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Objective: Despite numerous recent advances in the field of rehabilitation robotics,

simultaneous, and proportional control of hand and/or wrist prostheses is still unsolved.

In this work we concentrate on myocontrol of combined actions, for instance power

grasping while rotating the wrist, by only using training data gathered from single actions.

This is highly desirable since gathering data for all possible combined actions would be

unfeasibly long and demanding for the amputee.

Approach: We first investigated physiologically feasible limits for muscle activation

during combined actions. Using these limits we involved 12 intact participants and one

amputee in a Target Achievement Control test, showing that tactile myography, i.e.,

high-density force myography, solves the problem of combined actions to a remarkable

extent using simple linear regression. Since real-time usage of many sensors can

be computationally demanding, we compare this approach with another one using a

reduced feature set. These reduced features are obtained using a fast, spatial first-order

approximation of the sensor values.

Main results: By using the training data of single actions only, i.e., power grasp or

wrist movements, subjects achieved an average success rate of 70.0% in the target

achievement test using ridge regression. When combining wrist actions, e.g., pronating

and flexing the wrist simultaneously, similar results were obtained with an average of

68.1%. If a power grasp is added to the pool of actions, combined actions are much

more difficult to achieve (36.1%).

Significance: To the best of our knowledge, for the first time, the effectiveness of tactile

myography on single and combined actions is evaluated in a target achievement test. The

present study includes 3 DoFs control instead of the two generally used in the literature.

Additionally, we define a set of physiologically plausible muscle activation limits valid for

most experiments of this kind.

Keywords: myocontrol, tactile myography, prosthetics, combined actions, grip strength, high-density force

myography (HD-FMG), biomechanics of grasping
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1. INTRODUCTION

The umbrella termmyocontrol denotes, in contemporary assistive
robotics, the control of a mechatronic device exerted by a human
subject using coordinated muscle contractions. Informally, it is
about reliably turning patterns of biological signals into “actions,”
usually to be executed by a prosthetic device, such as e.g., a
“power grasp” or the “flexion of the wrist.” In this framework,
reliably means that the prosthesis should be able to execute what
the amputee desires, exactly when he/she desires it, and in a
transparent (natural) way. To this aim, the keywords natural
control (Castellini et al., 2014; Ortiz-Catalan and Branemark,
2014) and simultaneous and proportional control (Jiang et al.,
2009; Muceli et al., 2014) have appeared in literature, denoting
continuous, real-time, and graded control over many degrees
of freedom (DoF) of the prosthesis—potentially, all of them.
This idea is particularly well illustrated in Fougner et al. (2012)
(consider Figure 2 in the paper), which dates back to 2012.

There are multiple reasons why decades of academic
research have yet hardly turned into commercial solutions (two
remarkable exceptions are the Complete Control system by
CoApt Engineering1 and Myo Plus by Ottobock2), the most
prominent among which is, probably, the lack of reliability of
said form of control. At the time of writing this article, seven
years have gone by since the appearance of Jiang et al. (2012),
a paper in which the community of myocontrol was incited,
among other things, to find novel sensing techniques for intent
detection. The traditional biosignals used in myocontrol, surface
electromyography (sEMG), are deemed to be insufficient, and
the research community is underway of finding alternatives. At
present, no widely accepted and exhaustively tested alternative
exists. We argue that a prominent option could likely be
tactile/force myography. Since Craelius et al.’s experiments in
the early 2000s (Curcie et al., 2001; Craelius, 2002) it has
been clear that each pattern of muscle activation corresponding
to a desired action also corresponds to a specific, repeatable
pattern of external forearm pressure produced by the volumetric
variation of the underlying muscles. Such a deformation could be
detected by force/pressure sensors and associated to the action,
thereby used as an alternative or parallel technique to surface
electromyography. Examples of comparisons and mixtures of the
two techniques can already be found in literature (Fang et al.,
2015; Cho et al., 2016; Connan et al., 2016; Castellini et al., 2018).

