
ORIGINAL RESEARCH
published: 10 December 2019

doi: 10.3389/fnbot.2019.00103

Frontiers in Neurorobotics | www.frontiersin.org 1 December 2019 | Volume 13 | Article 103

Edited by:

Hong Qiao,

University of Chinese Academy of

Sciences, China

Reviewed by:

Jiwen Lu,

Tsinghua University, China

David Haim Silver,

Independent Researcher, Haifa, Israel

Timothy P. Lillicrap,

Google, United States

*Correspondence:

Eiji Uchibe

uchibe@atr.jp

Received: 17 December 2018

Accepted: 27 November 2019

Published: 10 December 2019

Citation:

Ohnishi S, Uchibe E, Yamaguchi Y,

Nakanishi K, Yasui Y and Ishii S (2019)

Constrained Deep Q-Learning

Gradually Approaching Ordinary

Q-Learning.

Front. Neurorobot. 13:103.

doi: 10.3389/fnbot.2019.00103

Constrained Deep Q-Learning
Gradually Approaching Ordinary
Q-Learning

Shota Ohnishi 1, Eiji Uchibe 2*, Yotaro Yamaguchi 3, Kosuke Nakanishi 4, Yuji Yasui 4 and

Shin Ishii 2,3

1Department of Systems Science, Graduate School of Informatics, Kyoto University, Now Affiliated With Panasonic Co., Ltd.,

Kyoto, Japan, 2 ATR Computational Neuroscience Laboratories, Kyoto, Japan, 3Department of Systems Science, Graduate

School of Informatics, Kyoto University, Kyoto, Japan, 4Honda R&D Co., Ltd., Saitama, Japan

A deepQ network (DQN) (Mnih et al., 2013) is an extension of Q learning, which is a typical

deep reinforcement learning method. In DQN, a Q function expresses all action values

under all states, and it is approximated using a convolutional neural network. Using the

approximated Q function, an optimal policy can be derived. In DQN, a target network,

which calculates a target value and is updated by the Q function at regular intervals,

is introduced to stabilize the learning process. A less frequent updates of the target

network would result in a more stable learning process. However, because the target

value is not propagated unless the target network is updated, DQN usually requires a

large number of samples. In this study, we proposed Constrained DQN that uses the

difference between the outputs of the Q function and the target network as a constraint

on the target value. Constrained DQN updates parameters conservatively when the

difference between the outputs of the Q function and the target network is large, and

it updates them aggressively when this difference is small. In the proposed method, as

learning progresses, the number of times that the constraints are activated decreases.

Consequently, the update method gradually approaches conventional Q learning. We

found that Constrained DQN converges with a smaller training dataset than in the case

of DQN and that it is robust against changes in the update frequency of the target

network and settings of a certain parameter of the optimizer. Although Constrained DQN

alone does not show better performance in comparison to integrated approaches nor

distributed methods, experimental results show that Constrained DQN can be used as

an additional components to those methods.

Keywords: deep reinforcement learning, deep Q network, regularization, learning stabilization, target network,

constrained reinforcement learning

1. INTRODUCTION

In recent years, considerable research has focused on deep reinforcement learning (DRL), which
combines reinforcement learning and deep learning. Reinforcement learning is a framework for
obtaining a behavioral policy that maximizes value through trial and error, even under unknown
conditions. Deep learning is a method of high-level pattern recognition, and it has demonstrated
efficient performance in a variety of image-processing problems. DRL has been applied to various
optimization problems, such as robot (Levine et al., 2016) and drone control (Kahn et al., 2017)
and game learning (Mnih et al., 2013). Alpha Go (Silver et al., 2016) is one of the most well-known

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00103
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00103&domain=pdf&date_stamp=2019-12-10
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:uchibe@atr.jp
https://doi.org/10.3389/fnbot.2019.00103
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00103/full
http://loop.frontiersin.org/people/75175/overview
http://loop.frontiersin.org/people/718994/overview
http://loop.frontiersin.org/people/70366/overview

Ohnishi et al. Constrained Deep Q-Learning

applications of DRL. Alpha Go was created in 2016, and it later
defeated Lee Sedol (9 dan, or 9th level) and Ke Jie (9 dan), the
world’s best Go players. The newest version of Alpha Go outplays
the previous version without prior knowledge of the positions
of the stones or historical records of human actions during
play (Silver et al., 2017). However, use of DRL still faces several
unresolved problems. These problems include the requirement
for a very large number of samples, the inability to plan a long-
term strategy, and the tendency to perform risky actions in
actual experiments.

The original DRL is a Deep Q Network (DQN) (Mnih et al.,
2013, 2015) proposed by Google Deep Mind, which learned
to play 49 different Atari 2600 games simply through a game
screen. Q learning (Watkins and Dayan, 1992; Sutton and Barto,
1998) is a typical reinforcement learning method. In Q learning,
an optimal action policy is obtained after learning an action
value function (a.k.a. Q function). DQN uses a convolutional
neural network (CNN) to extract features from a screen and
Q learning to learn game play. Considerable research has been
conducted on expanded versions of DQN, such as double Q
learning (van Hasselt, 2010; van Hasselt et al., 2016) that reduces
overestimation of the action values, prioritized experience replay
(Schaul et al., 2015), which gives priority to experience data used
for learning, dueling network architecture (Wang et al., 2016),
which outputs action values from state values and advantage
values, and the asynchronous learning method with multiple
agents (Mnih et al., 2016). Rainbow DDQN (Hessel et al., 2017)
combines several DQN extensions: Double DQN, prioritized
experience replay, dueling network, multi-step bootstrap targets,
Noisy Net (Fortunato et al., 2018) that injects noise into the
networks’ weights for exploration, and Distributional DQN that
models the distribution whose expectation is the action value.
Ape-X DDQN (Horgan et al., 2018) is a distributed DQN
architecture, as in which distributed actors are separated from
the value leaner, and it employs Double DQN, dueling network
architecture, distributed prioritized experience replay, andmulti-
step bootstrap targets. Recurrent Replay Distributed DQN
(R2D2) is one of the state-of-the-art distributed architecture
that proposes distributed prioritized experience replay when the
value function is approximated by recurrent neural networks
(Kapturowski et al., 2019).

When attempting to find the optimal Q function within a
class of non-linear functions, such as neural networks, learning
becomes unstable or in some cases does not converge (Tsitsiklis
and Van Roy, 1997). In DQN, learning is stabilized through
a heuristic called experience replay (Lin, 1993) and the use of
a target network. Experience replay is a technique that saves
time-series data in a buffer called replay memory. In experience
replay, mini batch learning is performed using randomly sampled
data from the buffer. Consequently, the correlations between
the training samples are reduced, and thus the learning is
stabilized. The target network is a neural network, which is
updated with a slower cycle for the neural network representing
the Q function. By using a fixed target network to calculate the
target value, we can expect stabilization of the entire learning
process. In general, a less frequent updates of the target network
would result in a more stable learning process. For example,

Hernandez-Garcia (2019) and Hernandez-Garcia and Sutton
(2019) reported that decreasing the update frequency from 2,000
to 500 steadily reduced the instability of the algorithm. van
Hasselt et al. (2016) increased the update frequency of the target
network from 10,000 to 30,000 to reduce overestimation of
the action values. It is known that using the target network
technique disrupts online reinforcement learning and slows
down learning because the value is not propagated unless the
target network is updated (Lillicrap et al., 2016; Kim et al., 2019).
Consequently, the number of samples required for learning
becomes extremely large.

To stabilize the learning processes in DQN, Durugkar and
Stone (2017) proposed Constrained Temporal Difference (CTD)
algorithm to prevent the average target value from changing
after an update by using the gradient projection technique.
The CTD algorithm was validated by showing convergence on
Baird’s counterexample (Baird, 1995) and a grid-world navigation
task, although the CTD algorithm did not require a target
network. However, Pohlen et al. (2018) and Achiam et al.
(2019) showed that the CTD algorithm did not work well in
more complicated problems. Pohlen et al. (2018) proposed the
Temporal Consistency loss (TC-loss) method, which tries to
prevent the Q function at each target state-action pair from
changing substantially by minimizing changes of the target
network. Although the use of high discount factors usually
leads to propagation of errors and instabilities, it has been
shown that DQN with TC-loss can learn stably even with high
discount factors.

