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This paper presents an intuitive end-to-end interaction system between a human and a

hexacopter Unmanned Aerial Vehicle (UAV) for field exploration in which the UAV can

be commanded by natural human poses. Moreover, LEDs installed on the UAV are

used to communicate the state and intents of the UAV to the human as feedback

throughout the interaction. A real time multi-human pose estimation system is built

that can perform with low latency while maintaining competitive performance. The UAV

is equipped with a robotic arm, kinematic and dynamic attitude models for which

are provided by introducing the center of gravity (COG) of the vehicle. In addition,

a super-twisting extended state observer (STESO)-based back-stepping controller

(BSC) is constructed to estimate and attenuate complex disturbances in the attitude

control system of the UAV, such as wind gusts, model uncertainties, etc. A stability

analysis for the entire control system is also presented based on the Lyapunov stability

theory. The pose estimation system is integrated with the proposed intelligent control

architecture to command the UAV to execute an exploration task stably. Additionally,

all the components of this interaction system are described. Several simulations and

experiments have been conducted to demonstrate the effectiveness of the whole system

and its individual components.

Keywords: UAV, intuitive interaction, pose estimation, super-twisting, extended state observer, back-stepping

1. INTRODUCTION

UAVs, which have been increasingly used as human assistants in various contexts in recent years,
are developing very rapidly. They can be applied in areas to which humans cannot reach, such as for
aerial photography, field exploration, etc. Also, human-robot interaction (Fang et al., 2019) has also
been focused on recently, including human-UAV interaction technology. However, a traditional
approach to the interaction between UAVs equipped with remote devices and a human is not
convenient when that human is busy with other tasks during field exploration. This paper aims to
build an intuitive end-to-end human-UAV interaction system for field exploration where mutual
attention between the human and UAV is established in the process.

The interface used to control UAVs is an important part of the whole interaction system. It
can be classified into two kinds, traditional human-computer interfaces and direct interfaces. As to
the former, Rodriguez et al. (2013) designed ground control station software that is fully based on
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open-source libraries and developed it for a platform composed
of multiple UAVs for surveillance missions. Moreover, utility
software designed by McLurkin et al. (2006) for interacting with
hundreds of autonomous robots without having to handle them
individually enables centralized development and debugging.
In addition, several principles of swarm control are studied
in Kolling et al. (2012) and are used in a simulated robot
environment to enable a human operator to impose on and
control large swarms of robots. Of the direct interfaces, many
of them have been applied in human-UAV interaction systems
in recent years. Pourmehr et al. (2013b) presents a multi-model
system to create, modify, and command groups of robots, in
which groups of robots can be created by speaking their numbers.
Additionally, a whole system in which multiple humans and
robots could interact with each other using a combination of
sensing and signaling modalities was built by Pourmehr et al.
(2013a). In our work, we use the direct interaction mode for the
design of a natural and intuitive human-UAV interaction system
as an assistant for field exploration. Similar to the interaction
system mentioned by Monajjemi et al. (2013), human poses
are used to give commands to the UAV in our interaction
system. Therefore, the human detection system should be
built first.

We intend to use several different natural human poses to
communicate with the UAV. Previous research has looked into
detecting serial human poses. A method based on Lagrangian
particle trajectories, which are a suite of dense trajectories
obtained by advecting optical flow over time, is proposed
to capture the ensemble motions of a scene by Wu et al.
(2011). Moreover, Bin et al. (2018) proposes a novel data
glove for pose capturing and recognition based on inertial and
magnetic measurement units (IMMUs). Additionally, Ran et al.
(2007) proposes two related strategies. The first estimates a
periodic motion frequency with two cascading hypothesis testing
steps to filter out non-cyclic pixels, and the second involves
converting the cyclic pattern into a binary sequence by fitting
the Maximal Principal Gait Angle. Pishchulin et al. (2016)
proposes a method to jointly solve the tasks of detection and
pose estimation in which the number of persons in a scene can
be inferred, occluded body parts can be identified, and body
parts between people in close proximity of each other can also
be disambiguated. However, it cannot be performed with low
latency and cannot be applied in an embedded device and used
for a UAV.

Once the human pose is detected, under the control of the
human pose and referring to the interaction regulation scheme
developed in this paper, the UAV would respond and approach
the human for further particular commands. However, the UAV’s
positional motion is coupled with rotary movement, and both
of them can be influenced easily. When performing tasks, it is
normal for a UAV to encounter wind gust disturbance, which
would affect the stability of the whole system. Moreover, to
carry out exploration tasks that may be encountered in the
future, the UAV is equipped with a 2-DOF robotic arm, which
would bring more model uncertainties to the overall system. The

disturbance estimation and attenuation are thus the next problem
to overcome. Several similar works have been carried out, such
as on disturbance and uncertainty estimation and attenuation
(DUEA) strategy, which has been widely used and explored in
recent years (Yang et al., 2016). Also, numerous observers have
been designed to solve this problem, for example, a disturbance
observer (DO) (Zhang et al., 2018; Zhao and Yue, 2018) and
extended state observer (ESO) (Shao et al., 2018). Moreover,
Mofid and Mobayen (2018) proposes a technique of adaptive
sliding mode control (ASMC) for finite-time stabilization of
a UAV system with parametric uncertainties. Additionally, a
higher-order EDOwas applied for attitude stabilization of flexible
spacecraft while investigating the effects of different orders on
the performance of the EDO (Yan and Wu, 2017). It has been
proved that the estimation accuracy can be improved with an
increase in the observer order via choosing suitable observer
gains. Nevertheless, a higher order of the observer will lead to
both high implementation cost and the problem of high gain
for observers.