Abbreviations: APL, Abductor Pollicis Longus; CPU, Central Processing Unit;

DoF, Degree of Freedom; ECRB, Extensor Carpi Radialis Brevis; ECRL, Extensor

Carpi Radialis Longus; ECU, Extensor Carpi Ulnaris; ED, Extensor Digitorum;

EDM, Extensor Digiti Minimi; EPL, Extensor Pollicis Longus; FCU, Flexor Carpi

Ulnaris; FCR, Flexor Carpi Radialis; FDP, Flexor Digitorum Profundus; FDS,

Flexor Digitorum Superficialis; FMG, Force Myography; FPL, Flexor Pollicis

Longus; HD-FMG, High-Density Force Myography; MVC, Maximum Voluntary

Contraction; ROI, Region Of Interest; ROIG, Region Of Interest Gradient; ROM,

Range of Motion; RR, Ridge Regression; RR-ROIG, Ridge Regression with Region

Of Interest Gradient; sEMG, Surface Electromyography; SD, Standard Deviation;

SR, Success Rate; TAC, Target Achievement Control; TCT, Time to Complete Task;

TIT, Time in Task; TMG, Tactile Myography

1http://www.coaptengineering.com/
2https://www.youtube.com/watch?v=B8Z_2tMUeiw

This approach, involving several independent force sensors has
been called, among other ways, force myography or FMG.

In this work, we try to advance the state of the art in the
usage of a closely related technique for myocontrol, namely
tactile myography (TMG). The term TMG is used for high-
density FMG: a technique in which many force/pressure sensors
are put in contact with the subject’s limbs. TMG has already
been proved at least in Radmand et al. (2016) and Jaquier et al.
(2017) and it has been shown to offer an unprecedented detail
about the muscle patterns under examination. However, in these
different works, combined motions were not tested. On another
note, TMG can also be embedded in a socket-like structure or
in a shape-conformable bracelet for ease of use and the bare
application of linear regression on its values yields good results
in intent detection.

Specifically, we hereby show that TMG and linear regression
can be used proficiently in an online goal-reaching task, and that
it suffices to gather data from the subject for single actions only
(i.e., a list primary actions that we define in Subsection 3.4) to also
be able to predict combined actions (e.g., flexing and pronating
the wrist at the same time). Firstly, we carry out a study of existing
literature about muscle activation limits in complex actions, and
propose a set of physiologically feasible maximal activations, apt
for any future experiment involving combined actions. Indeed
the physiology of the hand and wrist as well as forearm limits
the possibilities of mobilizing multiple muscles at the same time.
For instance, each forearm or wrist action has an influence on the
level of power grasp’s strength one is able to produce.

Furthermore, we engage 12 subjects and one amputee in
an instance of the Target Achievement Control (TAC) test
(Simon et al., 2011) with control over 3 DoF3. Our experimental
results show that, when using linear regression and TMG,
combined actions can be predicted by gathering data about
single movements only. However, power grasping seems to
have a remarkable negative influence on the test. The high
resolution of TMG is probably the reason why linear regression
suffices. Actually, in other cases in which no high-resolution
approach could be used, researchers needed to resort to artificial
combinations of existing data clusters (Nowak and Castellini,
2015, 2016; Nowak et al., 2016), especially when dealing with
more than 2 DOFs. In these works we have already proposed to
“dope” the dataset of a myocontrol system with synthetic data
obtained by linearly combining pre-existing sEMG patterns, in
order to be able to predict combined activations of complex
actions without the need to gather data directly related to them.
In this study, too, we compare using bare linear regression on the
sensor values with a set of features reducing the dimensions of the
input space to one sixth. This idea could help whenever limited
computational power is available, e.g., in a future implementation
running on an embedded battery-powered prosthesis controller.

Related Work
Previous research proposed control over combined actions with
electromyography. In particular, Jiang et al. (2009) did an offline

3With a slight abuse of language, we will consider a power grasp as one single DoF

along this article.
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analysis of EMG data collected with restriction of the wrist
and proposes a linear model (non-negative matrix factorization
- NMF) built on neural muscle synergies: single-DoF wrist
activations are extracted by a linear decomposition of the
sEMG signals.

Several studies also used this idea of a linear decomposition
of the sEMG signals. For example, Nagata and Magatani (2011)
presents a preliminary offline experiment where the high-
density electromyography (HD-EMG) data of only two subjects
performing combined motions is collected and activations are
separated by a Canonical Discriminant Analysis to construct
basic motions. Furthermore, in Yatsenko et al. (2007), a PCA-
based (Principal Component Analysis) technique built on sEMG
energies is used offline to separate combined hand and wrist
motions. Despite the limited number of subjects (2 intact
subjects and 1 amputee), they present preliminary results of
the same combined motions presented in our experiment,
i.e., wrist flexion/extension, wrist pronation/supination, and
power grasp.