In this study, we focus on this problem and propose a method
with practically improved sample efficiency. In our proposed
method, a standard TD error is adopted for bootstrapping,
while the difference between the value of the best action of
the learning network and that of the target network is used
as a constraint for stabilizing the learning process. We call
this method Constrained DQN. When the difference between
the maximum value of the Q function and the corresponding
value of the target network is large, Constrained DQN updates
the Q function more conservatively, and when this difference
is sufficiently small, Constrained DQN behaves in the manner
of Q learning. As learning progresses, the number of times
the constraints are activated decreases, and DQN gradually
approaches conventional Q learning. Using this method, we
expect an acceleration of convergence in the early stage of
learning by reducing the delay in updating the Q function, since
the target value is calculated without using the target network.
In addition, we expect the results to be equivalent to those of
Q learning without constraints when learning is completed. We
applied our Constrained DQN to several tasks, such as some
Atari games and a couple of control problems with a discrete state
space and a continuous state space, respectively. Consequently,
Constrained DQN converged with fewer samples than did DQN,
and it was robust against fluctuations in the frequency of
updates in the target network. Although Constrained DQN alone
does not show better performance in comparison to integrated
approaches, such as Rainbow nor distributed methods like R2D2,
experimental results show that Constrained DQN can be used as
an additional component to those methods.

Frontiers in Neurorobotics | www.frontiersin.org 2 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

2. BACKGROUND

In this section, we give an outline of Q learning, which is a
typical method of value-based reinforcement learning and forms
the basis of the proposed method. Variants of Q learning are also
discussed here.

2.1. Reinforcement Learning
The agent is placed in an unknown environment, observes a
state of the environment at each time step, and receives a reward
following the selected action. Mapping a state to an action is
called a policy. The objective of reinforcement learning is to
determine the optimal policy that allows the agent to choose an
action that maximizes the expected sum of rewards received in
the future. The state of the environment is represented as s, and
the agent probabilistically selects an action a based on stochastic
policy π(a | s) = Pr(a | s). After the action selection, the state
changes to s′ according to the transition probability Pr(s′ | s, a),
and thus a reward r(s, a, s′) is obtained.

When the state transition has aMarkov property, this problem
setting is called a Markov Decision Process (MDP). On the other
hand, the environmental state s may not be observed directly or
may only be partially observed. In such a case, the agent must
predict state s from observation o. When the mapping of s to o
is stochastic, this problem setting is called a Partially Observable
Markov Decision Process (POMDP). As a solution to POMDP,
we use the history of past observations o as a pseudo state and
then apply a reinforcement learning method as if the pseudo state
constituted an ordinary MDP. The Atari game, to which DQN
was first applied, is a POMDP problem because the current game
screen alone cannot uniquely represent the game state. However,
in Mnih et al. (2015), the most recent set of four consecutive
observations was used as a pseudo state to approximately handle
the Atari game play as an MDP.

2.2. Q Learning With Function
Approximation
To illustrate the difference between Q learning and DQN, we
briefly explain the basic algorithm here. We define the sum
of discounted rewards obtained after time t as the return Rt
as follows:

Rt =

∞
∑

k=0

γ krt+k,

where 0 ≤ γ < 1 is the discount rate for future rewards. The
smaller the value of γ , the more emphasis is placed on the reward
in the near future. The action value function (Q function) is then
defined by

Qπ (s, a) = Eπ {Rt|st = s, at = a},

where Eπ {...} represents the expectation under stochastic policy
π . The Q function Qπ (s, a) represents the expected sum of
discounted rewards when the agent chooses action a under state

s and then selects actions according to policy π . The Q function
is described as the following recursive formula:

Qπ (s, a) =
∑

s′∈S

Pr(s′ | s, a)

(

r(s, a, s′)+ γ
∑

a′∈A

π(a′ | s′)Qπ (s′, a′)

)

,

where S and A are the state set and the action set, respectively.
From this formula, we can determine that the Q function
under the optimal policy π∗, i.e., the optimal Q function,
satisfies the following equation, which is known as the Bellman
optimality equation:

Q∗(s, a) = Es′{rt + γ max
a′

Q∗(s′, a′)}. (1)

In Q learning, by iteratively updating the Q function using (1)
based on empirical data, the Q function can be stochastically
converged to Q∗(s, a), and so the optimal policy can be
determined as the policy that is greedy with respect to Q∗: a∗ =
argmaxaQ

∗(s, a). In practice, a learning agent has to explore the
environment because the Q function is not reliable, and ǫ-greedy
action selection has been widely used as a stochastic policy to
probabilistically select an action a for an input state s. More
specifically, the ǫ greedy policy selects an action that maximizes
the Q function at state s with a probability of 1 − ǫ, ǫ ∈ [0, 1]
and chooses a random action with the remaining probability.
ǫ was initially set to 1.0 and gradually reduced as learning
progressed, and it was fixed after becoming a small value like 0.1.
Consequently, at the beginning of learning, various actions were
searched at random, and as learning progressed, good actions
were selectively performed based on the action value function
that had become more reliable.

When the states and actions are discrete and finite, a simple
way to represent the Q function is to use a table of values for all
pairs of states and actions. The table is arbitrarily initialized and
updated with data on the agent experience as follows:

Q(s, a)← Q(s, a)+ α

(

r + γ max
a′

Q(s′, a′)− Q(s, a)

)

,

where 0 < α ≤ 1 is the learning rate, and the larger the
learning rate, the stronger is the influence of new data for
updating. With this learning algorithm, the Q table converges
to the optimal Q function under the convergence condition
of stochastic approximation. On the other hand, because this
is based on the stochastic approximation method, a sufficient
number of data for all pairs of (s, a) is required.

In tabular Q learning, when the number of elements in the
state or action space is enormous or the state or action space
is continuous, we often express the Q function as a parametric
function Q(s, a; θ) using the parameters θ and then update the
parameters according to the gradient method:

θ ← θ + α
(

targetQ − Q(s, a; θ)
)

∇θQ(s, a; θ). (2)

Here, “targetQ” is a target value based on the optimal Bellman
Equation (1), and it is calculated as follows:

targetQ = r(s, a, s′)+ γ max
a′

Q(s′, a′; θ).

Frontiers in Neurorobotics | www.frontiersin.org 3 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

The Q function is updated according to its self-consistent
equation. Q-learning is a bootstrap method, where the Q
function approximator is regressed toward the target value,
which depends on itself. This implies that the target value changes
automatically when the learning network is updated. Therefore,
when a non-linear function, such as a neural network is used
for approximation, this learning process becomes unstable due
to dynamical changes in the target, and in the worst case, the Q
function diverges (Sutton and Barto, 1998).

3. EXTENSION OF Q LEARNING

3.1. Deep Q Network
To prevent the Q function from diverging, DQN introduces a
separate target network that is a copy of the Q function, and this
is used to calculate the target value. In this case, the Q function is
updated as follows:

θ ← θ + α
(

targetDQN − Q(s, a; θ)
)

∇θQ(s, a; θ).

