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Understanding the brain is a fascinating challenge, captivating the scientific community
and the public alike. The lack of effective treatment for most brain disorders makes
the training of the next generation of neuroscientists, engineers and physicians a
key concern. Over the past decade there has been a growing effort to introduce
neuroscience in primary and secondary schools, however, hands-on laboratories have
been limited to anatomical or electrophysiological activities. Modern neuroscience
research labs are increasingly using computational tools to model circuits of the brain
to understand information processing. Here we introduce the use of neurorobots –
robots controlled by computer models of biological brains – as an introduction to
computational neuroscience in the classroom. Neurorobotics has enormous potential as
an education technology because it combines multiple activities with clear educational
benefits including neuroscience, active learning, and robotics. We describe a 1-week
introductory neurorobot workshop that teaches high school students how to use
neurorobots to investigate key concepts in neuroscience, including spiking neural
networks, synaptic plasticity, and adaptive action selection. Our do-it-yourself (DIY)
neurorobot uses wheels, a camera, a speaker, and a distance sensor to interact
with its environment, and can be built from generic parts costing about $170 in
under 4 h. Our Neurorobot App visualizes the neurorobot’s visual input and brain
activity in real-time, and enables students to design new brains and deliver dopamine-
like reward signals to reinforce chosen behaviors. We ran the neurorobot workshop
at two high schools (n = 295 students total) and found significant improvement in
students’ understanding of key neuroscience concepts and in students’ confidence
in neuroscience, as assessed by a pre/post workshop survey. Here we provide
DIY hardware assembly instructions, discuss our open-source Neurorobot App and
demonstrate how to teach the Neurorobot Workshop. By doing this we hope to
accelerate research in educational neurorobotics and promote the use of neurorobots
to teach computational neuroscience in high school.

Keywords: neurorobots, neurorobotics, brain-based robots, computational neuroscience, education technology,
workshop, active learning, high school

Frontiers in Neurorobotics | www.frontiersin.org 1 February 2020 | Volume 14 | Article 6

https://www.frontiersin.org/journals/neurorobotics/
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.00006
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnbot.2020.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.00006&domain=pdf&date_stamp=2020-02-13
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00006/full
http://loop.frontiersin.org/people/783449/overview
http://loop.frontiersin.org/people/836967/overview
http://loop.frontiersin.org/people/901610/overview
http://loop.frontiersin.org/people/832936/overview
http://loop.frontiersin.org/people/901593/overview
http://loop.frontiersin.org/people/899063/overview
http://loop.frontiersin.org/people/886629/overview
https://www.frontiersin.org/journals/neurorobotics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-14-00006 February 13, 2020 Time: 12:36 # 2

Harris et al. Neurorobots for Education

INTRODUCING EDUCATIONAL
NEUROROBOTICS

Understanding the brain is necessary to understand ourselves,
treat brain disorders and inspire new scientists. Insights from
neuroscience are also facilitating rapid progress in artificial
intelligence (Hassabis et al., 2017; Zador, 2019). Nevertheless,
most students receive almost no education in neuroscience and
the public’s understanding of the brain is lacking (Frantz et al.,
2009; Labriole, 2010; Fulop and Tanner, 2012; Sperduti et al.,
2012; Dekker and Jolles, 2015). The reasons cited are that the
brain is perceived to be too complex, and that the tools needed to
study it are too expensive and hard to use. Although neuroscience
is not yet an independent component of typical high school
curricula, some schools are adopting neuroscience courses or
steering their biology or psychology classes in the direction of
neuroscience to satisfy growing interest in the brain (Gage, 2019).

An important cause of the increasing prominence and
appeal of neuroscience in recent years is its powerful
synergy with computer technology. Brain imaging and
visualization techniques have given neuroscientists and the
public unprecedented access to the complex structures and
dynamics of brains. Computer modeling is enabling researchers
to go beyond theorizing about brain function to actually
implementing those functions in silico. Large networks of simple
neurons connected by plastic synapses and subject to biologically
inspired forms of learning can now perform feats of prediction
and control previously thought to be the sole purview of the
human brain, and increasingly permeate all aspects of digital
life (Krizhevsky et al., 2012; Hassabis et al., 2017; Levine et al.,
2018). Neurorobotics - the study of robots controlled by artificial
nervous systems - leverages much of this synergy and is proving
a powerful method for developing and validating computational
models of brain function (Falotico et al., 2017; Krichmar, 2018;
Antonietti et al., 2019; Tieck et al., 2019; Zhong et al., 2019).

