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Editorial on the Research Topic

Intrinsically Motivated Open-Ended Learning in Autonomous Robots

Notwithstanding the important advances in Artificial Intelligence (AI) and robotics, artificial agents
still lack the necessary autonomy and versatility to properly interact with realistic environments.
This requires agents to face situations that are unknown at design time, to autonomously discover
multiple goals/tasks, and to be endowed with learning processes able to solve multiple tasks
incrementally and online.

Starting in developmental robotics (Lungarella et al., 2003; Cangelosi and Schlesinger, 2015),
and gradually expanding into other fields, intrinsically motivated learning (sometimes called
“curiosity-driven learning”) has been studied by many researchers as an approach to autonomous
lifelong learning in machines (Oudeyer et al., 2007; Schmidhuber, 2010; Barto, 2013; Mirolli and
Baldassarre, 2013). Inspired by the ability of humans and other mammals to discover how to
produce “interesting” effects in the environment driven by self-generated motivational signals not
related to specific tasks or instructions (White, 1959; Berlyne, 1960; Deci and Ryan, 1985), the
research in the field of intrinsically motivated open-ended learning aims to develop agents that
autonomously generate motivational signals (Merrick, 2010) to acquire repertoires of diverse skills
that are likely to become useful later when specific “extrinsic” tasks need to be performed (e.g.,
Barto et al., 2004; Baldassarre, 2011; Baranes and Oudeyer, 2013; Kulkarni et al., 2016; Santucci
et al., 2016).

This Research Topic aims to present state-of-the-art research on open-ended learning in
autonomous robots, with a particular focus on systems driven by intrinsic motivations (but not
limited to these systems), and augments the information presented at the Third International
Workshop on Intrinsically Motivated Open-ended Learning – IMOL2017, held in Rome, Italy, 4–
6 October 2017. Although the development of autonomous artificial agents is pursued via different
kinds of approaches, such as information theory (Klyubin et al., 2008; Martius et al., 2013),
epigenetic robotics (Lones et al., 2016), machine learning (Machado et al., 2017), and evolutionary
computation (Lehman and Stanley, 2011), intrinsically motivated open-ended learning is today a
mature field producing promising research.

The field nevertheless presents many open challenges, the main ones we mention here. A first
open issue of central importance for open-ended learning is how an agent should autonomously
generate goals and learn policies for achieving them, so that the policies are useful for solving many
new tasks that are unknown when the policies are learned. Another open challenge is to design
systems that use intrinsic motivations to support learning compact representations of environment
states, and hence of goals; in particular, learning compact representations that are relevant for
action. Another challenge involves the continuous/discrete representation of goals. It seems
plausible that low-level goals (e.g., related to postures that a robot might assume) are encoded in a

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00115
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00115&domain=pdf&date_stamp=2020-01-17
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vieri.santucci@istc@cnr.it
https://doi.org/10.3389/fnbot.2019.00115
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00115/full
http://loop.frontiersin.org/people/77640/overview
http://loop.frontiersin.org/people/126/overview
http://loop.frontiersin.org/people/54562/overview
http://loop.frontiersin.org/people/7331/overview
https://www.frontiersin.org/research-topics/6558/intrinsically-motivated-open-ended-learning-in-autonomous-robots


Santucci et al. Editorial: IMOL in Autonomous Robots

continuous space, whereas high-level goals (e.g., touch, push,
hit, reach, grasp) are encoded in a discrete fashion so as to be
easily composed to achieve more complex goals. If this is the
case, what is the relation between these different types of goal
representations? A related problem is how to design architectures
that can suitably manage generating goals and learning the
related skills, and storing them at different levels of granularity.
Then there is the open problem of how to best re-use goals
and acquired skills to accomplish novel tasks (exploitation),
including how to use previous learning in order to efficiently
learn new goals and skills (“transfer learning“), and how to
form “chains” of interrelated, hierarchical skills (“curriculum
learning”), on the basis of intrinsically motivated processes.
Learning different tasks in an open-ended fashion tends to cause
catastrophic interference, which is another problem that needs
to be addressed. Other important challenges are related to the
interaction between intrinsic motivations and other forms of
“natural learning” such as social interaction: how this interaction
might be connected to the development of higher-level cognitive
skills, e.g., language.

The contributions collected for this Topic, reviewed below,
not only extend the core research in the field but also tackle
some of the open questions mentioned above, with a particular
focus on: the autonomous acquisition of skills and motor
behaviors; the analysis of architectures and learning signals
needed to perform sequences of different tasks; the interaction
of artificial agents with their environments through different
sensors and actuators; the formation and representation of
goals; and the interplay between intrinsic motivations and other
learning strategies such as imitation learning. Following is a
summary of how the contributions in this collection address
these challenges.