Here, targetDQN is a target value computed by

targetDQN = r(s, a, s′)+ γ max
a′

T(s′, a′),

where T(s, a) represents the target network. Three alternatives
can be chosen to update the target network. The first one is
periodic update, i.e., the target network is synchronized with the
current Q function at every C learning step when the following
condition is satisfied:

total_steps mod C = 0, T ← Q,

where total_steps represents the total number of updates applied
to the Q function up to the present time. This method is based
on Neural Fitted Q Iteration (Riedmiller, 2005), which is a batch
Q learning method that employs a neural network. During the
interval from the previous update to the next update of the target
network, the learning is supervised wherein the target is given by
the immutable network T. The second alternative is symmetric
update, in which the target network is updated symmetrically
as the learning network, and this is introduced in double Q
learning (van Hasselt, 2010; van Hasselt et al., 2016). The third
possible choice is Polyak averaging update, where the parameter
of the target network is updated by the weighted average over
the past parameters of the learning network, and this was used,
for example, in Lillicrap et al. (2016). In our experiments, we
examined DQN using a periodic update of the target network.

In addition to using the target network, DQN utilizes the
previously proposed Experience Replay (ER) (Lin, 1993), which
is a heuristic that temporarily stores to memory a record of state
transitions during a certain number of steps and randomly selects
a data point from memory for learning so that the correlations
between samples are reduced and sample efficiency is increased
through the reuse of data. Specifically, when the agent selects an
action a at a state s and receives a reward r and the state then
transits to s′, this data point (s, a, r, s′) is stored in replay memory
D and used for mini-batch learning. In mini-batch learning,

the parameters are updated based on a certain number of data
points randomly selected from the replay memory D, and this
procedure is repeated several times. This makes it possible to
prevent stagnation of learning as a result of correlation between
data points while maintaining the one-step Markov property.
Therefore, the update rule of DQN with ER is given by

θ ← θ + αE(s,a,r,s′)∼U(D)

[(

targetDQN − Q(s, a; θ)
)

∇θQ(s, a; θ)
]

,
(3)

where (s, a, r, s′) ∼ U(D) indicates that an experienced sample
(s, a, r, s′) is drawn uniformly at random from the replay buffer
D. The learning process of DQN is more stable than that of
Q learning because the update rule of DQN introduces a delay
between the time when Q(s, a; θ) is updated and the time when
T(s, a) is updated. Although the use of the target network
is critical for stable learning, it hinders fast learning due to
this delay.

3.2. Techniques Together With DQN
After the DQN work, there have been additional modifications
and extensions such to enhance the speed or stability of DQN.
One is the dueling network architecture (Wang et al., 2016) that
has a neural network architecture with two parts to produce
separate estimates of state-value function V(s) and advantage
function A(s, a). More specifically, the action-value function is
decomposed as

Q(s, a; θ) = V(s; θV)+

(

A(s, a; θA)−
1

|A|

∑

a′

A(s, a; θA)

)

,

(4)

where θV and θA are respectively, the parameters of the state-
value function and of the advantage function, and θ = {θv, θA}.
It is experimentally shown that the dueling network architecture
converges faster than the conventional single-stream network
architecture (Wang et al., 2016; Tsurumine et al., 2019).

Another important technological advance is entropy-based
regularization (Ziebart et al., 2008; Mnih et al., 2016) that has
been shown to improve both exploration and robustness, by
adding the entropy of policy to the reward function. The role
of the entropy is to discourage premature convergence and
encourage policies to put probability mass on all actions. Soft Q-
learning (Haarnoja et al., 2017) is one of off-policy algorithm that
maximizes the entropy regularized expected reward objective,
and its update rule is given by

θ ← θ + αE(s,a,r,s′)∼U(D)

[(

targetSQL − Q(s, a; θ)
)

∇θQ(s, a; θ)
]

,
(5)

where targetSQL is the target value of Soft Q-learning
computed by

targetSQL = r(s, a, s′)+
γ

β
ln
∑

a′

exp
(

βT(s′, a′)
)

. (6)

Here, β is a predefined hyperparameter. Note that ln
∑

exp()
is a smoothened alternative to the maximum function, and the

Frontiers in Neurorobotics | www.frontiersin.org 4 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

target value of Soft Q-learning (6) converges to that of DQN (3)
as β →∞.

3.3. Temporal Consistency Loss
Pohlen et al. (2018) pointed out that DQN is still unstable as the
discount factor γ approaches 1 because the temporal difference
between non-rewarding subsequent states tends to be ∼0. This
also makes the learning process unstable, especially in long-
horizon MDPs, because unnecessary generalization happens
between temporally adjacent target values. Fujimoto et al. (2018)
pointed out that the variance of the target value can grow rapidly
with each update when γ is large. To resolve this instability issue,
Pohlen et al. (2018) added the following auxiliary loss function
called Temporal Consistency (TC) loss:

LTC(s
′, ã∗, θ) =

1

2

(

T(s′, ã∗)− Q(s′, ã∗; θ)
)2
, (7)

where ã∗ = argmaxa′T(s
′, a′). Although Huber loss was adopted

in the original paper, L2 loss is used in this paper to make a fair
comparison between different methods. The update rule of DQN
with TC-loss is given by

θ ← θ + αE(s,a,r,s′)∼U(D)

[(

targetDQN − Q(s, a; θ)
)

∇θQ(s, a; θ)

−λ∇θLTC(θ)
]

,

where λ is a predefined positive hyperparameter. Note that
Pohlen et al. (2018) used TC-loss together with the transformed
Bellman operator, which reduces the target’s scale and variance,
instead of clipping the reward distribution to the interval [−1, 1];
however, we do not adopt the transformed Bellman operator
because the hyperparameters of the learning algorithm should be
tuned individually for each task.

4. CONSTRAINED DQN

DQN uses a target network to calculate the target required for
updating the Q function. The target network T is synchronized
with the Q function Q at every learning step. Although this
heuristic successfully stabilized the learning process, it was
often time-consuming for learning because the value was not
propagated unless the target network was updated.

In this study, we present Constrained DQN, which not only
calculates the target with the current Q, as in the case of
conventional Q learning, but also constrains parameter updates
based on the distance between the current Q and the target
network as a way to stabilize the learning. When the difference
between the outputs of the Q function and the target network is
large, ConstrainedDQNupdates its parameters conservatively, as
in the case of DQN, but when the difference between the outputs
is small, it updates the parameters aggressively, as in the case of
conventional Q learning.

In Constrained DQN, the following loss function, which is
similar to TC-loss, is considered:

LCDQN(s
′, a∗, θ) =

1

2

(

T(s′, a∗)− Q(s′, a∗; θ)
)2
, (8)

where a∗ = argmaxa′Q(s
′, a′). The difference between

Equations (7) and (8) is that our loss function considers the
maximum value of the learning network while TC-loss uses that
of the target network. Constrained DQN updates the parameters
by the standard Q learning algorithm (2) when the following
constraint is satisfied:

E(s,a,r,s′)∼U(D)

[

LCDQN(s
′, a∗, θ)

]

≤ η, (9)

where η is a positive threshold of the constraint. Otherwise, the
loss function (8) is minimized. Consequently, Constrained DQN
updates the parameter by

θ ← θ + αE(s,a,r,s′)∼U(D)

[(

targetQ − Q(s, a; θ)
)

∇θQ(s, a; θ)

−λl(s′, a∗; θ , η)
]

, (10)

where l(s′, a∗; θ , η) is the gradient of the regularization term,
defined by

l(s′, a∗; θ , η) =

{

0 if E(s,a,r,s′)∼U(D)

[

LCDQN(s
′, a∗, θ)

]

≤ η

∇θLCDQN otherwise.

If the constraint condition is satisfied, then l(s′, a∗; θ , η) = 0 and
the update rule of Constrained DQN is identical to that of Q-
learning with experience replay. Similar to DQN with periodic
update, the target network is synchronized with the current Q
function at every C learning step.

Constrained DQN can be used together with the techniques
described before. When the target value is computed by

targetCSQL = r(s, a, s′)+
γ

β
ln
∑

a′

exp
(

βQ(s′, a′; θ)
)

, (11)

the update rule is interpreted as Constrained Soft Q learning,
which can also be seen as Soft Q learning with the inequality
constraint (9).