Neurorobotics also has enormous and largely untapped
potential as a neuroscience education technology because it
combines multiple activities with clear educational benefits.
(1) Robotics is a highly motivating and effective framework
for teaching STEM in schools (Barker, 2012; Benitti, 2012;
Karim et al., 2015), including to underrepresented students
(Weinberg et al., 2007; Ludi, 2012; Rosen et al., 2012; Yuen
et al., 2013). (2) The process of designing, testing and
modifying neurorobot brains with interesting behavioral
and psychological capacities engages students in active
learning, which has been shown to improve STEM outcomes
(Freeman et al., 2014), especially among disadvantaged
students (Kanter and Konstantopoulos, 2010; Haak et al.,
2011; Cervantes et al., 2015). (3) Finally, neurorobotics
combines robotics and active learning with neuroscience,
a highly multidisciplinary subject that presents itself in a
wide array of real-life situations and readily appeals to the
public (Frazzetto and Anker, 2009; Sperduti et al., 2012).
The aim of neurorobotics is convincing robotic embodiment
of attention, emotion, decision-making and many other
mental capacities that are inherently interesting to students.

Given user-friendly and affordable robot hardware, intuitive
brain design and visualization software, and well-researched
curriculum, educational neurorobotics has the potential to
revolutionize neuroscience tuition, STEM education and the
understanding of the brain.

Educational neurorobotics is a small but growing area of
research and development. Iguana Robotics developed perhaps
the first neurorobot for education – an inexpensive four-legged
robot that uses capacitors and resistors to emulate neural
networks and move (Lewis and Rogers, 2005). Middle and high-
school students were readily motivated to modify these neural
networks in order to change the robot’s gait, and demonstrated
improved neuroscience attitudes as a result. NeuroTinker has
more recently developed LED-equipped hardware modules
that emulate individual neurons and can be connected into
small neural circuits and attached to sensors and motors.
Undergraduate students demonstrated improved understanding
of neuroscience concepts after using the modules (Petto
et al., 2017). Robert Calin-Jageman’s Cartoon Network is an
educational neural network simulator that can connect via USB
to the Finch Robot (BirdBrain Technologies LLC), a mobile robot
with temperature-, light- and touch sensors, motorized wheels,
lights, and buzzers. Cartoon Network allows students to use
different types of neurons and synapses to build neural circuits
and control the Finch Robot, and generated promising results
in workshops with undergraduates and teachers (Calin-Jageman,
2017, 2018). Asaph Zylbertal’s NeuronCAD is a Raspberry
Pi-based neurorobot that uses simulated neurons to control
motors and process input from a camera (Zylbertal, 2016) but
the project’s educational aims have not yet been implemented.
Finally, Martin Sanchez at University Pompeu Fabra organizes an
annual educational neurorobotics project as part of the Barcelona
International Youth Science Challenge (Sanchez, 2016). We set
out to expand on these promising developments in educational
neurorobotics and extend the range of brain functions and
biologically inspired neural networks students are able to create
and the ways in which these networks can be visualized, analyzed
and modified.

We have developed a neurorobot for high school neuroscience
education that combines easy-to-use brain simulation and brain
design software with affordable, wireless, camera-equipped do-it-
yourself (DIY) hardware. Our DIY neurorobot is a mobile robot
that uses wheels, a camera, a speaker and a distance sensor to
navigate and interact with its environment (Figure 1). To keep
hardware cost low while allowing students to leverage compute-
intensive graphical user interface, brain simulation and machine
learning functionality, we chose to perform most computations
on a wirelessly connected laptop that receives sensory input
from the robot, extracts sensory features, simulates user-defined
Izhikevich-type neural networks (Izhikevich, 2003) and sends
commands back to the robot’s motors and speaker in real-time.
The neurorobot consists of generic hardware components that
can be purchased online at a total cost of about $170 and
assembled in under 4 hrs. with a soldering iron and a glue gun.
A parts list and assembly instructions are provided below.