In Kent and Engeberg (2011), control of the combined
2 DoFs power grasp and wrist flexion/extension is possible
thanks to a biomimetic controller taking into consideration
the muscular structure of the forearm. Amsuss et al. (2014)
tested the same NMF algorithm with muscle synergy-inspired
decomposition as in Jiang et al. (2009), combined with a
Linear Discriminant Analysis, in a free test of 1h in which
2 amputees tried rotation of the wrist combined with wrist
flexion/extension while manipulating objects and performing
a clothes pin test. The subjects were equipped with a socket
containing 8 EMG Ottobock electrodes. Unfortunately, training
the NMF algorithm with the same 3 DoFs, as in our study,
resulted in very unreliable results. Using only 8 EMG electrodes
and simple linear regression, Hahne et al. (2018) tested the
control of combined wrist rotation and grasping on 5 amputees
in a series of activities of daily living. In this paper, they
used a control scheme based on non-intuitive mapping. It
consists in a training phase based on motor skill learning and
brain plasticity, i.e., the subject is involved in a longer signal-
inspection phase where the experimenter searches for the best-
looking signals and uses the associated movements to train the
algorithm: for example, a radial/ulnar deviation can be mapped
to a power grasp. The cognitive load of such a training is
thus higher than in the case of a direct mapping like in our
case. Additionally, it limits the number of DoFs that can be
controlled simultaneously.

HD-EMG was also investigated for combined motions in
several articles. For example, Ison et al. (2016) applied motor
skill learning, a.k.a. non-intuitive mapping, and HD-EMG in
an online experiment to control a 7-DoF robotic arm. In their
experiment, it was possible for the subjects to switch in between
2 modes of each 4 DoFs (with a common DoF between the 2
modes being the power grasp); meaning simultaneous control
could be established over 4 DoFs. Finally, Muceli et al. (2014)
realized a similar online experiment as the one presented in our
research and showed that, using reduced HD-EMG, with 2 DoF
fed to the NMF machine learning, the subjects could control
combined actions.

2. LIMITATION OF THE POWER GRASP
STRENGTH WITH RELATION TO THE
HAND AND WRIST BIOMECHANICS

Although the functional Range of Motion (ROM) of the hand
and wrist joints has been studied in several papers (Palmer et al.,
1985; Hume et al., 1990; Ryu et al., 1991), while combining
hand and wrist movements, limitations come into place. Indeed,
wrist and hand movements are due to combinations of muscle
synergies (Mussa-Ivaldi et al., 1994; D’Avella et al., 2003);
changing the forearm position can potentially change the length
of the extrinsic muscles of the hand, which determine most of
the grip strength. The combinations of joints’ ROM can thus
be altered (Brand and Hollister, 1999). This point needed to
be taken into account in order to provide realistic and feasible
targets for hand/wrist positions to our subjects. For this reason,
in the following section we study the limits of the hand and wrist’s
joint motions.

Several studies have shown that forearm and wrist positions
have an influence on power grasp (Terrell and Purswell, 1976;
Richards et al., 1996; Claudon, 1998; De Smet et al., 1998; Mogk
and Keir, 2003) or other types of grasps (Dempsey and Ayoub,
1996). The shoulder position also has its influence (Halpern and
Fernandez, 1996; Kattel et al., 1996). Both the physiological cross-
sectional area (PCSA) and the length-tension relationship of a
muscle have their influence on determining to which extent they
contribute to one action (Zellers and Hallbeck, 1995; Brand and
Hollister, 1999). In order to produce maximal contraction, each
muscle has its optimal length, any elongation or shortening of
the muscles dedicated to the finger and thumb flexion could have
an influence on the power grasp strength (Brand and Hollister,
1999). Changing the configuration of the arm (at the shoulder,
elbow, or wrist joints) physically affects the spatial relationship
between the extrinsic muscles of the hand and wrist.

Wrist flexion/extension and power grasp: Studies have shown
that the maximum voluntary contraction (MVC) of the hand
decreases with wrist flexion and increases with wrist extension
(Claudon, 1998; Fong and Ng, 2001; Bhardwaj et al., 2011),
sometimes to a higher level than the one in neutral position
(despite some studies showing the contrary Terrell and Purswell,
1976; Mogk and Keir, 2003, probably due to the angle of
wrist extension). This phenomenon is actually an orthopedic
observation known under the name of tenodesis. This can be
a result of the long flexor and extensor muscles of the fingers
passing through the wrist, finger and elbow joints: they work in
synergy to stabilize the intermediate wrist joints and to activate
the distal joints, such as the ones of the fingers (Richards et al.,
1996). This synergy between the finger flexors and extensors
allows, once the wrist joint is stabilized, an optimal flexion of the
finger joints, i.e., a maximal power grasp strength (Austin, 2005).
Moreover, a wrist extension brought by the ECU, ECRL and
ECRB4 muscles generate a passive tension in the extrinsic finger
tendons (FDS and FDP), which are stretched over the extended
wrist. When considering this and the previously mentioned