Table 1 gives the frequency of constraint activation for each
learning phase and hyperparameter. As learning progresses
and approaches convergence, the difference between the Q
function and the target network tends to be small, and so the
frequency of activating the constraint decreases and the update
rule approaches that of ordinary Q learning. As the value of λ

increases, the influence of the constraint term increases, and so
the update rule becomes conservative as in the case of DQN. As
the value of η increases, it becomes more difficult to activate the
constraint, and so the update rule approaches that of ordinary
Q learning.

TABLE 1 | Frequency of constraint activation for each learning phase and

hyperparameter.

Learning phase Initial phase Final phase

λ Big Small

η Small Big

Frequency of activating constraint High Low

(update rule) (like DQN) (Q learning)

Frontiers in Neurorobotics | www.frontiersin.org 5 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

5. EXPERIMENTS RESULTS

In this section, we compare the proposed method and the
conventional method using an MNIST maze task, a Mountain-
Car task based on OpenAI Gym (Brockman et al., 2016), a robot
navigation task, and two Atari games. The state spaces of the
MNIST maze, the Mountain-Car, and the robot navigation are
a grayscale image, a two-dimensional continuous real-valued
vector, and a concatenation of an RGB image and a 360-
dimensional LIDAR vector, respectively. The state space of the
Atari games is explained later.

5.1. MNIST Maze
5.1.1. Task Setting
The MNIST maze is a 3 × 3 maze (Elfwing et al., 2016) tiled
with handwritten number images taken from the MNIST dataset
shown in Figure 1. The images in a maze are randomly taken
from MNIST for each episode, but the number on each maze
square is fixed for all learning episodes. The initial position of the
agent is “1” (upper-left square of themaze). In each step, the agent
observes the image in which it resides and then chooses an action
of up, down, left, or right based on its observation according
to the behavioral policy. The agent then moves in its chosen
direction in a deterministic manner; however, it is impossible
to pass through pink walls, so if the agent selects the direction
of going through a pink wall, the movement is ignored and the
agent position does not change. If the agent reaches “5” across
the green line without going through any red line, a+1 reward is
given, and if the agent reaches “5” across a red line, a −1 reward
is given. The episode ends when the agent reaches “5” or when
the agent has performed 1, 000 behavioral steps without reaching
“5.” In the latter case, a reward of 0 is given. This task requires
both MNIST handwritten character recognition and maze search
based on reinforcement learning.

We applied Q learning, DQN, DQN with TC-loss, and
Constrained DQN to this task to make a comparison. We used
a network architecture consisting of the three convolutional
layers and two fully connected layers shown in Figure 2A. The
input dimensionality is the same as that of the MNIST images,
and the output dimensionality was four, which indicates the
number of possible actions in this task. According to the ǫ greedy
method, ǫ was reduced in the first 1, 000 steps. We set the other
parameters, such as the size of replaymemory and the parameters
of the optimizer, RMSProp [more specifically, RMSPropGraves
(Graves, 2013) described in Appendix], to those used in DQN
(Mnih et al., 2015). As for the hyperparameters, λwas set to either
0.5, 1, 2, or 5, and ηwas set to either 10−2, 10−3, 10−4, 10−5, 10−6,
or 0. Training takes about 4 h on a single NVIDIATesla K40GPU
for each setting.

5.1.2. Results
Figure 3 presents the learning curves of Q learning, DQN, DQN
with TC-loss, and Constrained DQN. The best hyperparameters
of Constrained DQN are λ = 2, η = 10−5, and C = 10, those of
DQN with TC-loss are λ = 1 and C = 10, 000, and that of DQN
isC = 10, 000.We found that the number of samples required for
convergence is smaller in ConstrainedDQN than in the baselines.

FIGURE 1 | MNIST maze task. The agent aims to reach goal “5” on the 3× 3

maze by selecting either an up, down, left, or right movement. The lines

separating the squares are yellow, green, red, or pink, and they do not change

over the episodes. It is impossible to pass through a pink wall, and if the agent

selects the direction to a pink wall, the movement is canceled and that agent’s

position does not change. If the agent reaches “5” across the green line, a +1

reward is provided, and if the agent reaches “5” across the red line, a −1

reward is provided. The agent can observe an image of 24× 24 pixels in which

it resides. The number assignment is fixed for all episodes, but the image for

each number is changed at the onset of each episode. For example, the upper

left tile is always a “1,” but the image of “1” is randomly selected from the

training data set of MNIST handwritten digits at the onset of each episode.

We also found that DQN had an unstable learning curve after
about 2,000 training episodes. DQN with TC-loss yielded a stable
learning curve, but it learned much more slowly than did DQN
or Constrained DQN. We did not find Q learning to work in
the MNIST maze task. Note here that we consistently used the
same network architecture, including CNN, even in the case of
Q learning.

Figure 4 presents the average Q value after 50,000 learning
steps and the true Q value for each state and action pair. We
performed 100 episodes for evaluation, and the Q value averaged
over those episodes is shown for each state and action pair.
Here, we obtained the true Q values through complete dynamic
programming. Figure 5 illustrates the variance of the Q value
after 50,000 learning steps. These figures show that the average
Q value estimated by Constrained DQN is almost the same as
the true Q value, and the variance of the Q value estimated by
Constrained DQN is smaller than that of DQN. Although the
learned policy obtained by DQN was optimal, the estimated Q
function was far from the true one.

Figure 6 presents the results when we changed the update
frequency of the target network. We examined DQN and our
Constrained DQN with three hyperparameter settings. DQN did
not converge when the update frequency of the target network

Frontiers in Neurorobotics | www.frontiersin.org 6 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 2 | Network structures for the Q function. (A) MNIST maze task. (B) Mountain-Car task. (C) robot navigation task. Every convolutional layer is represented by

its type, channel size, kernel size, and stride size. Other layers are represented by their types and dimensions.

FIGURE 3 | Learning curve of DQN (red), Q learning (green), DQN with

TC-loss (cyan), and Constrained DQN (blue) on the MNIST maze task. Here, Q

learning refers to DQN without the use of experience reply or the target

network. Horizontal axis denotes the number of learning episodes. Vertical axis

denotes the moving average of the total reward received in each learning

episode. Lightly colored zone represents the standard deviation.

was one learning step (that is, Q learning) or 10 learning steps,
but Constrained DQN converged regardless of the setting of λ

and ηwhen the update of the target network was performed every
10 learning steps. Since the Q learning did not progress well, the
average number of steps per episode was large; this is the reason
why the number of episodes was <10,000 even in the later part
of the 1,000,000 steps. From this result, we consider Constrained
DQN to be more robust to changes in the update frequency of the
target network than DQN.

Figure 7 shows the number of times the constraint was
activated along the learning steps by Constrained DQN.
The figure presents the results for two different settings of
hyperparameters η. In both cases, the constraint was activated
many times in the early stages of learning, but the number of
activations decreased as learning progressed. From this result,
it is clear that the constraint was effective in the early learning
stages, and the learning was equivalent to the unbiasedQ learning
in later stages. When η is large, it is easy to satisfy the constraint:
the smaller the η, the more the constraint was activated.

Figure 8 is a heatmap of the sum of rewards received
throughout learning for each combination of λ, η, and the update

Frontiers in Neurorobotics | www.frontiersin.org 7 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 4 | Comparison of values of the Q function for each state and action pair on the MNIST maze task. (A) Average Q value obtained by Constrained DQN after

50,000 training steps (not training episodes). (B) Average Q value obtained by DQN. (C) True Q value. The values of up, down, left, and right at each state are filled at the

corresponding sides of the number position of Figure 1.

frequency of the target network in Constrained DQN. When the
update frequency of the target network was large, the square
distance between theQ function and the target network was likely
large. In this case, the constraint was frequently activated so that
the convergence was delayed, especially when the threshold value
η was small. When the update frequency was small, on the other
hand, the square distance hardly increased, especially when η

was large. In such a case, the update method was close to that
of conventional Q learning even in the early stages of learning,
which made learning unstable. However, when λ = 1, the results
were reasonably good regardless of the hyperparameter setting.