We have also developed a software application that performs
real-time simulation and visualization of the neurorobot’s
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FIGURE 1 | A DIY neurorobot for education. (A,B) Top and sideways views showing the neurorobot’s chassis, battery, controller (with motor shield on top), WiFi
camera module, speaker, distance sensor, Bluetooth modem and sunglasses. (C) Schematic showing the flow of signals in the system.

FIGURE 2 | Neurorobot app. (A) Two Neuron Simulator. (B) Startup mode. (C) Runtime mode. (D) Brain design mode.

brain and visual input, and allows user-controlled delivery
of dopamine-like rewards and other commands (Figure 2).
The app includes a brain design environment for building
neural networks, either neuron-by-neuron and synapse-by-
synapse or by algorithmic definition of larger networks. The
Neurorobot App is written in Matlab and is available to
download at github.com/backyardbrains/neurorobot. Although

we recommend using neurorobot hardware, the app can
run without it, and can use a normal web camera to
acquire visual input.

To provide an initial assessment of the educational value
of our neurorobots, we developed a 1-week long introductory
Neurorobot Workshop for high school students (Figure 3).
In this workshop, students are first familiarized with the
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FIGURE 3 | Neurorobot workshop. (A) Brains used to investigate spontaneous behavior (Ai), directed navigation (Braitenberg vehicle) (Aii), slow exploration (Aiii)
and random networks (Aiv). In a Braitenberg vehicle, detection of a visual feature in either half of the visual field activates motors on the opposite side of the robot,
allowing it to approach a target even if the target moves around. (B) Brain used to investigate Hebbian learning. Plot shows synaptic decay rates for three durations
of training. (C) Brain used to investigate adaptive action selection. Plot shows network drive for 3 networks during normal and rewarded (black bar) behavior.

behavior of the Izhikevich neuron model and shown how to
connect such neurons with synapses to produce goal-directed
behavior. Students then investigate Hebbian learning as they
train their neurorobot to remember new visual stimuli. They also
explore action selection and reinforcement learning by using a
“dopamine button” to teach their robot how to behave in different
sensory contexts. To finish, students design a brain to perform
behaviors of their own choosing, and present their results to the
rest of the class. We taught the Neurorobot Workshop at two high
schools (n = 295 students) and found significant student gains
in neuroscience learning and students’ attitudes to neuroscience
(Figures 4, 5).

MATERIALS AND METHODS

Neurorobot Hardware
We developed our DIY neurorobot hardware design (Figure 1)
with the aim of making neurorobotics accessible and appealing
to a wide range of learners and learning communities. To
accomplish this, we sought to use affordable components that
can be purchased online and easily assembled, while at the same
time allowing fast, wireless robot mobility, real-time processing
of 720p video, audio communication, and simulation of relatively
large spiking neural networks. The neurorobot uses a plastic
chassis with two motorized wheels and a single swivel wheel.
Double-sided tape was used to attach a 22000 mAh battery with 3
USB ports to the chassis. An UNO R3 controller with an Adafruit
motor shield was affixed on top of the battery. A RAK5206 WiFi
camera module was also attached on top of the battery with the
camera attached to the forward-facing side of the battery. An
8 ohm speaker was taped to the side of the battery. A HC-SR04
ultrasonic distance sensor was attached to the forward-facing

underside of the chassis with a glue gun. A SparkFun BlueSMiRF
Bluetooth modem was attached to the chassis, next to the battery.
Finally, to increase the robot’s appeal to high school students,
a pair of sunglasses was attached and color-matched tape was
used to decorate the front of the chassis. A parts list, wiring
diagram, and step-by-step assembly instructions are provided in
the Supplementary Material and Supplementary Figure S1.

