediction models on that data-sample. Panels (F,G) visualize, how the mixture model weights the

individual experts for every prediction time step in this particular driving situation.

TABLE 2 | Composition of both data sets regarding straight driving and samples containing a lane change performed by the target vehicle.

Data set Straight driving Total target vehicle lane changes Past target vehicle lane changes Future target vehicle lane changes

On-board 86.1% 13.9% 7% 8.2%

NGSIM 95.1% 4.9% 2.7% 2.6%

driving situations, without clearly outperforming the other
approaches on the whole data set (see section 3.2.1 and Figure 6).
Given these finding, we investigated situations, where the LSTM
SPA 3 model does outperform all other approaches in y-direction

and thereby came up with metrics characterizing such crowded
situations (see Figure 7). This result did not hold that clearly on
theNGSIM data setD2, since the LSTMmodels achieve an almost
identical performance in y-direction on this data set.

Frontiers in Neurorobotics | www.frontiersin.org 15 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

Nevertheless, we used the identified characteristics as context
information for our first prototype of a mixture-of-experts
online learning system based on simple delta-rule learning. For
simplicity, the prototypical model shown here ignores the fact
that measurements of the actual trajectory and thus the error
signal for the learning system is future data, i.e., only available
with a timing delay, and applies Equation (8) instantaneously.
We tested and evaluated this prototype on both data sets
achieving comparable results. We found that already shortly
after initialization, the online learning system is able to adapt
its weights to significantly improve its performance over the
individual expert systems. Interestingly, the mixture-of-experts
model achieves the most improvements over the individual
experts in the x-direction although the characteristics used
as context were derived from analyzing the LSTM models’
performance in the y-direction. We assume that this is due
to the fact, that the individual LSTM experts already show a
closer-to-optimal performance in the y-direction with less room
for improvements. Furthermore, the sample situation shown in
Figure 11 exemplifies another potential problem of the current
model in the y-direction: with a distance of 12.8m between the
target and the closest other vehicle, a distance of 55.8m between
the target and the ego-vehicle and only one other vehicle present,
this is not a typical situation for the LSTM SPA 3 model to
perform best in the y-direction (cf. Figure 7) and thus this expert
might not be weighted strongly enough by the model. However,
these effects demand for further and more detailed investigation.

Another interesting result of our experiments is the fact, that
the simple, feed-forward NEF networks show results comparable
to the more sophisticated LSTM models. For those simple
models, the SPA-power representation (NEF SPA 1 and 2) shows
promising results comparable to theNEF numerical model on the
On-board data set and clearly outperforming it on the NGSIM
data set (Figure 9). Although the NEF models do not clearly
outperform the LSTM models (which would be surprising),
it is quite remarkable that they achieve results comparable
to the more sophisticated models with a simpler network
architecture, training procedure and, partly, less information.
These results make those simple models using our proposed
vector-representation as well as a numerical encoding scheme
(possibly in combination with an online learning system like the
one proposed in this paper) potential candidates to be deployed
on dedicated neuromorphic hardware in mobile applications, as
they can be efficiently implemented in a spiking neuron substrate.
This could be an interesting, power-efficient approach in future
automated vehicles.

4.1. Conclusion
In this paper, we showed a novel approach to encapsulate
spatial information of multiple objects in a sequence of semantic
pointers of fixed vector length. We used a LSTM sequence
to sequence model as well as a simple feed-forward spiking
neural network to predict future vehicle positions from this
representation. For each of those models, we implemented
at least one reference model using other encoding schemes
to compare their performance to. Furthermore, we compared
all our models to a simple linear prediction based on a

constant velocity assumption. We evaluated our models on
two different data sets, one recorded with on-board sensors
from a driving vehicle and one publicly available trajectory
data set recorded with an external camera observing a highway
segment and conducted a thorough analysis. Finally, we used
our pre-trained LSTM networks as basis for a mixture-of-experts
online learning prototype and compared its performance to the
individual expert systems. We consider our main contributions
the proposed representation of spatial information for multiple
objects in semantic vectors of fixed length using the convolutive
power, the rigorous and detailed analysis of several simple
and more advanced models, and the prototype of our online
learning system.