5.2. Mountain-Car
5.2.1. Task Setting
Mountain-Car is a classical control task, and it has often been
used for evaluating reinforcement learning algorithms. The agent
(i.e., the car) aims to reach the fixed goal x = 0.5 (the
top of the hill) from the fixed start position x = −0.5 (at
almost the bottom of the valley). The agent can observe its

current position and velocity. Position is limited to the range
[−1.2, 0.6], velocity is limited to the range [−0.07, 0.07], and time
is discretized. Available actions at each discretized time include
“left acceleration” (a = 0), “no acceleration” (a = 1), and “right
acceleration” (a = 2). After determining the action (a), velocity
is calculated as follows:

v = v+ 0.001(a− 1)− 0.0025 cos 3x,

where v is velocity and x is position. Even if the agent continues
to choose “right acceleration” from the start position, the agent
cannot reach the goal because of insufficient motion energy. To
reach the goal, the agent must choose “left acceleration” first and
accumulate enough potential energy on the left-side slope, which
is then transformed into motion energy to climb up the right-side
hill. The agent is given a−1 reward at every discretized time step.
If the agent reaches the goal, the episode ends; that is, the problem
is defined as a stochastic shortest path problem.

We applied Q learning, DQN, DQN with TC-loss, and
ConstrainedDQN to this task andmade a comparison.We used a

Frontiers in Neurorobotics | www.frontiersin.org 8 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 5 | Comparison of variance of the Q function for each state and action pair on the MNIST maze task. (A) Variance of Q value obtained by Constrained DQN

after 50,000 training steps. (B) Variance of Q value obtained by DQN. The values of up, down, left, and right at each state are filled at the corresponding sides of the

number position of Figure 1.

network architecture consisting of the two fully connected layers
shown in Figure 2B. The input dimensionality is two, current
position and velocity, and the output dimensionality is three,
corresponding to the number of possible actions. According to
the ǫ greedy method, ǫ was reduced in the first 10, 000 steps and
then fixed at a constant value. We set the replay memory size
to 10, 000, target network update frequency to 100, λ to 2, and
η to 10−3. We set the other parameters, such as the RMSProp
parameters, except ξ , to those used in DQN (Mnih et al., 2015).
It took about 6 h to train each method on a standard multi-core
CPU (16-core/32-thread, 2.4 GHz, and 256 GB RAM).

5.2.2. Results
Figure 9 shows the learning curves of Q learning, DQN, DQN
with TC-loss, and Constrained DQN. We conducted four
independent runs for each algorithm. The lines excepting DQN
indicate the moving average across four independent runs. One
run of DQN was excluded because it failed to learn. We found
that Constrained DQN performed better than DQN with TC-
loss and Q learning, and learned faster than DQN although
its performance was lower than that of DQN. DQN with TC-
loss converged faster and achieved more stable learning than
Q learning. Although DQN achieved the highest total rewards,
its learning process was unstable. Figure 10 shows the learning
curves of DQN andConstrainedDQN, with two different settings
of ξ , which is one of the RMSProp parameters. We observed that
the number of samples required for convergence was smaller in
Constrained DQN than in DQN for both settings of ξ . We could
also observe that when ξ = 0.01, the original DQN was unstable
and even degraded after attaining a temporary convergence. On
the other hand, our Constrained DQN demonstrated relatively
good stability. The learning curves of DQN with TC-loss and
Q-learning are shown in Figure S1.

Figure 11 shows how the L1-norms of gradients of the last
fully-connected layer changed during learning. When ξ = 1,
in the original DQN and Constrained DQN, the number of
parameter updates was small. When ξ = 0.01, on the other
hand, the number of updates by the original DQN was much
larger than that of Constrained DQN. We consider that this
is the cause of instability in the original DQN. Because the
target value was fixed for C learning steps in the original DQN,
the variance of gradient decreased rapidly within the C steps,
making it very small, especially at the end of the C steps. On
the other hand, because the target value changed every step in
Constrained DQN, the variance of gradient smoothly became
small through the entire learning process. ξ worked only when
the variance of gradient was very small. In such situations, the
smaller the ξ , the larger was the number of parameter updates.
Consequently, it is considered that in the original DQN, ξ worked
too frequently and thus the resulting large number of updates
made learning unstable. Actually, with a small ξ (ξ = 0.01),
the DQN learning was unstable. On the other hand, Constrained
DQN was more robust regardless of the setting of ξ because the
variance of gradient decreased smoothly throughout the entire
learning process.

5.3. Robot Navigation Task
5.3.1. Task Setting
Constrained DQN is evaluated on the robot navigation task
shown in Figure 12, in which the environmental model is
provided by the task’s official site (Robotis e-Manual, 2019). The
environment consists of six rooms with six green trash cans,
three tables, and three bookshelves. We use a Turtlebot 3 waffle
pi platform equipped with a 360◦ LIDAR. The robot has five
possible actions at every step: (1) move forward, (2) turn left, (3)
turn right, (4) rotate left, and (5) rotate right. The objective is to

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 6 | Effects of the update frequency of the target network on the MNIST maze task. (A) Learning curves of DQN. (B) Learning curves of Constrained DQN

with λ = 1 and η = 10−5. (C) That of Constrained DQN with λ = 1 and η = 10−2. (D) That of Constrained DQN with λ = 2 and η = 10−5. Horizontal axis denotes the

number of learning episodes in the logarithmic scale. Vertical axis denotes the moving average of the reward received in each learning episode. The legend indicates

the update frequency of the target network. Shaded area represents the standard deviation. Each experiment was performed for 1,000,000 learning steps, and the

results of up to 100,000 episodes are displayed.

navigate to one of the green trash cans placed in the environment.
The robot receives a positive reward of +10 for reaching the
trash can but a negative reward of −1 for hitting an obstacle.
If the robot hits an obstacle, it remains in its current position.
If the robot reaches the trash can, the position of the robot is
re-initialized randomly in the environment.

We applied Q learning, DQN, DQN with TC-loss, Double
DQN (DDQN), Soft Q learning (SQL), and Constrained DQN.
The Q function is implemented by the two-stream neural
network shown in Figure 2C, in which the input is the values
measured by the RGB image and the LIDAR and the output is
a five-dimensional vector representing action values. To collect
experience efficiently, we use three robots that share the Q
function, i.e., one ǫ greedy policy derived from the Q function
controls three robots independently and they collect experiences
that are sent to the replay buffer. In that sense, this is a simplified

implementation of the large-scale distributed optimization that
is known to accelerate the value learning (Levine et al., 2016).
We conducted five independent runs for each method. Every
run included 100 episodes, and each episode had at most 10,000
steps. The memory size of the replay buffer was 30,000 steps. The
target network was updated every 3,000 steps. The training batch
size was 32, uniformly sampled from the memory buffer. The
hyperparameters were α = 0.01, γ = 0.99, ǫ = 0.1, β = 10.
We used Ubuntu Linux 16.04 LTS as the operating system and
version 375.66 of the NVIDIA proprietary drivers along with
CUDA Toolkit 8.0 and cuDNN 6. Training takes about 1 day on
a single NVIDIA Tesla P100 GPU for one setting.

5.3.2. Results
Since there are two sources of rewards and experience was
collected by multiple robots asynchronously, we evaluated the

Frontiers in Neurorobotics | www.frontiersin.org 10 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 7 | Comparison of the number of steps by which the constraint is violated with different frequencies of updating the target network on the MNIST maze task.