The neurorobot’s UNO R3 controller firmware is
written in C/C++ and is available to download at
github.com/backyardbrains/neurorobot. The controller
communicates via the Bluetooth modem with the Neurorobot
App, which runs on a dedicated laptop (Figure 1C). Every
100 ms the controller looks for a 5 byte package from the
laptop representing a speed (0–250) and direction (1 = forward,
2 = backward) for the left motor (bytes 1–2), a speed and
direction for the right motor (bytes 3–4) and an output
frequency for the speaker (31–4978 Hz, 8-bit resolution). If
the package is available, motor and speaker states are updated
accordingly. In the same 10 Hz cycle, the controller also uses the
ultrasonic sensor to estimate the distance to the nearest object
in front of the neurorobot and sends this distance to the laptop
(range: 4–300 cm, 32-bit resolution). In parallel, the neurorobot’s
RAK5206 WiFi camera module collects 720p color images at 10
frames per second and sends them via WiFi to the dedicated
laptop. We are currently developing a Matlab/C++ library
that will allow the WiFi camera module to perform all wireless
communication, obviating the need for the Bluetooth modem.

Neurorobot App
We developed a Matlab-based app to enable students with no
background in neuroscience or programming to design spiking
neural networks for the DIY neurorobot, and to visualize and
interact with those neural networks in real-time. Real-time
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FIGURE 4 | Neuroscience content quiz results. Students’ results on a neuroscience quiz (n = 295 pre-workshop responses, 169 post-workshop responses). Large
circles indicate average responses. Wilcoxon rank sum: *p < 0.05, ***p < 0.000000000005.

FIGURE 5 | Science attitudes survey results. Students’ results on a self-report science attitudes survey (n = 295 pre-workshop responses, 169 post-workshop
responses). Small dots represent individual students’ average level of agreement or disagreement with seven statements about their attitudes to neuroscience or
science generally (see Supplementary Material for details). Large circles indicate average responses. Wilcoxon rank sum: *p < 0.05, ***p < 0.000000000005.

processing is ensured using Matlab timer objects, which report
the execution time of each processing step in milliseconds as
well as the number of missed cycles. We chose to implement the
Izhikevich neuron (Izhikevich, 2003), a spiking neuron model

that balances realistic-looking membrane potentials and spike
patterns with relatively light compute load. The Neurorobot
App (Figure 2) simulates neurons at a speed of 1000 Hz as
required by the Izhikevich formalism, while performing all other
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processes including audiovisual processing, plasticity and brain
visualization at a speed of 10 Hz. Synaptic connections between
neurons can be either excitatory or inhibitory (measured in mV,
range: −30 to 30 mV). Individual excitatory synapses can be
made subject to Hebbian learning and will then be strengthened if
their presynaptic neuron fires simultaneously with or just before
their postsynaptic neuron. This synaptic reinforcement is subject
to inverse exponential decay and disappears completely after
a few minutes unless the synaptic reinforcement is sufficiently
strong (>24 mV) to form long-term memory. Hebbian learning
can furthermore be made conditional on simultaneous delivery
of dopamine-like reward signals.

To help students familiarize themselves with Izhikevich
neurons the Neurorobot App features the Two Neuron Simulator
(Figure 2A), which simulates a pair of neurons connected
by reciprocal excitatory synapses. Sliders allow students to
update the neuronal activity parameters, input noise and
synaptic strengths of both neurons in real-time. The Two
Neuron Simulator can be launched from the Neurorobot
App startup menu.

In addition to simulating neurons and their synaptic
connections, the Neurorobot App optionally implements action
selection functionality modeled on the dynamics of action
selection in the basal ganglia (Grillner, 2006; Prescott et al., 2006;
Seth et al., 2011; Bolado-Gomez and Gurney, 2013). Each neuron
is assigned a network ID during the brain design process and
each such network is associated with a stochastically increasing
level of “drive” (or “motivation”) which reflects the network’s
likelihood of being selected by the basal ganglia. Only neurons
with a selected network ID can fire spikes (i.e., control behavior).
If the drive of a network crosses a threshold the network
may be selected (the selection process is currently implemented
algorithmically, not neuronally). If selected, a network’s drive is
significantly increased. While selected, the network will inhibit
the drive of all other networks but will also slowly lose its
own drive unless excitatory synaptic inputs or dopamine-like
reward signals are provided. A special “basal ganglia” neuron
type can be used to integrate sensory and other neuronal inputs
intended to modulate the drive of a specific network in different
contexts, mirroring corticostriatal input to the basal ganglia.
Synaptic inputs onto a basal ganglia neuron increase the drive of
that neuron’s network proportionally. Network ID 1 is exempt
from selection to allow for uninterrupted sensory and other
neuronal activity.