In Rayyes et al. the authors propose a system enabling a
robot to learn to reach to different points in space by exploiting
symmetry properties of the actuators to allow exploration to be
limited to only a small part of the configuration space. Maestre
et al. tackle skill learning at the level of object manipulation,
where low-level and high-level features are extracted through
task-agnostic interactions with the environment directed toward
learning affordances that, in turn, guide the robot to solve
assigned tasks. Baldassarre et al. propose a system that uses
intrinsic motivations to learn forward models and affordances,
here intended as the probabilities of achieving the goals of
the affordance-related actions. In particular, this work examines
how active-vision, which allows factoring the environment state
into pieces of information related to single objects, can support
such learning processes and also facilitate solving extrinsic
tasks involving multiple objects through one-step planning.
Learning progress might also be used as in the contribution
of Uchibe to train multiple skills in parallel. In particular, here
transfer learning techniques are combined with “mixture of
experts” strategies to develop multiple control modules that are
then used to solve control tasks with simulated agents. When
learning many different tasks, an agent might try to optimize
all of them simultaneously. Abdelfattah et al. leverage intrinsic
motivations to develop a method that can cope with multi-
objective Markov decision processes, and they compare it to
other state-of-the-art algorithms. In real environments, complex

tasks might need to be learned through exposure to sequences
of simpler tasks. This is a crucial issue for autonomous robotics,
which is tackled in the work of Duminy et al. using an active
learning approach. These authors propose a new algorithm that
allows a robot to autonomously discover how to combine pre-
defined primitive motor policies to learn increasingly complex
combinations of motor policies. In particular, while it is learning,
and agent is able to decide which outcome on which to focus
and which exploration strategy to apply, leveraging imitation
learning, goal babbling, and strategic learning techniques based
on intrinsic motivations.

When an agent can autonomously generate different kinds
of goals, task-specific reward functions might be complicated
to design since they require significant domain knowledge.
Intrinsic motivations might provide general, task-agnostic
reward functions able to exploit the inherent properties of
different goals. Moreover, as shown in Dhakan et al., these reward
functions can be used as building blocks to generate sequences
of tasks enabling more complex behaviors to be learned. A well-
known problem, mentioned above, related to learning multiple
tasks is that of catastrophic forgetting. This problem might be
even harder to tackle for artificial agents that have to perform life-
long learning in complex and unknown environments. Instead of
constraining the set of inputs at design time, in Parisi et al., the
authors propose a dual-memory self-organizing architecture with
two growing recurrent networks that in parallel learn episodic
memory and semantic memory, expanding their structures in
response to novel sensory experiences.

Vision plays an important role in many aspects related to
autonomous learning and exploration. de La Bourdonnaye et al.
followed a developmental perspective and built an artificial
system that learns to reach for objects in different locations
in the environment by leveraging a weakly-supervised stage-
wise procedure. Learning to reach is divided into three tasks:
learn to fixate objects, learn hand-eye coordination (learn to
fixate on the end-effector), and learn to use the previously
acquired knowledge to perform reaching to different locations.
Visuo-motor coordination is also tackled by Wijesinghe et al.,
where predictive models are used to guide a humanoid robot
in learning to track its hand and other movements in the
visual field without the use of any forward kinematics or
pre-defined visual feature descriptors. The use of prediction
in multi-sensory integration allows a better incorporation of
proprioceptive and visual cues and leads to the development
of emergent properties similar to those of human hand-eye
coordination. Task-agnostic motivations such as information
gain are used in the work of Dauce to drive action selection
and the exploration of visual inputs: promising results are
shown, highlighting how compression strategies might improve
both performance in visual recognition and efficiency of the
system thanks to reduced computational costs. Autonomous
exploration is the focus of Cohen-Lhyver et al. These authors
underline the important role of attention, which they claim
can be considered as a sort of intrinsic motivation. They
implemented this notion in a humanoid robot and showed how
two components (congruence and reduction of uncertainty) can
be used to explore new environments following audio-visual
inputs encoded at a semantic level.
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Similar to appealing to information gain, exploration drive
by “criticality” can be used to generate autonomous behaviors.
Aguilera and Bedia explore this connection through conceptual
models that exploit maximum entropy to drive agents toward
critical points (e.g., transition points between different kinds of
behaviors). Finally, Mahzoon et al. focus on the development
of social robots. Within a developmental perspective, these
authors address problems related to training real-world robots
by presenting two new algorithms that improve a robot’s
performance in terms of learning efficiency, complexity of the
learned behaviors, and predictability of the robot’s behavior.

In addition to the aforementioned 14 original research
articles, four additional papers have been published within this
Research Topic. The first is a methodological article in which
Yu et al. present an algorithm that takes into account the
constructive interplay between boredom and curiosity, giving
rise to effective exploration and forward model learning. The
second is a review article in which Khan et al. examine the
motivational systems used in computational models to build
agents capable of autonomous goal generation and task learning.
The authors then investigate how these strategies might be

transferred to multi-agent systems and swarms, highlighting the
current state-of-the-art and future key challenges. The last two
papers are perspective articles. In the first of these, Doncieux
et al. argue that a key issue for an agent performing open-ended

learning is not only the problem of maximizing the rewards
related to the different tasks, but also the problem of building
proper representations of the states and the actions describing the
tasks themselves. The authors present a conceptual framework
to address this crucial issue, underlining the central role of
intrinsic motivations. In the second article, Palm and Schwenker
analyse the use of reinforcement learning (RL) in the field of
developmental robotics, describing its strengths and weaknesses
with respect to some specific problems that arise in the field. The
authors suggest that multi-objective RL might face some of the
problems they listed and that leveragingmultiple motivations can
improve RL agents’ learning performance.
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