In this paper, an intuitive, natural, end-to-end human-UAV
interaction system is built for field exploration assistance. The
entire attitude dynamic model of the hexacopter UAV equipped
with a robotic arm is presented considering the robotic arm
as an element affecting the COG of the vehicle. Moreover,
through replacing the backbone network VGG-19 in Cao et al.
(2017) by the first twelve layers of MobileNetV2, a real time
multi-human pose estimation system, which can be performed
with lower latency, maintaining the competitive performance,
is built for humans to communicate with the UAV under a
proposed interaction regulation. Both target flight direction and
distance commands can be transmitted to the UAV easily and
naturally. In addition, as a UAV equipped with a robotic arm
has more model uncertainty than traditional UAVs and wind
gust cannot usually be avoided when carrying out exploration
tasks, a composite controller is designed by combining STESO
(Shi et al., 2018b) and a back-stepping control method. As
most of the disturbances, including wind gust and model
uncertainties, are compensated by the feedforward compensator
based on STESO, only a small switching gain is required in
the controller. Thus, high-accuracy UAV attitude tracking can
be realized, and chattering can be alleviated in the presence
of several disturbances. Moreover, depth estimation with a
binocular camera was developed according to the work of Zhang
(2000). The effectiveness of the proposed interaction system and
its individual components is demonstrated in several simulations
and experiments.

The outline of this work is as follows. Some preliminaries,
including quaternion operations and the kinematic and dynamic
attitude models of the whole hexacopter UAV are presented
in section 2. In section 3, several methods such as human
pose estimation, depth estimation, STESO construction, attitude
controller, and interaction regulation scheme are formulated.
Several simulations and experiments are then given in sections
4 and 5, respectively. Finally, the conclusion is summarized
in section 6.
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2. PRELIMINARIES

2.1. Notation
The maximal and minimum eigenvalues of matrix H are given
by λmax(H) and λmin(H), respectively, and ‖·‖ represents the
2-norm of a vector or a matrix. Additionally, the operator

S(·) denotes a vector κ =
[

κ1 κ2 κ3
]T

to a skew symmetric
matrix as:

S(κ) =





0 −κ3 κ2
κ3 0 −κ1
−κ2 κ1 0



 (1)

The sign function can be described as:

sign(κ) =
{ κ

|κ| , |κ| 6= 0

0, |κ| = 0
(2)

2.2. Quaternion Operations
As traditional methods used for representing rotation of the UAV,
for instance, the Euler angles, may lead to the singularity problem

of trigonometric functions, the unit quaternion q =
[

q0 qv
]T ∈

R4,
∥

∥q
∥

∥ = 1 is utilized in this work Shastry et al. (2018). Several
corresponding operations are defined as follows.

The quaternion multiplication:

q⊗ σ =
[

q0σ0 − qTv σv
q0σv + σ0qv − S(σv)qv

]

(3)

The relationship between rotationmatrixCB
A and unit quaternion

q is described as:

CB
A = (q20 − qTv qv)I3 + 2qvq

T
v + 2q0S(qv) (4)

The time derivative of Equation (4) is:

ĊB
A = −S(ω)CB

A (5)

where the details of coordinate systems A and B will be given
in the next section. Then, the derivative of a quaternion and the
quaternion error qe are given as follows, respectively:

q̇ =
[

q̇0
q̇v

]

= 1

2
q⊗

[

0
ω

]

= 1

2

[

−qTv
S(qv)+ q0I3

]

ω (6)

qe = q∗
d ⊗ q (7)

where qd denotes the desired quaternion whose conjugate is

represented by q∗
d =

[

qd0 −qdv
]T
, ω is the angular velocity of

the system.

2.3. Kinematic and Dynamic Models of
Hexacopter UAV
As depicted in Figure 1, The whole UAV system used for
interaction with humans is a hexacopter equipped with a 2-DOF
robotic arm. The robotic arm is fixed at the geometric center of
the hexacopter. The kinematic and dynamic models of the system
are detailed below.

FIGURE 1 | Illustration of the hexacopter and robotic arm system with related

coordinate reference frames.

2.3.1. Kinematic Model
The kinematic model of the UAV system can be achieved with
several related reference coordinates in Figure 1, which are
defined as follows:

OI : world-fixed inertial reference frame
Ob: hexacopter body-fixed reference frame located at the

geometric center of the vehicle
Od: desired reference frame located at the geometric center of

the vehicle
Oi: frame fixed to link i in the robotic arm. i = {1, 2}.