In the Neurorobot App, neurons and their connections are
represented within a brain-shaped workspace (Figures 2B–D).
The workspace is lined with icons representing camera input,
distance input, audio input (not yet in use), motor output and
sound output. Neurons are represented within this workspace
as colored circles connected by axons (black lines) that end in
synapses (small rectangles or circles representing excitatory and
inhibitory synapses, respectively).

The Neurorobot App has three modes of operation: startup,
runtime and design. In startup mode (Figure 2B), students
are able to load and preview different brains, and establish
their robot’s WiFi and Bluetooth connections. In runtime
mode (Figure 2C), students can visualize their robot’s visual

input, brain activity and brain structure in real-time, and send
dopamine-like reward signals to the brain. Neuronal spikes are
indicated by black markers in a continually updated raster plot,
and by the spiking cell body briefly turning green. The width
of each line representing an axon indicates the absolute strength
of that synaptic connection and is also updated in real-time. In
design mode (Figure 2D), students are able to add individual
neurons to the brain by selecting from a range of pre-specified
neuron types with different firing properties, and connect them to
other neurons by means of excitatory or inhibitory synapses with
different strengths and plasticity rules. Students can also assign
neurons a range of sensory preferences (colors, objects, and
distances) and motor outputs (speed and direction of movement,
sound frequencies) by drawing axonal connections between
neurons and the various icons lining the brain-shaped workspace.
We use a variety of sensory filters as input to neurons in the brain
depending on the content of the lesson and the computational
resources available. Each sensory filter indicates the presence
or absence of a specific color or object in the video frame.
Maximal sensory filter output is 50 mV. Object recognition
is accomplished using Matlab’s Deep Learning and Parallel
Computing toolboxes and requires a relatively high-performance
graphics card (i.e., a CUDA-enabled NVIDIA GPU with compute
capability 3.0 or higher). However, colors provide sufficient
sensory diversity for all exercises described in the Neurorobot
Workshop below. The design mode also allows students to add
groups of neurons to the brain by algorithmically defining their
properties (Figure 2D). The code needed to run the Neurorobot
App is available at github.com/backyardbrains/neurorobot and
does not require neurorobot hardware to run.

Neurorobot Workshop
We developed and performed a 1-week long Neurorobot
Workshop with the aim of introducing students to our
neurorobot and providing an initial evaluation of its potential
as a tool to teach computational neuroscience in high schools
(Figures 3–5). Our protocol was approved by IntegReview IRB
(March 21, 2018, protocol number 5552). The workshop was
conducted in two high schools (Michigan, United States) and
consisted of 10 classes (6 at the first school, 4 at the second school)
of about 30 students each, and involved a total of 295 students
aged 14–19. Each class had 4 or 5 consecutive days (for school
1 and 2, respectively) of 1 hr. neurorobot lessons. During the
lessons, students worked in groups of 3–4, with one robot and
laptop per group (total of 9 robots and groups per class). Students
were recruited to the study as part of their regular teaching in AP
(Advanced Placement) biology or psychology. Female students
made up 57% of the students in school 1 and 65% in school
2. Laptops were provided by the project team. A school teacher
attended each workshop.

The workshop began with the instructor providing a short
introduction to the concept of brain-based robots. Students then
started the Neurorobot App by navigating to the app folder in
Matlab and running the script neurorobot.m. Students began
by accessing the Two Neuron Simulator (Figure 2A) and were
taught to identify spikes, reduce input noise, increase or decrease
spike rate, and trigger postsynaptic spikes by varying synaptic
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strength. The aim of this exercise was to familiarize students
with spiking neurons, with the fact that neurons can be quiet or
spontaneously active, and with the synaptic strength needed to
reliably trigger spikes in a postsynaptic neuron.