Horizontal axis represents the number of learning steps. Vertical axis represents the number of steps in which the constraints were activated within a fixed number of

steps. The left column is the result when η = 10−5, and the right column is when η = 10−2 (λ = 1 in both columns). (A) The case of C = 10000 and η = 10−5, (B) that

of C = 10000 and η = 10−2, (C) that of C = 1000 and η = 10−5, (D) that of C = 1000 and η = 10−2, (E) that of C = 100 and η = 10−5, (F) that of C = 100 and

η = 10−2, (G) that of C = 10 and η = 10−5, and (H) that of C = 10 and η = 10−5.

learned Q function every five episodes by executing a greedy
policy. Figure 13 shows the number of steps used to go to one
of the green trash cans and the number of collisions. This shows

that Constrained DQN obtained nearly the fewest steps, the
lowest collision rates, and the fastest convergence of learning
among the methods compared here. Although there was not

Frontiers in Neurorobotics | www.frontiersin.org 11 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 8 | Total rewards across different parameter settings on the MNIST maze task. Darker colors depict low total rewards and lighter colors depict higher ones. In

each panel, the horizontal and vertical axes denote the update frequency of the target network and the λ value, respectively. (A) The case of η = 10−2, (B) that of

η = 10−5, and (C) that of η = 0.

FIGURE 9 | Learning curves of DQN (red), Q learning (green), DQN with TC-loss (cyan), and Constrained DQN (blue) on the Mountain-Car task. Horizontal axis

denotes the number of learning episodes. Vertical axis denotes the moving average of the total reward received in each learning episode. The shaded area represents

the standard deviation.

much difference in the number of steps between DQN with and
without TC-loss, the number of steps for DQN decreased faster
than that for DQN with TC-loss. Q learning learned collision
avoidance behaviors faster than DQN, but it completely failed
to learn about approaching the trash cans. The performance
of DDQN at the end of episode is comparable to that of

Constrained DQN, but DDQN learned relatively slower than
Constrained DQN.

5.4. Atari Games
Finally, we investigate whether Constrained DQN can be
combined with useful and existing techniques to improve

Frontiers in Neurorobotics | www.frontiersin.org 12 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 10 | Comparison of learning curves with different random seeds on the Mountain-Car task. Each color indicates the learning curve for one random seed. We

examined DQN and our Constrained DQN with two settings of ξ , which is the parameter of the optimizer (RMSProp). Horizontal axis denotes the number of learning

steps (not learning episodes). Vertical axis denotes the moving average of the reward received in each learning episode. (A) The learning curves of DQN (ξ = 1), (B)

those of DQN (ξ = 0.01), (C) those of Constrained DQN (ξ = 1), and (D) those of Constrained DQN (ξ = 0.01).

sample efficiency. Here, we examined two techniques. One is
the dueling network architecture, and the other is entropy-
based regularization.

5.4.1. Task Setting
We evaluate Constrained DQN in two Atari 2600 games, namely
Ms. Pac-Man and Seaquest, which were also evaluated by Pohlen
et al. (2018). The goal of Ms. Pac-Man is to earn points by eating
pellets while avoiding ghosts. Seaquest is an underwater shooter
and the goal is to destroy sharks and enemy submarines to rescue
divers in the sea. In these experiments, Constrained DQN and
DQNwith TC-loss were evaluated as the standard algorithm. For
each algorithm, the dueling network architecture and the entropy
regularization were selected to examine whether Constrained
DQN can be used together with such useful techniques developed
for improving learning processes. Consequently, we applied
six algorithms on the Atari games. Note that TC-loss with
the entropy regularization and that with the dueling network
architecture are identical to Soft Q learning with TC-loss and
Dueling DQN with TC-loss, respectively.

Although the original games are deterministic, randomness
was added to introduce uncertainty to the starting state, by

performing a random number of no-op actions on initialization.
We used the same network architecture used by Mnih et al.
(2015) for the standard algorithms and those with the entropy
regularization, and the dueling network architecture used by
Wang et al. (2016) for the algorithms with the dueling network
architecture. The input at each time step was a preprocessed
version of the current frame. Preprocessing consisted of gray-
scaling, down-sampling by a factor of 2, cropping the game space
to an 80 × 80 square and normalizing the values to [0, 1]. We
stack four consecutive frames together as a state input to the
network and clip the reward to the range of [−1, 1]. We adopted
the optimizer and hyperparameters of Pohlen et al. (2018) and
β = 1 for the entropy regularization.

5.4.2. Results
Figure 14 shows that Constrained DQN with the dueling
network architecture achieved higher rewards faster than other
methods on both games. The learning speed of Constrained
DQN with entropy regularization was comparable to that of
Constrained DQN with the dueling network architecture at the
early stage of learning, but its learning process was less stable
on Ms. PacMan. However, usage of the entropy regularization

Frontiers in Neurorobotics | www.frontiersin.org 13 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 11 | Comparison of the L1-norm of gradients of the last fully connected layer with different random seeds on the Mountain-Car task. We examined DQN and

our Constrained DQN with two different settings of ξ , which is the parameter of the optimizer (RMSProp). Horizontal axis denotes the number of learning steps, and

vertical axis denotes the moving average of the L1-norm of gradients for the last fully connected layer. (A) The L1-norm gradients of DQN (ξ = 1), (B) those of DQN

(ξ = 0.01), (C) those of Constrained DQN (ξ = 1), and (D) those of Constrained DQN (ξ = 0.01).

did not improve the performance on Seaquest, and it achieved
almost the same performance as that of the normal Constrained
DQN at the end of learning. This might have occurred, because
the hyperparameter of the entropy regularization, β , was fixed
during learning.

The experimental results also show that TC-loss and its
variants performed worse than the corresponding Constrained
DQNs. The performance of TC-loss with the dueling network
architecture was comparable to that of Constrained DQN at the
end of learning, but it took more epochs to converge.

6. DISCUSSION

We performed experiments involving four kinds of tasks,
the MNIST maze, Mountain-Car, robot navigation, and two
Atari games. Through these experiments, we demonstrated that
Constrained DQN converges with fewer samples than does DQN
with and without TC-loss and Q learning and, moreover, that
Constrained DQN is more robust against changes in the target

update frequency and the setting of important parameters of the
optimizer, i.e., ξ .

Because the proposed method is a regularization method

for DQN, it can more efficiently solve any problem to which
DQN has been applied. The experimental results on the Atari
games show that Constrained DQN can be used together with
the dueling network architecture and the entropy regularization.
We think that Constrained DQN can be combined with other
techniques that employ a target network, such as improved
experience replay techniques (Schaul et al., 2015; Andrychowicz
et al., 2017; Karimpanal and Bouffanais, 2018), parametric
function of the noise (Fortunato et al., 2018; Plappert et al.,
2018), and modified Bellman operators (Bellemare et al., 2016;
Pohlen et al., 2018). It suggests that Rainbow Constrained DQN
and Ape-X Constrained DQN are respectively considered as an
alternative of Rainbow DDQN (Hessel et al., 2017) and Ape-
X DQN (Horgan et al., 2018), in which DDQN is replaced
with Constrained DQN. Recently, van Hasselt et al. (2019)
showed that data-efficient Rainbow outperformed model-based

Frontiers in Neurorobotics | www.frontiersin.org 14 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 12 | Robot navigation task. Three mobile robots (Turtlebot3 waffle pi), six green trash cans, and various objects were placed in the environment. The

objective of the robot is to move to one of the green trash cans without colliding against other objects, including obstacles.

FIGURE 13 | Learning curves of Constrained DQN, DQN, DQN with TC-loss, Q learning, Double DQN (DDQN), and and Soft Q learning (SQL) on the robot navigation

task. Here, Q learning refers to DQN without the use of experience reply. (A) Number of steps to reach the green trash can. (B) Number of collisions with obstacles.

Horizontal axis denotes the number of learning episodes. Vertical axes denote, respectively, the number of steps and that of collisions. Shaded area represents the

standard deviation.

reinforcement learning by extensively using the replay buffer to
train and improve the reinforcement learning agent on the Atari
games. Their study is impressive because no algorithmic changes
were required in its implementation. It is promising to evaluate
data-efficient Constrained DQN under the same setting of van
Hasselt et al. (2019).