4All muscle’s abbreviations are the standard ones and are explained in the

abbreviation section.
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TABLE 1 | Percentage of the maximal grip strength with combined wrist and forearm movements to estimate the thresholds for actions combined with a power grasp.

Pronation Neutral Supination

Study Nk Extension

(%)

Neutral

(%)

Flexion

(%)

Extension

(%)

Neutral

(%)

Flexion

(%)

Extension

(%)

Neutral

(%)

Flexion

(%)

Bhardwaj et al. (2011)a 100 107 100 54

Parvatikar and Mukkannavar (2009)b 50 91 100

Mogk and Keir (2003)c 10 95 87 50 99 100 56 98 94 61

Fong and Ng (2001) 30 102 100

Claudon (1998)e 15 93 84 62 104d 100 73 103 101 71

De Smet et al. (1998)f 40 92 100 101

Kattel et al. (1996)g 15 100 73

Richards et al. (1996) 106 91 100 102

Zellers and Hallbeck (1995) 20 98 100 84

Duque et al. (1995)h 20 100 52

Marley and Wehrman (1992)i 20 80 100 90

Terrell and Purswell (1976)j 40 69 88 57 77 99 70 77 100 73

MEAN 86 87 57 97 100 66 93 98 68

aForce exerted while the wrist was immobilized at 30◦ flexion/extension.
bBased on reported grip strength for shoulder at 0◦ of shoulder flexion and elbow at 90◦.
cPeak force was used to evaluate maximum grip strength 100% of MVC.
dForce exerted while the wrist was immobilized at 30◦ extension.
eBased on maximal voluntary flexion/extension.
fNon-immobilized wrist, full pronation/supination.
gBased on reported grip strength for shoulder at 0◦, elbow at 90◦ for all actions and when wrist flexion is involved, it is with 2/3 of maximum flexion.
hBased on reported percentage in full voluntary flexion.
iBased on reported percentage at 90◦ of elbow flexion.
jForce exerted with the wrist at 50◦ of extension.
kNumber of participants to the study.

The values in bold are the ones used as references for choosing the experiment’s thresholds (cf. Table 2).

synergy to stabilize the wrist, one could conclude that the
reciprocal relationship between the wrist muscles and the finger
flexors is the reason for an optimal power grasp in a slightly
extended and stable wrist position. On the contrary, during a
wrist flexion, the tendons of the FDS and FDP release, while
the tendons of the ED, EDM and EPL distend: this passive
tension on the finger extensors allows the fingers to stretch. This
has been confirmed in an electromyographic study by Claudon
in which he shows that the activity of the ED is lower than
that of the FDS during maximal extension of the wrist; he
also observed the opposite result in maximal flexion (Claudon,
1998).

Wrist flexion and thumb: Additionally, as for the extrinsic
muscles of the fingers, the wrist position also influences the
thumb: during wrist flexion, the flexion at the interphalangeal
joint of the thumb (due to the FPL) is significantly reduced
(Austin, 2005); hence the power grasp is furthermore hindered.

Wrist supination/pronation and power grasp: Several
researchers have also studied the influence of forearm rotation
(pronation/supination) in relation to the grasp strength (Terrell
and Purswell, 1976; Marley and Wehrman, 1992; Richards
et al., 1996; Claudon, 1998; De Smet et al., 1998; Mogk and
Keir, 2003). It has to be noted that though often referred as a
DoF of the wrist joint in the robotic field, the forearm/wrist
rotation is biomechanically an elbow DoF. Most of the studies
show that a forearm pronation decreases the grip strength while
a supination tends to increase it (Terrell and Purswell, 1976;

Richards et al., 1996; Claudon, 1998; De Smet et al., 1998). It
is supposed that the decreased strength in supination shown
in two studies (Marley and Wehrman, 1992; Mogk and Keir,
2003) can be due to the method used or due to the angle of
supination and pronation. One explanation to the increased
strength during supination could be that in this position, the
long flexors of the fingers (ED, FDP, FDS) are able to contract
maximally. Indeed, to move the wrist from a supinated to a
pronated position, the radius rotates over the ulna and the
extrinsic flexor muscles of the fingers are wrapped around the
radius during the rotation (Richards et al., 1996). This could
result in a change of the length of these muscles, hence affecting
their optimum length-tension relationship and reducing the
strength of the power grasp.