Students were then instructed to use the Neurorobot App to
design a brain that would move forward in response to seeing
a specific color. (This can be accomplished by adding a single
neuron to the brain, assigning it a color preference, and extending
axons to the forward-going motors on both sides of the robot.)
This required students to learn how to transition between the
startup, runtime and design modes of the app, to add a neuron
of the correct (i.e., quiet) type to the workspace, and to assign the
neuron specific sensory inputs and motor outputs. Students were
then encouraged to modify the brain so that the robot would spin
around in response to seeing a different color, move backward in
response to the distance sensor registering a nearby object, and
to produce distinct tones during each behavior. The aim of this
exercise was to familiarize students with the Neurorobot App and
help them develop an understanding of how functionally distinct
neural circuits can co-exist in a single brain.

Students were then encouraged to explore the various
pre-configured brains available from the startup menu (e.g.,
Figures 3Ai–iv), to try to understand how it is possible for
those brains to generate distinct spontaneous behaviors in
the absence of specific sensory inputs, and to incorporate
some of the operative neural mechanisms in their own
brain designs. This required students to learn how to load
different brains and analyze them in order to identify
neuronal properties that contribute to spontaneous behavior
(e.g., spontaneously active or bursting neurons). Students were
also introduced to the concept of a goal-directed Braitenberg
vehicle (Braitenberg, 1986; Figure 3Aii) and to random neural
networks generated by defining neuronal and network properties
probabilistically (Figure 3Aiv).

In the second lesson of the workshop students were first
introduced to Hebbian learning and synaptic plasticity. Students
were instructed to load a pre-configured brain consisting of three
neurons (“Betsy,” Figure 3B). Neuron 1 was responsive to green
and projected a weak but plastic synapse to neuron 3. Neuron
2 was responsive to red and projected a strong but non-plastic
synapse to neuron 3. Neuron 3 produced a sound output. Thus,
showing the robot a red object led to activation of neurons 2
and 3 and the sound output, whereas showing the robot a green
object only activated neuron 1. The challenge was to train the
neurorobot to produce a sound in response to seeing the green
color alone. The instructor explained the concept of Hebbian
learning and showed students how to reinforce the synapse
connecting neurons 1 and 3 by presenting the robot with both
red and green colors simultaneously. Students were then asked to
plot the strength of the plastic synapse in order to quantify how
the duration of training (simultaneous stimulus presentation)
affected the rate of learning and subsequent forgetting. The aim
of the exercise was familiarize students with Hebbian synaptic
reinforcement, which depends on simultaneous activation of a
pre- and a postsynaptic neuron, to teach them how to read and
plot synaptic strengths, and to introduce the idea that sufficient
synaptic reinforcement can trigger long-term memory.

In the third lesson students were introduced to the concepts
of action selection and reinforcement learning (Figure 3C).
The instructor explained how the basal ganglia enables action
selection in the vertebrate brain by selective disinhibition of
specific behavior-generating neural networks (Grillner, 2006;
Prescott et al., 2006; Seth et al., 2011; Bolado-Gomez and Gurney,
2013), and how this process is modulated by dopamine to
promote behaviors that lead to reward. Students were shown
how this selection process is implemented in the Neurorobot
App by means of neural network IDs, thresholded levels of
network drive and the basal ganglia neuron type (see section
“Neurorobot App”). Students were then instructed to load a
preconfigured brain that produces three different behaviors
and can be conditioned using the dopamine button (“Merlin,”
Figure 3C). Students trained the brain to perform one of its
three behaviors in response to seeing a specific color by showing
the color to the robot, waiting for it to perform the desired
behavior, and then using the dopamine button to reinforce the
color-behavior association.

The final 1–2 lessons of the Neurorobot Workshop consisted
of a student-led team exercise in which students were challenged
to design a brain capable of behaviors of the students’ own
choosing, and then present their results to the rest of the class.

To assess the educational value of the Neurorobot Workshop
we asked students to complete a survey designed to test
neuroscience content learning (4 open-ended questions) and
science attitudes (14 Likert scale questions) before and after
the workshop. Answers on the neuroscience content quiz were
scored 1–5 following a grading grid (1 Incorrect/no answer; 2
Some correct elements with main concept missing or wrong;
3 Correct but incomplete answer; 4 Correct answer; and 5
Outstanding answer) by an evaluator who was blind to the
pre/post survey condition.