Additionally, several coefficients are used to describe the overall
system. Ŵ = [x, y, z]T represents the absolute position of Ob with
reference to OI . The UAV attitudes are described by Euler angles
9 = [ϕ, θ ,ψ]T whose components represent roll, pitch, and yaw
angles, respectively. In addition, the absolute linear velocity of the
hexacopter with respect toOb is denoted byV = [vx, vy, vz]

T , and

ω = [ωx,ωy,ωz]
T represents the vector of the absolute rotational

velocity of the hexacopter with respect to Ob. The relation can be
described as:

ω = Rr9̇ (8)

where

Rr =





1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ



 (9)

where c(·) and s(·), mentioned above, are the abbreviations of
cos(·) and sin(·).

2.3.2. Dynamic Model
A traditional UAV with a constant COG at its geometrical
center can be described with simple dynamic model
equations (Bouabdallah and Siegwart, 2005). However, the
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motion of a robotic arm will affect the position of the vehicle.
To consider the robotic arm as an element leading to the
displacement of the COG from the geometric center of the
vehicle, a dynamic attitude model of the whole system is
provided in this subsection. Referring to our previous work Jiao
et al. (2018), it can be given as:







Jxω̇x = u1 − (Jz − Jy)ωyωz −mc1 + dx
Jyω̇y = u2 − (Jx − Jz)ωxωz −mc2 + dy
Jzω̇z = u3 − (Jy − Jx)ωxωy −mc3 + dz

(10)

where






c1 = yG(v̇z − vxωy + vyωx)− zG(v̇y − vzωx + vxωz)
c2 = −xG(v̇z − vxωy + vyωx)+ zG(v̇x − vyωz + vzωy)
c3 = −yG(v̇x − vyωz + vzωy)+ xG(v̇y − vzωx + vxωz)

(11)
We describe Equation (11) in a collective form:

Jω̇ = u− S(ω)Jω −mc+ d (12)

where vector J = diag(Jx, Jy, Jz) indicates that the inertia matrix is

diagonal, and d = [dx, dy, dz]
T denotes the lumped disturbances

caused by wind gusts, model uncertainties, etc. The COG of the
whole UAV system is described by CG = [xG, yG, zG]

T . m is
the total mass of the UAV. Additionally, we define vector c =
[c1, c2, c3]

T and vector u = [u1, u2, u3]
T , representing the control

torque inputs, in which the torques around x−, y−, and z−
generated by the six propellers are represented by u1, u2, and u3,
respectively. This has the following expression:

u = 4fv (13)

where fv = [ω2
1 ,ω

2
2 ,ω

2
3 ,ω

2
4 ,ω

2
5 ,ω

2
6]

T represents a positive
correlation vector with forces generated from the hexacopter
motors, in which ωi denotes the rotor speed of the hexacopter
(i = 1, 2, 3, 4, 5, 6). In addition, referring to the hexacopter model
in Figure 1, 4 can be expressed as follows:

4 =







l
23T l3T

l
23T − l

23T −l3T − l
23T

−
√
3
2 l3T 0

√
3
2 l3T

√
3
2 l3T 0 −

√
3
2 l3T

3C −3C 3C −3C 3C −3C







(14)
where 3T and 3C denote the thrust and drag coefficients,
respectively. Moreover, l represents the distance from eachmotor
to the center of mass of the hexacopter.

3. METHODS

3.1. Human Pose Estimation
Human pose estimation is a prerequisite component of the
human-UAV interaction system. It efficiently detects the 2D
poses of people in an image. The pose information serves as the
coded target within the human-UAV communication, in which
each pose form is designed as a special command, guiding the
UAV to perform desired tasks.

The challenges of human pose estimation are two-fold. First,
under uncertainties, each image may contain multiple people

in various positions and at different scales. Vision-based pose
estimationmay easily suffer from distraction by irrelevant people,
which requires us to design an identification algorithm. It must
ignore the non-target candidate people and thus choose the
right commander. Second, the above-mentioned commander
identification is under the premise that all candidate people can
be detected. If we equip each person with a pose detector, the
runtime is proportional to the number of people. This would
bring significant latency and severely deteriorate the stability
of interaction.

To build a time-consuming multi-human pose estimation
system, we follow Cao et al. (2017) to employ a bottom-up
pose predictor, which means that part locations are first detected
and then associated to limbs. Unlike top-down approaches that
infer the limb based on each person detection, the bottom-up
approach decouples time complexity from the number of people.
Specifically, we adopt a two-branch neural network to learn
part locations and their associations, respectively. Both of them
contribute to the subsequent multi-person parsing process.

The network architecture remains the same as that in Cao et al.
(2017), in which an image is taken as input and the connected
limbs, i.e., poses, of multiple people are outputs. The raw image
first passes through a stack of convolutional layers, generating a
set of feature maps. In this stage, we replace VGG-19 (Simonyan
and Zisserman, 2014) by the first twelve layers of MobileNetV2
(Sandler et al., 2018) to make it more lightweight, as VGG-
19 results in large computational costs and repeatedly employs
small-size (3 × 3) convolutional filters to enhance network
capacity. In contrast to VGG-19, MoblieNetV2 adopts a novel
depthwise separable convolution to reduce actual latency while
maintaining competitive performance. The feature maps can be
regarded as deep semantic representations of the image, which
are then fed into two convolutional branches. The confidence
maps and part affinity fields are produced from two branches
in parallel. The confidence map predicts the possibility that a
particular part occurs at each pixel location, and the part affinity
fields measure the confidence of part-to-part association. Finally,
the network implements multi-person parsing, which assembles
the parts to form the full-body poses of all of the people.