A summary of the different studies analysing grip strength
according to forearm and wrist motions can be found in Table 1.
Not being used in our study, ulnar and radial deviations (Terrell
and Purswell, 1976) were purposefully left out for the sake of
readability of the table.

3. MATERIALS AND METHODS

3.1. Experimental Setup
3.1.1. Tactile Bracelet
For the experiment presented in this work, we used an improved
version of our previously developed tactile bracelet (Kõiva et al.,
2015) [cf. Figure 1]. The tactile bracelet, worn typically around
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FIGURE 1 | The second generation tactile bracelet: (left) the bracelet and a single sensor module in the upper left; (right) three communication modules — USB,

Bluetooth and Wi-Fi. The wireless modules include the circuitry for battery charging, powered through a dedicated USB connection.

the forearm, measures the bulges of the muscles with a spatial
resolution of 5 mm. Depending on the thickness of the arm, up
to ten sensor modules, with 4 × 8 tactile cells each, can be used.
The modular design and the attachment around the arm using
hook-and-loop band allow the bracelet to conform on various
arm sizes and shapes, the latter especially important in case of
residual limbs. The data from up to 320 tactile cells is sampled
at 100Hz.

The improved second generation tactile bracelet has more
robust sensors and improved readout electronics. The conductive
elastomer foam located as the outmost surface of the sensors
and the material touching the human skin, was changed
to 3 mm thick PANA Foamtec GmbH PE-K45EVAELS, a
closed-cell cross-linked polyethylene foam with EVA content.
The more dense foam made the tactile bracelet significantly
more robust and less tear-prone when accidental shear
forces are exerted during handling, e.g., while donning and
doffing it. Figure 2 shows the sensor characteristic using the
new elastomer foam.

As is apparent from Figure 2, the taxel response is not linear.
This helps to exploit the sensors’ dynamic range as much as
possible. We intentionally decided not to linearise the response
in order to save computational effort, and not alter the signal-to-
noise ratio. See, e.g., Castellini et al. (2018) for more thorough
description of the device and its pros and cons.

The readout electronics was completely redesigned to make
use of a newer microcontroller model and freshly rewritten
software stack. The second generation tactile bracelet readout
electronics uses a Microchip PIC32MZ microcontroller, running
at 200MHz. The software was rewritten tomake use of FreeRTOS
real-time-operating-system, resulting in a greatly simplified
firmware code while still maintaining precise timing required
to read out the high number of AD7490 ADCs connected to
high-impedance tactile cells. The bracelet can now optionally be
used in battery-powered wireless mode, the captured signal being
transmitted over Bluetooth or Wi-Fi. For the experiment in this
paper though, the wired USB connectivity was used. A described

FIGURE 2 | Sensor characteristics measured over 10 trials from no contact to

20 N/cm2 and back to no contact using the new 3 mm thick PANA Foamtec

GmbH PE-K45EVAELS. The green samples are collected while pressure onto

the sensor was increased whereas the blue ones are sampled during the

retraction phase.

picture of the tactile bracelet and a visual representation of the
data can be found in Figure 3.

3.2. Data Processing and Intent Detection
3.2.1. Machine Learning Algorithm
The algorithm of choice was ridge regression (Hoerl and
Kennard, 1970), already used successfully several times with the
tactile bracelet, in e.g., Nissler et al. (2017). The ridge regression
algorithm estimates the parameters of a mapping matrix W ∈

R
D×d, with D the number of input sensors or features and d the

number of output activations. We call it “activation” because it
stems from the voluntary activation of a set of muscles, which
we somehow recorded (i.e. wrist flexion and extension are two
different activations). This mapping matrix W is based on a set
of m training pairs of input-output values, X ∈ R

m×D and
Y ∈ R

m×d, and the regularization coefficient λ, uniformly set
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FIGURE 3 | Picture of the tactile bracelet, consisting of 9 boards of 32 cells each (8 vertical and 4 horizontal), and visual representation of the data.

at the standard value of 1 in this case (also previously chosen
in Nissler et al., 2017). We obtain the mapping matrix with the
following equation:

W = (XTX+ λI)−1XTY (1)

The output vector ŷ ∈ R
d, resulting from the input vector x̂ ∈

R
D, is then equal to:

ŷ = WT x̂ (2)

The position of the virtual hand was then controlled thanks
to this output vector, having one value between 0 and 1 for
each activation.