RESULTS

App Speed and Performance
We perceived the stability and speed of the Neurorobot App
to be critical to student engagement during the workshop. The
rendering speed of the Neurorobot App depends on the laptop
used to run it. We found that laptops with 1.1 GHz dual-
core CPUs, 8GB RAM and internal graphics (4165 MB total
memory, 128 MB VRAM) were not able to render the app at
an acceptable rate. The rendering of buttons and execution of
their associated functions in brain design mode were particularly
affected, resulting in Matlab errors and crashes as students
attempted to start new processes before previously triggered ones
had completed. We found that laptops with 2.80 GHz quad-core
CPUs, 16GB RAM, and NVIDIA GeForce GTX 1060 graphics
(11156 MB total memory, 2987 MB VRAM) were able to render
the app with only occasional delays. We used laptops with these
specs, running Windows 10 and Matlab 2018a or higher, in the
workshops discussed here.

The neurorobot app is configured to run at 10 Hz, with its
Izhikevich neurons running at 1000 Hz. With these settings we
were able to simulate brains of up to 1000 neurons. Nevertheless,
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improving our code to allow simulation of much larger brains
is a priority. We found that we had to use a slower rendering
speed of 5 Hz when simulating larger brains or when using the
Deep Learning and Parallel Computing toolboxes to perform
object recognition.

Early iterations of the Neurorobot App suffered from regular
WiFi connection failures (“crashes”) that often required a system
restart and irritated students. The current version of the app is
more stable. However, while we experienced almost no problems
maintaining WiFi connectivity for all nine neurorobots at the first
school, we had significant problems at the second school, where
we experienced 30–70 WiFi crashes in each lesson. Although we
were able to complete the workshop, students’ ability to work
with the robots was severely disrupted. While the first school has
only a single floor and is located in a suburban area, the second
school is an urban high rise. We have subsequently experienced
similar WiFi connectivity problems at other inner city schools,
suggesting that such schools present a much more challenging
environments for WiFi.

Another persistent problem we encountered during
workshops was color detection. In rooms with plenty of
natural light our neurorobots were easily able to recognize and
distinguish between red, green, and blue objects. However, rooms
with limited or amber ceiling lights were difficult to work in, with
detection of green and blue being particularly affected. We are
currently working to improve the color detection functionality of
the Neurorobot App, and recommend testing a range of different
color objects in the same room and lighting conditions in which
work with the app is to take place.

Two features of the brain design mode were not intuitive
to students. First, the app assumed that the presynaptic origin
of a synapse would be selected before its postsynaptic target.
This was a natural way of establishing directed connections
between pairs of neurons. However, it also meant that to
make a neuron responsive to sensory input, the sensory input
icon had to be selected before the target neuron. Similarly,
to enable a neuron to produce motor or speaker output, the
neuron had to be selected before the output icon. Although
these requirements may reinforce the concept of directed
signal flow in neural networks, students found the constraints
frustrating. Students also found the process of modifying or
deleting synapses confusing. To create a synapse, students
had to extend an axon from the presynaptic origin (e.g.,
a neuron) to the postsynaptic target (e.g., another neuron).
However, modifying or deleting an existing synapse also
required students to extend an axon from the presynaptic
origin to the postsynaptic target. Students repeatedly voiced
the opinion that clicking directly on an existing axon or
synapse to delete it or edit its properties would be more
intuitive. We are currently working to solve both these user
interface issues.

Neuroscience Learning and Confidence
To assess whether students learned the workshop’s core concepts,
such as the role of synaptic plasticity and dopamine in the brain,
we presented students with 4 open-ended neuroscience quiz
questions before and after the workshop (Figure 4):

Q1: Describe three types of neuron with different spiking
patterns

Q2: What is synaptic plasticity and why is it important?
Q3: How does the basal ganglia control behavior?
Q4: Describe two effects dopamine has on the brain

The answers ranged from no answer or fully incorrect, such
as “Axon, myelin, helium” or “What” for Q1, to fully correct
answers such as “Quiet neurons, highly active neurons, bursting
when activated”. Examples of correct answers for Q2 include
“It is training the brain to learn stuff” and “Synaptic plasticity
is the ability of neural connections to strengthen or weaken
based on how much the connection is used”. Examples of
correct answers for Q3 include “It controls decision making
by evaluating all options someone has” and “It controls which
behavior you choose to do”. Examples of correct answers for Q4:
“Motivation, concentration,” “Motivation and will,” “Dopamine
helps you make decisions, it also controls what you want and
don‘t want,” “It can create bad habits. It creates habits” and “It
brings pleasure to the body, and too much dopamine leads to
addiction.” We found significant improvement on all content
questions, particularly Q1 and Q3 in the first school.