Through this pipeline, multi-human pose estimation can
be performed with low latency. The time efficiency is derived
not only from the bottom-up inference approach but also
from the backbone network used. The bottom-up inference
makes run time irrespective of the number of people, allowing
the potential for real-time multi-human pose estimation. The
selected MobilenetV2 further reduces the number of operations
during inference by avoiding large intermediate tensors. To
investigate the performance, we train our network on an MPII
Multi-person dataset (Andriluka et al., 2014) and test it on our
own datasets. During training, the image is resized to (432 ×
368). We apply the Adam optimizer (Kingma and Ba, 2014)
with default settings (ε = 10−3,β1 = 0.9,β2 = 0.999). The
learning rate is set to 0.001, and the batch size is 64. The result
for the human image is shown in Figure 2. It can be clearly seen
that all human poses are correctly detected. Notably, our system
achieves a frame-rate of about 6 fps running on an NVIDIA
TX2 and, when we adopt the VGG-19 as the backbone, the
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FIGURE 2 | Result of the human pose-estimation system. Written informed

consent for publication was obtained from the individuals in this image.

frame-rate drops to about 2 fps. This proves the suitability of
MobileNetV2 for mobile applications, especially our human-
UAV interaction system.

3.2. Depth Estimation
The depth estimation for the camera installed on the UAV is
conducted using a binocular stereo vision rangingmethod, which
is composed of four main parts, namely camera calibration,
stereo calibration, stereo rectification, and image matching. The
internal and external parameters of the camera are obtained in
the camera calibration step, referring to the method of Zhang
(2000). Stereo calibration is performed to get the pose and
position of one camera with respect to the other. In addition,
stereo rectification is used to align image rows between two
cameras. The disparity value, which is essential for determining
the distance between object and camera, can then be obtained
through only searching one row in the image matching step
for a match with a point in the other image after the target
point is determined. Obviously, this will enhance computational
efficiency. Both the stereo rectification and image matching steps
are conducted with the use of OpenCV functions. Then, referring
to Xuezhi (2014), the depth can be obtained after several works
mentioned above.

3.3. Super Twisting Extended State
Observer (STESO)
The UAV equipped with a robotic arm has more model
uncertainty than a traditional UAV. Moreover, other external
disturbances such as wind gusts cannot usually be avoided
when carrying out exploration tasks. In this section, all of the
disturbances exerted on a UAV are seen as a lumped disturbance,
and a STESO is built to estimate it in finite time.

The accelerated velocities v̇ and angular velocities ω can be
measured by a MEMS accelerometer and gyroscope, respectively,
and the lateral velocities can be obtained directly from GPS.

Regarding the dynamics (Equation 12) of the whole UAV system,
by importing the feedback linearization method, the original
control input can be reformulated as:

u = u∗ + S(ω)Jω +mc (15)

The linearized dynamic model can then be given as:

Jω̇ = u∗ + d (16)

When building the STESO, it is assumed that each channel
is independent, so only one portion is introduced in this
subsection and the other two are completely identical. Regarding
Equation (16), the one-dimensional dynamics of the UAV used
for building the STESO is given as:

Jiω̇i = u∗i + di (17)

By importing a new extended state vector ζi = [ζi,1, ζi,2]
T , in

which ζi,1 = Jiωi and ζi,2 = di,(i = x, y, z), the original dynamic
model can be constructed as follows:

{

ζ̇i,1 = u∗i + ζi,2
ζ̇i,2 = χi

(18)

where χ represents the derivative of di and it is assumed that
|χ | < ν+, meaning that the lumped disturbance, is bounded.

As the system Equation (18) is observable, the STESO can
be designed for this system by introducing a super-twisting
algorithm (Yan and Wu, 2019):

{

ż1 = z2 + u∗i + ξ1|e1|
1
2 sign(e1)

ż2 = ξ2sign(e1)
(19)

where z1 and z2 represent estimates of ζi,1 and ζi,2, respectively.
e1 = ζi,1 − ζ̂i,1 and e2 = ζi,2 − ζ̂i,2 are estimate errors. The whole
system estimate errors e1 and e2 can be ensured to converge to
zero within finite time with appropriate observer gains ξ1 and ξ2.

Proof . According to Equations (18) and (19), the error
dynamics of the STESO can be obtained as:

{

ė1 = e2 − ξ1|e1|
1
2 sign(e1)

ė2 = χ − ξ2sign(e1)
(20)

Through defining δi = [δi,1
T , δi,2

T]T , δi,1 = |e1|
1
2 sign(e1), δi,2 =

e2, it can be derived that

{

δ̇i,1 = − ξ1
2 |e1|

−1e1 + 1
2 |e1|

− 1
2 e2

δ̇i,2 = −ξ2|e1|−1e1 + χ
(21)

Then, we define a positive definite matrix η1 =
1
2

[

4ξ2 + ξ12 −ξ1
−ξ1 2

]

and introduce the Lyapunov function as:

Vi = δi
Tη1δi (22)
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FIGURE 3 | Control schematic of the overall hexacopter UAV system.