4.2. Future Work
Although the results presented in this paper show promise, there
are several directions for future work. Regarding our LSTM
models, we aim to investigate if increasing the vector dimension
further leads to improved model performance on the On-board
data set, as the results on the NGSIM suggest that there is
potential for improvements (see Figures 8A,B). Furthermore,
our preliminary hyperparameter experiments suggest, that there
is potential for improvements by incorporating the history
of the target and/or ego-vehicle’s velocity and/or acceleration.
Therefore, we could investigate possibilities of how to encode
such information in a semantic vector substrate. Another
interesting option for the offline models is to investigate if a
reduced, more balanced data set could improve the models
accuracy or at least speed up the training process. As mentioned
in section 4 and Table 2, both data sets are slightly unbalanced as
they are dominated by straight driving, which is most common
in highway situations. One possibility could be to use the current
data sets and focus the training procedure on “interesting scenes,”
i.e., situations where for example a lane change is happening by
for instance looking for data samples with significant differences
in the lateral positions. Another option is to improve our
current models to predict a probability distribution of the future
positions instead of point predictions of raw position values to
take uncertainties into account. Finally, we could also compare
our current models to other state-of-the-art models, which
combine LSTM and social pooling layers, which we did not
include in the work at hand.

Regarding our mixture-of-experts online learning prototype,
we have shown a simplified version ignoring the fact that
the error signal is future data and thus can not be used
instantaneously, but rather becomes gradually available over
time. Although the network architecture and learning approach
would remain unchanged, the timing when the weights’ update
happens needs to be implemented and investigated if and
how this affects the models performance. However, the results
achieved in this paper serve as an upper bound for the
performance to be expected from models that have to deal with
delayed error signals, that is, that the target vehicle’s true motion
is future data and thus not available at prediction time, The
issue of delayed error signals was mentioned but, for simplicity,
not addressed in this work. However, assuming that a model
overpredicting the near future most likely will also overpredict

Frontiers in Neurorobotics | www.frontiersin.org 16 October 2019 | Volume 13 | Article 84

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

for later time steps, we could also experiment withmodel variants
that update the weights for later prediction steps based on
the error signal for earlier prediction steps before the error
signal actually becomes available. Another direction could be to
investigate if and how different context information affect the
model’s performance.

Since advanced driver assistance systems and, more
generally, automated driving are mobile applications with
tight energy restrictions, we finally aim to investigate if
and how our current implementation could be deployed on
dedicated, energy-efficient neuromorphic hardware for mobile,
in-vehicle applications.

AUTHOR CONTRIBUTIONS

FM has designed and implemented all the model variants

in Tensorflow and Nengo, designed and performed the

experiments, pre-processed data, evaluated results, and wrote

the manuscript. PB has designed the numerical LSTM models
in Tensorflow and assisted in data pre-processing, experiments
and evaluation, and revised the manuscript. TS has designed the
models in Nengo, assisted in data pre-processing, experiments
and evaluation, and contributed in writing the manuscript.
JC coordinated and supervised the research work, and revised
the manuscript.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“TensorFlow: a system for large-scale machine learning,” in Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementation,

OSDI’16 (Berkeley, CA: USENIX Association), 265–283.

Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., Pilat,

Y., et al. (2015). Experience, results and lessons learned from automated

driving on Germany’s highways. IEEE Intell. Transport. Syst. Mag. 7, 42–57.

doi: 10.1109/MITS.2014.2360306

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese, S.

(2016). “Social LSTM: human trajectory prediction in crowded spaces,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las

Vegas, NV), 961–971.

Altche, F., and de La Fortelle, A. (2017). “An LSTM network for highway

trajectory prediction,” in 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC) (Yokohama: IEEE), 353–359.

Bahram, M., Hubmann, C., Lawitzky, A., Aeberhard, M., and Wollherr, D.

(2016). A combined model- and learning-based framework for interaction-

aware maneuver prediction. IEEE Trans. Intell. Transport. Syst. 17, 1538–1550.

doi: 10.1109/TITS.2015.2506642

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a Python tool for building large-scale functional brain

models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,

et al. (2016). End to end learning for self-driving cars. arXiv [Preprint]

arXiv:1604.07316.

Bonnin, S., Kummert, F., and Schmüdderich, J. (2012). “A generic concept of

a system for predicting driving behaviors,” in 2012 15th International IEEE

Conference on Intelligent Transportation Systems (Anchorage, AK), 1803–1808.

Bracewell, R. (2000). The Fourier Transform and Its Applications. Electrical

Engineering Series. Tokyo: McGraw Hill.

Chang, A. X. M., and Culurciello, E. (2017). “Hardware accelerators for recurrent

neural networks on FPGA,” in 2017 IEEE International Symposium on Circuits

and Systems (ISCAS) (Baltimore, MD), 1–4.