However, it is not trivial to integrate Constrained DQN with
DDQN and its extension called Weighted Double Q learning
(Zhang et al., 2017), because in these methods the target network

was used to decompose the max operation into action selection
and action evaluation. To reduce the problem of overestimation,
the mellowmax operator (Kim et al., 2019) is promising, which is
a variant of Soft Q learning.

Speedy Q learning (Azar et al., 2011) is based on a similar
idea to that of our study. Speedy Q learning uses the difference
between the output of the current Q function and the previous
step’s Q function as the constraint. Because the authors of that
method only examined the task of discrete state space, one may

Frontiers in Neurorobotics | www.frontiersin.org 15 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

FIGURE 14 | Average performance over ten experiments of the standard Constrained DQN (C-DQN), C-DQN with the dueling architecture (C-DQL w/ DA), C-DQN

with the entropy regularization (C-DQL w/ ER), the standard TC-loss, TC-loss and the dueling architecture (TC-loss w/ DA), and TC-loss and the entropy regularization

(TC-loss w/ ER). Here, TC-loss refers to DQN with TC-loss. (A) Ms. PacMan. (B) Seaquest. Shaded area represents one standard deviation from the mean.

wonder whether it could be applied to learning with function
approximation. In our study, deep/shallow neural networks were
used for function approximation so that the results could be
verified by tasks of both discrete state space and continuous state
space. He et al. (2017) is another method of adding a constraint
to Q learning. In this method, the accumulated reward is added
to the data saved in the replay memory to allow the upper and
lower limits of the Q function to be estimated at each learning
step. Averaged DQN (Anschel et al., 2017) is similar to our
method because both methods use past Q functions. Averaged
DQN uses Q functions of the past few steps for calculating its
output, i.e., action values, as the average of the outputs of the
past Q functions. This averaging is effective in reducing the
variance of the approximation error so that learning can be
stabilized. One possible drawback of this method is the necessity
of maintaining multiple Q functions, which are often represented
as costly neural networks. On the other hand, our method
requires only two networks, the current Q function and the target
network, as in DQN, and so the number of parameters is not
so large.

7. CONCLUDING REMARKS

In this study, we proposed Constrained DQN, which employs
the difference between the outputs of the current Q function and
the target network as a constraint. Based on several experiments
that include the discrete state-spaceMNISTmaze, the continuous
state-space Mountain-Car, simulated robot navigation task, and
two Atari games, we showed that Constrained DQN required
fewer samples to converge than did the baselines. In addition, the
proposed method was more robust against changes in the update
frequency of the target network and the setting of important
optimizer parameters (i.e., ξ of the RMSProp) than was DQN.

The several tasks used in this study have a discrete action
space, but the proposed method can be combined with other

methods that are applicable to problems with continuous action
space, such as deep deterministic policy gradient (Lillicrap
et al., 2016) and normalized advantage function (Gu et al.,
2016). If the proposed method could also reduce the number
of samples in continuous action space problems, it would be
available for a wide range of applications, such as robot control
and autonomous driving, since real-world applications involve
complications in the collection of a sufficient number of samples
for training deep reinforcement learners.

Possible future directions of this study include the following.
Although we have shown that our proposed method was
sample efficient experimentally, we have not yet established
any theoretical reason for Constrained DQN to work properly.
Recently, theoretical analyses are made for DQN (Yang et al.,
2019) and conservative value iteration (Kozuno et al., 2019).
For better understanding of Constrained DQN, we will establish
the algorithmic and statistical rates of convergence. In addition,
hyperparameter λwas fixed at a heuristic value in this study, but λ
could also be optimized under the formulation of the constrained
optimization; we can expect an improvement in performance by
applying this extension.

AUTHOR CONTRIBUTIONS

SO and EU conceived the research. SO, EU, KN, YYas, and SI
developed the algorithm. SO and YYam performed the computer
simulations. SO, YYam, and EU analyzed the data. SO wrote the
draft. SI and EU revised the manuscript. All authors prepared the
submitted version.

FUNDING

This work was based on the results obtained from a project
commissioned by the New Energy and Industrial Technology

Frontiers in Neurorobotics | www.frontiersin.org 16 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

Development Organization (NEDO) and was partially supported
by JSPS KAKENHI Grant Numbers JP16K12504, JP17H06042,
and 19H05001 (for EU), and JP17H06310 and JP19H04180
(for SI). Computer resources were provided by Honda
R&D Co., Ltd.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2019.00103/full#supplementary-material

REFERENCES

Achiam, J., Knight, E., and Abbeel, P. (2019). Towards characterizing divergence

in deep Q-learning. arXiv[Prepront].arXiv:1903.08894.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,

et al. (2017). “Hindsight experience replay,” in Advances in Neural Information

Processing Systems, Vol. 30, eds I. Guyon, U. V. Luxburg, S. Bengio, H.

Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Long Beach, CA: Curran

Associates, Inc.), 5048–5058.

Anschel, O., Baram, N., and Shimkin, N. (2017). “Averaged-DQN: variance

reduction and stabilization for deep reinforcement learning,” in Proceedings

of the 34th International Conference on Machine Learning (Sydney, NSW),

176–185.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen, H. J. (2011). “Speedy

Qlearning,” in Advances in Neural Information Processing Systems, Vol. 24, eds

J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger

(Granada: Curran Associates, Inc.), 2411–2419.

Baird, L. (1995). “Residual algorithms: reinforcement learning with function

approximation,” in Proceedings of the 12th International Conference onMachine

Learning (Montreal, QC), 30–37. doi: 10.1016/B978-1-55860-377-6.50013-X

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P. S., and Munos, R. (2016).

“Increasing the action gap: New operators for reinforcement learning,” in

Proceedings of the 30th AAAI Conference on Artificial Intelligence (Phoenix,

AZ).

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.

(2016). OpenAI gym. arXiv[Preprint].arXiv:1606.01540.

Durugkar, I., and Stone, P. (2017). “TD learning with constrained gradients,” in

Proceedings of the Deep Reinforcement Learning Symposium, NIPS 2017 (Long

Beach, CA).

Elfwing, S., Uchibe, E., and Doya, K. (2016). From free energy to expected energy:

improving energy-based value function approximation in reinforcement

learning. Neural Netw. 84, 17–27. doi: 10.1016/j.neunet.2016.07.013

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., et al.

(2018). “Noisy networks for exploration,” in Proceedings of the 6th Inernational

Conference on Learning Representation (Vancouver, BC).

Fujimoto, S., van Hoof, H., and Meger, D. (2018). “Addressing function

approximation error in actor-critic methods,” in Proceedings of the 35th

International Conference on Machine Learning (Stockholm).

Graves, A. (2013). Generating sequences with recurrent neural networks.

arXiv[Preprint].arXiv:1308.0850.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). “Continuous deep

Q-learning with model-based acceleration,” in Proceedings of the 33rd

International Conference on Machine Learning (New York, NY), 2829–2838.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). “Reinforcement learning

with deep energy-based policies,” in Proceedings of the 34th International

Conference on Machine Learning (Sydney, NSW), 1352–1361.

He, F. S., Liu, Y., Schwing, A. G., and Peng, J. (2017). “Learning to play in a day:

faster deep reinforcement learning by optimality tightening,” in Proceedings of

the 5th Inernational Conference on Learning Representation (Toulon).

Hernandez-Garcia, J. F. (2019). Unifying n-step temporal-difference action-value

methods (Master’s thesis), Master of Science in Statistical Machine Learning,

University of Alberta, Edmonton, AB, Canada.

Hernandez-Garcia, J. F., and Sutton, R. S. (2019). Understanding multi-

step deep reinforcement learning: a systematic study of the DQN target.

arXiv[Preprint].arXiv:1901.07510.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., et al.

(2017). “Rainbow: combining improvements in deep reinforcement learning,”

in Proceedings of the 32nd AAAI Conference on Artificial Intelligence (New

Orleans, LA).

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H.,

et al. (2018). “Distributed prioritized experience replay,” in Proceedings of the

6th International Conference on Learning Representations (Vancouver, BC).