We introduce η2 = ξ1
2

[

2ξ2 + ξ12 − 2ν(ξ1+1)
ξ1

−ξ1
−ξ1 1− 2ν

ξ1

]

and take

the time derivative of Vi:

V̇i ≤ −2ξ1|e1|−
1
2 [(ξ1

2 + 2ξ2)δi,1
2 − 2ξ1δi,1δi,2 + δi,22]

+ 2ξ1|e1|−
1
2 (2δi,1

2 + 2ξ1
−1δi,1

2 + 2ξ1
−1δi,2

2)ν

= −2ξ1|e1|−
1
2 δi

Tη2δi (23)

It can be found that V̇i is a negative definite in the case that η2 is
a positive definite. We can then obtain

{

ξ1 > 2ν

ξ2 >
ξ1

2

ξ1−2ν ν +
ξ1+1
ξ1
ν

(24)

Based on Lyapunov stability theory, we can obtain

|e1|
1
2 sign(e1) → 0 and e2 → 0. In this case, the estimate

errors e1, e2 will converge to zero.

3.4. UAV Controller Approach
The hexacopter, whose rotational motion is coupled with
translational motion, is difficult to control to perfection. In
Figure 3, a control scheme is presented that improves the
stability of the system. The control system is cascaded, being
composed of two stages, namely the position controller and
attitude controller. At the start of the control process, the desired
positions (xd, yd, zd) will be sent to the position controller, which
will then generate the desired attitudes (ϕd, θd) and transmit them

to the attitude controller. The outputs of the attitude controller,
which is responsible for guaranteeing that the attitudes track the
desired orientations in a finite time, are the desired actuation
forces generated by the hexacopter propellers. In addition, a COG
compensator is incorporated to work out the real COG and
transmit it to the whole control system.

In this section, a traditional PID controller is built for
position control. It is only used to generate desired attitudes
at translational directions, and the UAV will get to the desired
position if the actual attitudes can track the desired orientations
in a finite time.

3.4.1. Attitude Control
In order to achieve high-precision attitude tracking in the
presence of wind gusts andmodel uncertainties, some parameters
should first be defined. qd = [qd0, qdv]

T and ωd =
[ωdx,ωdy,ωdz]

T represent the attitude and desired angular
velocities, respectively. We can then obtain the tracking error
vector of the angular velocities ωe = [ωex,ωey,ωez]

T as:

ωe = ω − Cb
dωd (25)

We take the time derivative of ωe and substitute Equations (5),
(12), and (25) into ω̇e:

ω̇e = S(ωe)C
b
dωd −Cb

dω̇d − J−1S(ω)Jω + J−1u−mJ−1c+ J−1d

(26)
Also, the dynamics of the attitude tracking error can be obtained
according to Equations (6), (7), and (25):

q̇e =
1

2
qe ⊗

[

0
ωe

]

= 1

2

[

−qTev
S(qev)+ qe0I3

]

ωe (27)

The STESO-based backstepping controller for the attitude
tracking controller is then developed with reference to Shi et al.
(2018a). The backstepping is a very good fit for the cascaded
structure of the UAV dynamics. To insure that the attitude
tracking error qe converges to zero, we define the Lyapunov
function as:

VA1 = qev
Tqev + (1− qe0)

2 (28)

We take time derivative of VA1:

V̇A1 = 2qev
T q̇ev − 2(1− qe0)q̇e0 = qev

Tωe (29)

By introducing a virtual control ωed = −M1qev, in which M1

is the gain matrix of the controller, when the angular velocity
tracking error ωe is equal to ωed, we can obtain:

V̇A1 = −qev
TM1qev ≤ 0 (30)

ω̃e = ωe + M1qev (31)

We then choose the Lyapunov function as:

VA2 = VA1 +
1

2
ω̃T
e Jω̃e + Vx + Vy + Vz (32)
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We take the time derivative of VA2 according to Equations (25),
(30), and (31):

V̇A2 = qev
Tω̃e − qev

TM1qev + ω̃T
e (Jω̇e + JM1q̇ev)+ V̇x

+ V̇y + V̇z = −qev
TM1qev + ω̃T

e

(

J(S(ωe)C
b
dωd − Cb

dω̇d)

−S(ω)Jω + u−mc+ d + JM1q̇ev + qev
)

+ V̇x + V̇y + V̇z

(33)

By introducing the control input vector u:

u = −J(S(ωe)C
b
dωd − Cb

dω̇d)+ S(ω)Jω +mc− JM1q̇ev

−qev −M2ω̃e − d̂ (34)

V̇A2 can be obtained by in substituting u.