Ciresan, D. C., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-column

deep neural network for traffic sign classification. Neural Netw. 32, 333–338.

doi: 10.1016/j.neunet.2012.02.023

Colyar, J., and Halkias, J. (2017). US Highway 101 Dataset. Available online at:

https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

Deo, N., and Trivedi, M. M. (2018a). Convolutional social pooling for vehicle

trajectory prediction. arXiv [Preprint] arXiv:1805.06771.

Deo, N., and Trivedi, M. M. (2018b). “Multi-modal trajectory prediction of

surrounding vehicles with maneuver based LSTMS,” in 2018 IEEE Intelligent

Vehicles Symposium (IV) (Changshu: IEEE), 1179–1184.

Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological

Cognition. New York, NY: Oxford University Press.

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering : Computation,

Representation, and Dynamics in Neurobiological Systems. Computational

Neuroscience. Cambridge, MA: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Gayler, R. W. (2003). “Vector symbolic architectures answer Jackendoff’s

challenges for cognitive neuroscience,” in Proceedings of the ICCS/ASCS

International Conference on Cognitive Science (Sydney, NSW), 13–17 July 2003,

133–138.

He, Z. (2017). Research Based on High-Fidelity NGSIM Vehicle Trajectory Datasets:

A Review. Technical Report. Beijing: Beijing University of Technology.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Lawitzky, A., Althoff, D., Passenberg, C. F., Tanzmeister, G., Wollherr, D., and

Buss, M. (2013). “Interactive scene prediction for automotive applications,” in

2013 IEEE Intelligent Vehicles Symposium (IV) (Gold Coast, QLD), 1028–1033.

doi: 10.1109/IVS.2013.6629601

Lefèvre, S., Vasquez, D., and Laugier, C. (2014). A survey on motion

prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1:1.

doi: 10.1186/s40648-014-0001-z

Mirus, F., Stewart, T. C., and Conradt, J. (2018). “Towards cognitive automotive

environment modelling: reasoning based on vector representations,” in 26th

European Symposium on Artificial Neural Networks, ESANN 2018 (Bruges),

55–60.

Plate, T. (1994). Distributed representations and nested compositional structure

(PhD thesis). University of Toronto, Toronto, ON, Canada.

Polychronopoulos, A., Tsogas, M., Amditis, A., and Andreone, L. (2007).

Sensor fusion for predicting vehicles’ path for collision avoidance systems.

IEEE Trans. Intell. Transport. Syst. 8, 549–562. doi: 10.1109/TITS.2007.

903439

Schmüdderich, J., Rebhan, S., Weisswange, T., Kleinehagenbrock, M., Kastner, R.,

Nishigaki, M., et al. (2015). “A novel approach to driver behavior prediction

using scene context and physical evidence for intelligent adaptive cruise control

(I-ACC),” in Future Active Safety Technology Towards Zero Traffic Accidents

(FAST-Zero) (Gothenburg: FISITA).

Widdows, D., and Cohen, T. (2014). Reasoning with vectors: a continuous model

for fast robust inference. Logic J. IGPL 23, 141–173. doi: 10.1093/jigpal/jzu028

Conflict of Interest: FM was employed by BMW AG. PB and TS were employed

by Applied Brain Research Inc.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Mirus, Blouw, Stewart and Conradt. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 17 October 2019 | Volume 13 | Article 84

https://doi.org/10.1109/MITS.2014.2360306
https://doi.org/10.1109/TITS.2015.2506642
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1016/j.neunet.2012.02.023
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://doi.org/10.1126/science.1225266
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/IVS.2013.6629601
https://doi.org/10.1186/s40648-014-0001-z
https://doi.org/10.1109/TITS.2007.903439
https://doi.org/10.1093/jigpal/jzu028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	An Investigation of Vehicle Behavior Prediction Using a Vector Power Representation to Encode Spatial Positions of Multiple Objects and Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. Vector Symbolic Architectures
	2.1.1. Prerequisites
	2.1.2. Convolutive-Power Representation

	2.2. Models
	2.2.1. LSTM Networks
	2.2.2. NEF Networks
	2.2.3. Mixture-of-Experts Online Learning

	2.3. Data and Pre-processing
	2.3.1. On-Board-Sensors Data Set
	2.3.2. NGSIM US-101 Data Set
	2.3.3. Pre-processing
	2.3.4. Encoding Schemes

	3. Experiments and Results
	3.1. Model Training
	3.1.1. LSTM Networks
	3.1.2. NEF Networks
	3.1.3. Mixture-of-Experts Online Learning

	3.2. Evaluation
	3.2.1. LSTM Models
	3.2.2. NEF Networks
	3.2.3. Mixture-of-Experts Online Learning

	4. Discussion
	4.1. Conclusion
	4.2. Future Work

	Author Contributions
	References