To also assess whether participating in the Neurorobot
Workshop improved students’ confidence in science generally
and in neuroscience in particular, we asked students to indicate
their level of agreement or disagreement with 14 statements
(e.g., “I am confident I can understand complex material in
neuroscience”) on a 7-point Likert scale (Figure 5). The complete
list of 14 statements can be found in the Supplementary
Material. We found that participation in the Neurorobot
Workshop did not change students’ general science attitudes
but significantly improved their attitudes in neuroscience,
particularly in the first school.

The end-of-workshop group exercise allowed students to
apply the neuroscience concepts and skills learned in order
to create brains from scratch that performed behaviors of the
students’ choosing. Students were able to present their brain
designs to the rest of the class and comment on challenges and
unexpected neurorobot behaviors. Examples of students’ brain
designs are shown in Supplementary Figure S2.

The discrepancy in the number of responses before and after
the workshop is due to final day group presentations running
over time, sometimes leaving students without enough time
to complete the post-workshop survey. We will improve our
scheduling to accommodate both activities in future workshops.

DISCUSSION

Neurorobotics offers students a unique opportunity to learn
neuroscience and computational methods by building and
interacting with embodied models of neurons and brains. To
promote neurorobot-based neuroscience tuition in schools and
educational neurorobotics as an area of research, we have
provided here the instructions to build our DIY neurorobot, the
Matlab-code of the associated Neurorobot App, and the contents
and results of a Neurorobot Workshop for high school students.
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A pre/post workshop survey revealed significant improvements
in students’ understanding of key neuroscience concepts and
confidence in neuroscience as a result of the workshop (Figures 4,
5). The gains were larger in the first of the two participating high
schools, likely due to the significant WiFi connectivity problems
we experienced in the second school.

Development of our educational neurorobotics platform is
ongoing. In the near future we will remove the need for
the Bluetooth modem by conducting all communication via
WiFi. This involves creating a new library for communication
between Matlab and the RAK5206 WiFi module, as the HebiCam
library we are currently using for this purpose only allows
video transmission. We are also working on a lighter, fabricated
hardware design with microphone, gyroscope and accelerometer
input, motor encoders and multi-color LEDs.

On the software side there are numerous near-term
improvements that would enhance usability, including tools
to edit neurons and synapses en masse, and methods for
working with larger brains (e.g., zooming in and out, hiding
different types of brain structure). An efficient search of the
space of possible neural networks with the aim of discovering
novel, engaging behavioral outputs would allow students
to more quickly create and train interesting brains in the
classroom. Faster and richer sensory feature extraction would
allow students to design brains that can recognize and adapt
to key features of their local environment. Perhaps the
most important near-term goal is to expand the library of
brains available to students, to include interesting, useful,
well-understood features such as retinotopy and place cells,
and to develop creative pedagogic exercises to introduce
these brains to students. We are particularly interested
in creating brains that make use of the dopaminergic
neuron type, activation of which generates reward signal
and enables reinforcement learning without the need for the
dopamine button.

As researchers and educators exploring the still nascent
field of educational neurorobotics we are faced with numerous
interesting questions. What types of sensory features are
most useful to students and how should they be made
accessible in the Neurorobot App? What types of neurons
and neural circuits do students need to be able to deploy
with a single click? What types of exercises, brains and
behaviors do students prefer to work with, and why? How
should existing neurorobotics research and computational brain
models be translated into forms suitable for the high-school
classroom? How should educational neurorobotics be combined
with project-based learning? How can we make teachers
confident about using neurorobots to teach neuroscience? What

opportunities are presented by virtual environments such as
the Human Brain Project’s Neurorobotics Platform? And how
should neuromorphic hardware be incorporated into educational
neurorobots? It’s an exciting time to bring neurorobots to the
classroom!
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