V̇A2 = −qev
TM1qev − ω̃T

e M2ω̃ + ω̃T
e d̃ + V̇x + V̇y + V̇z

≤ −λmin(M1)
∥

∥qev
∥

∥

2 − λmin(M2)
∥

∥ω̃e

∥

∥

2 +
∥

∥ω̃e

∥

∥

∥

∥

∥
d̃
∥

∥

∥

−λmin(η1)(‖δx‖2 +
∥

∥δy
∥

∥

2 + ‖δz‖2)
≤ −λmin(M1)

∥

∥qev
∥

∥

2 − λmin(M2)
∥

∥ω̃e

∥

∥

2 +
∥

∥ω̃e

∥

∥ ‖δ‖
−λmin(η1)(‖δx‖2 +

∥

∥δy
∥

∥

2 + ‖δz‖2)

≤ −λmin(M1)
∥

∥qev
∥

∥

2 − (λmin(M2)−
1

2
)
∥

∥ω̃e

∥

∥

2

−(λmin(η1)−
1

2
)‖δ‖2 (35)

where
∥

∥

∥
d̃
∥

∥

∥
= ‖δ2‖ ≤ ‖δ‖,

∥

∥ω̃e

∥

∥ ‖δ‖ ≤ 1
2 (

∥

∥ω̃e

∥

∥

2 +
‖δ‖2), ‖δ‖2 = ‖δx‖2 +

∥

∥δy
∥

∥

2 + ‖δz‖2, and λmin(M) denotes
the minimal eigenvalue of M. Thus, V̇A2 ≤ 0 whenever
λmin(η1), λmin(M2) ≥ 1

2 . In that case, it can be concluded
that the attitude error qe, angular velocity tracking error ωe,
and estimation errors δx,δy,δz would be uniformly ultimately
bounded and exponentially converge to zero.

3.4.2. COG Compensation System
As shown in Figure 1, positional variety in the COGof the vehicle
will occur when the UAV conducts tasks that involve the motion
of the robotic arm. The dynamic model of the whole system
will then be changed during the flight referring to Equation
(10). Additionally, the stability of the UAV will be impacted.
To overcome this problem, a COG compensation system, which
will not be shown here due to the limitations of article length
but is detailed in our previous work Jiao et al. (2018), can
be implemented. However, the real COG cannot be calculated
accurately through this system due to several measuring errors.
It will also play a part in the model uncertainties included by the
lumped disturbance, which will be estimated by the STESO.

3.5. Interaction Between UAV and Human
3.5.1. Interaction Regulation From Human to UAV
An interaction regulation scheme from human to UAV is
developed in this section using the human pose. According to
the given interaction regulation, the UAV can be attracted by a
distant human by their holding a constant pose, which should

FIGURE 4 | Prototype of human joint.

TABLE 1 | Meanings of different coefficient combinations.

Combination Meaning

80 < 2l < 100 and 80 < 2r < 100 Interaction initiation

100 < 2l < 150 and Lr < Ll Flight direction command 1: right

front with respect to the human

30 < 2l < 80 and Lr < Ll Flight direction command 2: right rear

with respect to the human

100 < 2r < 150 and Ll < Lr Flight direction command 3: left front

with respect to the human

30 < 2r < 80 and Ll < Lr Flight direction command 4: left rear

with respect to the human

100 < 2l < 180 and

100 < 2r < 180

Flight distance command: based on

positions of two wrist joints

0 < 2l < 30 and 0 < 2r < 30 End flag

last more than 5 s, to initiate the interaction. After the interaction
initialization is completed, an LEDwill begin flashing as feedback
to the human. Moreover, both target flight direction and distance
commands can be communicated to theUAV in a very simple and
direct way through human pose changes. As depicted in Figure 4,
some given straight lines compose a nonobjective human, in
which the colorized points, representing the joints of the human
body, can be detected and signed by the pose estimation system
mentioned in section 3.1. The whole interaction regulation
scheme is based on the coefficients (Ll,Lr ,2l and 2r) given in
Figure 4. The meanings of different combinations of coefficient
values are listed in Table 1.

Specifically, the human who is executing search tasks in the
field can attract the UAV for search assistance by conducting the
interaction initiation action, keeping parallel to the UAV camera,
for more than 5 s until the UAV responds by flashing its LED.
Moreover, to control the UAV more easily and intuitively, the
target command flight direction is just parallel to the human arm,
and the target command flight distance is based on the distance
between the two wrist joints. As shown in Figure 5, the particular
flight direction and distance command methods are given, and
a nonobjective aerial view of the human, which represents flight
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FIGURE 5 | Aerial view of nonobjective human.

Algorithm 1: The Whole Interaction Procedure.

1: Execute human pose estimation system initially and record
video from camera;

2: if Detect interaction initiation action for more than 5 s then
3: Measure depth information of the detected human and

approach him immediately;
4: Continue to execute human pose estimation system;
5: if interaction initiation then

6: if Detect flight direction command then

7: Record target flight direction;
8: if Detect flight distance command then

9: Record target flight distance;
10: if End flag then
11: Execute flight command from human and return

to the first line in the procedure;
12: end if

13: end if

14: end if

15: end if

16: else

17: Continue execute human pose estimation system and
record the video from camera;

18: end if

direction command 1mentioned in Table 1, is provided. The two
red straight lines are human arms.We can easily obtain the target
flight direction with respect to plane P′, which is parallel to the
UAV camera plane:

κ ′ = arccos
L′

Lr
(36)

The case with other flight direction commands is similar to
that mentioned above. Additionally, the target flight distance
command transmitted to the UAV is proportional to the distance
between two detected wrist joints. The constant length of a fully
stretched human arm, Ll in the picture, represents the unit used
as a reference for the distance command. The unit depends on
the character of the performed task and would be defined in
advance. Moreover, the interaction procedure in the automated
exploration task is given in Algorithm 1.