Kahn, G., Zhang, T., Levine, S., and Abbeel, P. (2017). “PLATO: policy

learning using adaptive trajectory optimization,” in Proceedings of IEEE

International Conference on Robotics and Automation (Singapore),

3342–3349.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and Dabney, W. (2019).

“Recurrent experience replay in distributed reinforcement learning,” in

Proceedings of the 7th International Conference on Learning Representations

(New Orleans, LA).

Karimpanal, T. G., and Bouffanais, R. (2018). Experience replay using

transition sequences. Front. Neurorobot. 21:32. doi: 10.3389/fnbot.2018.

00032

Kim, S., Asadi, K., Littman, M., and Konidaris, G. (2019). “Deepmellow: removing

the need for a target network in deep Q-learning,” in Proceedings of the 28th

International Joint Conference on Artificial Intelligence (Macao).

Kozuno, T., Uchibe, E., and Doya, K. (2019). “Theoretical analysis of efficiency and

robustness of softmax and gap-increasing operators in reinforcement learning,”

in Proceedings of the 22nd International Conference on Artificial Intelligence and

Statistics (Okinawa), 2995–3003.

Levine, S., Pastor, P., Krizhevsky, A., and Quillen, D. (2016). “Learning hand-

eye coordination for robotic grasping with large-scale data collection,” in

Proceedings of International Symposium on Experimental Robotics (Tokyo:

Springer), 173–184.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in Proceedings of the

4th International Conference on Learning Representations (San Diego, CA).

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks.

Technical report, School of Computer Science, Carnegie-Mellon University,

Pittsburgh PA.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).

“Asynchronous methods for deep reinforcement learning,” in Proceedings of

the 33rd International Conference on Machine Learning (New York, NY),

1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,

D., et al. (2013). Playing Atari with deep reinforcement learning.

arXiv[Preprint].arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., et al.

(2018). “Parameter space noise for exploration,” in Proceedings of the 6th

Inernational Conference on Learning Representation (Vancouver, BC).

Pohlen, T., Piot, B., Hester, T., Azar, M. G., Horgan, D., Budden, D., et al.

(2018). Observe and look further: achieving consistent performance on Atari.

arXiv[Preprint].arXiv:1805.11593.

Riedmiller, M. (2005). “Neural fitted Q iteration–first experiences with a data

efficient neural reinforcement learning method,” in Proceedings of the 16th

European Conference on Machine Learning (Porto: Springer), 317–328.

Robotis e-Manual (2019). Available online at: http://emanual.robotis.com/docs/

en/platform/turtlebot3/overview/ (accessed June 21, 2019).

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). “Prioritized experience

replay,” in Proceedings of the 4th International Conference on Learning

Representations (San Diego, CA).

Frontiers in Neurorobotics | www.frontiersin.org 17 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/articles/10.3389/fnbot.2019.00103/full#supplementary-material
https://doi.org/10.1016/B978-1-55860-377-6.50013-X
https://doi.org/10.1016/j.neunet.2016.07.013
https://doi.org/10.3389/fnbot.2018.00032
https://doi.org/10.1038/nature14236
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,

G., et al. (2016). Mastering the game of Go with deep neural

networks and tree search. Nature 529, 484–489. doi: 10.1038/nature

16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

et al. (2017). Mastering the game of Go without human knowledge.Nature 550,

354–359. doi: 10.1038/nature24270

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction

(Adaptive Computation and Machine Learning series). Cambridge, MA;

London: The MIT Press.

Tsitsiklis, J. N., and Van Roy, B. (1997). Analysis of temporal-diffference learning

with function approximation. IEEE Trans. Autom. Control 42, 674–690.

Tsurumine, Y., Cui, Y., Uchibe, E., and Matsubara, T. (2019). Deep

reinforcement learning with smooth policy update: application to robotic

cloth manipulation. Robot. Auton. Syst. 112, 72–83. doi: 10.1016/j.robot.2018.

11.004

van Hasselt, H. (2010). “Double Q-learning,” in Advances in Neural Information

Processing Systems, Vol. 23, eds J. D. Lafferty, C. K. I. Williams, J. Shawe-

Taylor, R. S. Zemel, and A. Culotta (Vancouver, BC: Curran Associates, Inc.),

2613–2621.

van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning with

double Q-learning,” in Proceedings of the 30th AAAI Conference on Artificial

Intelligence, Vol. 16 (Phoenix, AZ), 2094–2100.

van Hasselt, H., Hessel, M., and Aslanides, J. (2019). “When to use parametric

models in reinforcement learning?” in Advances in Neural Information

Processing Systems, Vol. 32, eds H. Wallach, H. Larochelle, A. Beygelzimer, F.

d’Alché-Buc, E. Fox, and R. Garnett (Vancouver, BC: Curran Associates, Inc.).

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas,

N. (2016). “Dueling network architectures for deep reinforcement learning,”

in Proceedings of the 33rd International Conference on Machine Learning

(New York, NY).

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning.Mach. Learn. 8, 279–292.

Yang, Z., Xie, Y., and Wang, Z. (2019). A theoretical analysis of deep Q-learning.

arXiv[Preprint].arXiv:1901.00137.

Zhang, Z., Pan, Z., and Kochenderfer, M. J. (2017). “Weighted double Q-learning,”

in Proceedings of the 26th International Joint Conference on Artificial Intelligence

(Melbourne, VIC), 3455–3461.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K. (2008). “Maximum entropy

inverse reinforcement learning,” in Proceedings of the 23rd AAAI Conference on

Artificial Intelligence (Chicago, IL), 1433–1438.

Conflict of Interest: SO, EU, KN, and YYas are employed by company Panasonic

Co. Ltd, ATR Computational Neuroscience Laboratories, Honda R&D Co.

Ltd., and Honda R&D Co. Ltd., respectively. SI was partly employed by ATR

Computational Neuroscience Laboratories. These companies are mutually

independent commercially or financially.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Ohnishi, Uchibe, Yamaguchi, Nakanishi, Yasui and Ishii. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 18 December 2019 | Volume 13 | Article 103

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1016/j.robot.2018.11.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Ohnishi et al. Constrained Deep Q-Learning

APPENDIX

Optimizer
In this study, RMSPropGraves (Graves, 2013) is used as an
optimizer. When the gradient fi with respect to θi is given, θi is
updated as follows:

ni = ρni + (1− ρ)f 2i ,

gi = ρgi + (1− ρ)fi,

1θi = β1θi −
α

√

ni − gi2 + ξ
fi, (A1)

θi = θi +1θi,

where ni and gi are the first- and second-order moments of
the gradient and ρ and β give the exponential decay rate. α

represents the learning rate, and 1θi is the update amount of
θi. ni − gi

2 in (A1) approximately refers to the moving average
of the variance of the gradient. When this term is small (large),
the change in parameters is large (small). ξ is a small value that
prevents 1i from becoming too large. In all of our experiments,
we set α = 0.00025, ρ = 0.95, β = 0.95, and ξ = 0.01, unless
otherwise stated.

Frontiers in Neurorobotics | www.frontiersin.org 19 December 2019 | Volume 13 | Article 103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning
	1. Introduction
	2. Background
	2.1. Reinforcement Learning
	2.2. Q Learning With Function Approximation

	3. Extension of Q Learning
	3.1. Deep Q Network
	3.2. Techniques Together With DQN
	3.3. Temporal Consistency Loss

	4. Constrained DQN
	5. Experiments Results
	5.1. MNIST Maze
	5.1.1. Task Setting
	5.1.2. Results

	5.2. Mountain-Car
	5.2.1. Task Setting
	5.2.2. Results

	5.3. Robot Navigation Task
	5.3.1. Task Setting
	5.3.2. Results

	5.4. Atari Games
	5.4.1. Task Setting
	5.4.2. Results

	6. Discussion
	7. Concluding Remarks
	Author Contributions
	Funding
	Supplementary Material
	References
	Appendix
	Optimizer