TABLE 2 | Coefficients in the simulation system.

Coefficients Particulars Value

m Mass of the whole UAV system 10.5 kg

Jx Roll inertia 4.557× 10−1kg ·m2

Jy Pitch inertia 4.557× 10−1kg ·m2

Jz Yaw inertia 7.724× 10−1kg ·m2

l Motor moment arm 0.5 m

3.5.2. Communication From UAV to Human
As shown in Figure 8, a vertical column of RGB LEDs, which are
used to communicate the state and intents of the UAV to the user
as feedback, are fixed on the left undercarriage of the hexacopter.
It is controlled by a combination of a pixhawk and an STM32-
based board with three colors (red, blue, and green). By changing
the color and flicker frequency of the RGB LEDs through the
communication regulation formulated in advance, the state and
intents of the UAV can be transmitted to the user.

4. SIMULATION RESULTS AND
DISCUSSION

To demonstrate the validity and performance of the proposed
STESO and corresponding control scheme, several simulations
of attitude tracking under external disturbance torque will
be conducted using a MATLAB/SIMULINK program with a
fixed-sampling time of 1 ms in this section. As a contrast,
a traditional second-order ESO is built combined with the
proposed attitude controller in the same simulation progress.
In addition, we assume that the three-axis components of the
external disturbance torques exerted on the UAV are the same
and that one of them can be described as:

d = 0.9 sin(2.5π t − 1)+ 1.2 sin(2π t + 2)+ 1.95 sin(0.3π t)

+ 0.45(0.2π t + 6)+ 0.15 sin(0.1π)

+ 0.75 sin(0.05π − 3.5)+ 1.05 sin(π t − 0.9)

+ 1.5 sin(0.01π + 1)− 1.185 (37)

Moreover, the dynamic model built in section 2.3 is taken as the
basis of the simulation of the proposed observer and controllers.
The simulation parameters, which are verified to be very close
to the reality of the single multi-copter and are listed in Table 2,
are generated by the online toolbox of Quan (2018). Although
this is a list of coefficients for a single multi-copter without
a robotic arm, it is also useful in our simulation system, as
the rest of the model uncertainty can also be included in the
lumped disturbance and estimated by the proposed observer.
Additionally, we choose the BSC gains asM1 = 10I3,M2 = 3I3,
the STESO gains as ξ1,i = 28, ξ2,i = 58, and the traditional
second-order ESO gains as L = [ 35 380 600 ]T .

It can be seen from Figure 3 that an effective attitude
controller is the foundation of UAV motion and needs to work
well during a UAV exploration task with unknown external
disturbances. As shown in Figure 6, several attitude tracking
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FIGURE 6 | Simulation results of roll, pitch, and yaw angle-tracking with unknown external torque disturbance. Without observer (Up), traditional ESO (Middle), and

STESO (Down).

simulations have been conducted based on the proposed back-
stepping controller with the STESO and traditional ESO. The
desired attitude references are given as:

2d = [12 sin(0.5π t) 12 cos(0.3π t) 0 ]T deg (38)

From these figures, we can easily determine that the tracking
errors are largest in all of the channels (roll, pitch, and yaw)
without any observers. The tracking trajectories are influenced
seriously. Moreover, we also find that it is obviously improved
with observers to estimate and then attenuate the disturbance
directly, even though the disturbance is not estimated completely.
Compared to being equipped with the traditional ESO, the
tracking error is also further reduced by using the STESO.
Further, the disturbance estimate errors of the STESO and
traditional ESO in all channels are shown in Figure 7, showing
that the STESO could make a better estimation than the
traditional ESO. Thus the UAV can attain better attitude tracking
performance under the control of the proposed controller with
an STESO.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

This section details several experiments, including hovering
with wind gusts and a synthetic interaction experiment between
humans and a UAV, that were conducted in a playground to
validate all the above-mentioned theories.

5.1. Hardware Platform
Figure 8 shows the UAV platform suitable for our interaction
system that was constructed. It is a hexacopter with a 143-cm
tip-to-tip wingspan, six 17-inch propellers, a height of 58 cm,
and a total mass of 10.5 kg including the robotic arm, which is
fixed under the vehicle. Each rotor offers lift force of up to 4.0
kg, which is enough for the whole system. In addition, Open-
source PIXHAWK hardware (Meier, 2012), which includes an
STM32 processor and two sets of IMU sensors, is fastened to
the top of the UAV and is used for sensor data integration,
attitude computation, mode switching, state assistant feedback,
controller and STESO operation, emergency security protection,

FIGURE 7 | Disturbances estimate errors (d̃x , d̃y , d̃z ) of the STESO and

traditional ESO.

etc. Moreover, an NVIDIA TX2 equipped with six CPU cores
and 256 CUDA cores is utilized in the interaction system in
which the human pose estimation and depth computation tasks
are loaded. A binocular stereo camera, which offers 720P video
transmission of up to 60 fps, is placed at the front of the vehicle to
obtain the three-dimensional position of the target with respect
to the UAV. Additionally, to ensure the safety of the experimental
partner during close-range interaction, a high-precision GPS
is utilized to supply accurate information on the absolute and
relative position of the vehicle, which can also enable stable UAV
hovering. Moreover, the vehicle uses HRI-LEDs to communicate
its state and intents to the user, and a compass is placed at the
highest point of the UAV to prevent electromagnetic interference.

5.2. Hovering With Wind Gusts
To demonstrate the performance of the developed method for a
UAV subject to lumped disturbances including wind gusts and
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FIGURE 8 | Prototype of the proposed interactive UAV.

FIGURE 9 | Experimental curves of attitude angle ϕ and angular rate ωx during

hovering with wind gusts.

model uncertainties, a hovering experiment was conducted with
wind disturbance generated by several electrical fans. We set the
BSC gains at M1 = diag(10, 10, 4) and M2 = diag(0.2, 0.2, 0.28)
and the STESO gains at ξ1,i = 1.2, ξ2,i = 0.3. The results
for attitude angle ϕ and angular velocity ωx under STESO-BSC
and a traditional PD controller can be found in Figure 9. It
can be observed that the chattering is markedly reduced under
STESO-BSC compared to PD. In particular, the peak values of

FIGURE 10 | Interaction between human and UAV. Written informed consent

for publication was obtained from the individuals in this image.

FIGURE 11 | Interaction initiation. Written informed consent for publication

was obtained from the individuals in this image.

the attitude ϕ under PD and STESO-BSC are no more than
4◦ and 2◦, respectively. Additionally, under control of PD, the
UAV has more drastic chattering with angular velocity varying
more quickly.

5.3. Human-UAV Interaction
As shown in Figure 10, in this section, an automated
exploration task with the proposed interaction system
was conducted in a playground. It includes interaction
initiation and particular commands, which contain UAV
flight target direction and distance, communicated from human
to UAV.

5.3.1. Interaction Initiation
As shown in Figure 11, the interaction initiation action of a
human was detected by the UAV at a distance in the playground.
Meanwhile, another person who walked around served as a
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FIGURE 12 | Target direction and distance communication to the UAV. (1) Beginning. (2) Target direction command. (3) Target distance command. (4) End. Written

informed consent for publication was obtained from the individual in this image.

FIGURE 13 | Trajectory in automated exploration task.

disturbance term during the whole interaction initiation process.
It had been verified that the UAV can discriminate these poses
from human walking and other human motions. All the key
joints of the human were obtained from the human pose
estimation system. The average inference time per image is about
0.167 s. After the interaction initiation process was finished, the
UAV approached human, while flashing its light as feedback, for
further command information.

5.3.2. Automated Exploration Task
After the interaction initiation process was completed, the human
received the UAV’s feedback information and was ready to give
the next command to the UAV. The specific steps of close
interaction can be seen in Figure 12, in which parts (2) and
(3) represent direction and distance commands, respectively,
as outlined in section 3.5.1. According to the positions of the
human joints and Equation (36), the target direction with respect
to the camera plane was determined to be 36.5◦. Meanwhile,
using the reference unit for the distance command set in this
experiment, 10 m, the final target distance was determined to
be 17.4 m. The flight trajectory was recorded and is shown in
Figure 13. The actual direction angle and distance are 35.4◦ and
16.9 m, respectively, the errors of which are small enough for
field exploration. However, owing to the limitations of figure
space, the trajectory to the destination is shown only partially.
We could conclude from the experiment that the proposed
interaction system is qualified to complete the field exploration
task. However, through the whole experiment, we also found that

the process of the interaction between UAV and human was not
quick enough. As the frame-rate of pose estimation is still limited
in spite of its improvement through our work, the human has to
wait for a while for the response from the UAV at every step of
the interaction, which will influence the interactive efficiency and
experience. More attention should thus be paid to developing this
state-of-art interaction technique in the future.

6. CONCLUSION

In this study, an intuitive end-to-end human-UAV interaction
system, in which a UAV can be controlled to fly to a
corresponding direction and distance by human poses, was
built to assist in field exploration. Moreover, a real time
multi-human pose estimation system, which performs with
low latency while maintaining competitive performance, was
built with which a human can communicate with the UAV
under a proposed interaction regulation scheme. By introducing
the super-twisting algorithm, an STESO was constructed and
applied to the UAV attitude control system to estimate and
attenuate complex disturbances, such as wind gusts, model
uncertainties, etc. Based on the STESO, a back-stepping attitude
controller was built that was proved through several simulations
and experiments to have a better performance than a back-
stepping controller with a traditional ESO. Finally, an integrated
human-UAV interaction experiment was conducted in which the
effectiveness of the whole system and its individual components
were demonstrated.
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