3.2.2. Feature Selection
Captured tactile data was filtered by a low-pass first-order
Butterworth filter with a cut-off frequency of 1Hz to attenuate the
high-frequency noise, which was previously tested in an initial
round of experiment and showed not to impair the speed. In
this study, two feature selection methods were used in order to
determine the prediction.

The first one had already been used successfully in previous
online studies with the first generation tactile bracelet (Jaquier
et al., 2017; Nissler et al., 2017) and consists of the unprocessed
data (except the Butterworth filter mentioned above) directly
fed to a simple ridge regression (RR) algorithm. More precisely,
the data consists of 288 filtered sensor data (9 boards of the
32 sensors each).

The second feature selection method, Gradient-based features
extracted from Regions of Interest (ROIs) (Haralick and Shapiro,
1992), has already been used in ultrasound image processing and
more specifically to identify finger movements (Castellini et al.,
2012; Sierra González and Castellini, 2013; Ortenzi et al., 2015),
also together with regression-based algorithms (Castellini et al.,
2012; Sierra González and Castellini, 2013). More recently, this
method has been further tested in an offline study investigating
different methods of feature extraction for the Tactile Bracelet:
the ROI gradients gave the highest classification accuracy
(Castellini et al., 2018) over Harris corner extraction (Harris
et al., 1988) and the structural similarity index (Boschmann
and Platzner, 2014) on bicubic interpolated data. Unlike the

round-shaped overlapping ROIs used in Sierra González and
Castellini (2013) for ultrasound image processing and due to the
low resolution of the tactile bracelet compared to ultrasound,
a simpler strategy was adopted here after several pre-tests,
delimiting each ROI as a non-overlapping 4 × 4 taxel square
(Castellini et al., 2018) (a taxel being the value of one sensor),
resulting in two ROIs per board (cf. Figure 5). Three features
(αi,βi, γi) were extracted from each ROIi, with i ∈ [[1, 18]]. These
features can also be considered as a vector that represents the
second moment axis of the ROI area, i.e., the line around which
the ROI would have the lowest moment of rotation if it were cut
from a rigid and uniform cardboard (Russ, 1999) or the normal
line to the planes that best fits all the observed taxels of the ROI.
The value distribution of the ROI is approximated by a first order
regression plane:

Ĝ(x, y) = αi(x− xi)+ βi(y− yi)+ γi. (3)

where Ĝ(x, y) is the point on the fitted plane at the position (x, y),
and (xi, yi) the interest point defined in the upper left corner of
the ROIi (Castellini et al., 2018).

The least squares fit to the observed gray values G(x, y) of the
ROI and is obtained from αi,βi, and γi that minimize the sum of
the squares of the distances between our points and the plane:

ε2 =
∑

(x,y)∈ROIi

[αi(x− xi)+ βi(y− yi)+ γi − G(x, y)]2. (4)

Represented in Figure 4 for one ROI only, α denotes the mean
image gradient along the x direction (row), β along the y
(column) and γ is an offset (mean gray value of the taxels in the
ROI after resolution of the equation).

The computation of the parameters for one ROI is performed
with ridge regression:

w = (ATA+ λI)−1AT
r, (5)

with w =


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FIGURE 4 | Visualization of the parameters alpha, beta, and gamma of a plane.

FIGURE 5 | A schematic representation of ROIs and their gradient, obtained

from real data.

Solution of the linear regression,w contains the parameters αi,βi,
and γi, whileA contains the coordinates of the ROI and r contains
the gray values of the ROI in an l× lmatrix, with l being the side
length of the square ROI.

A representation of the ROIs and the gradients can be seen in
Figure 5. Since we had 2 ROIs on each of the 9 sensor boards
and that three features were extracted from each ROI, a 54-
dimensional feature vector was fed to the RR algorithm, namely
RR-ROIG in this article.

3.3. Participants
Twelve able-bodied right-handed volunteers participated in the
experiment (30.6 ± 6.6 years old, three females and nine males).
One left-hand amputee (male, 35 years old) also took part in the
experiment. He was trans-radially amputated in 2005 and uses
daily, since 2012, a Variplus prosthesis by Ottobock with standard
two-electrode control and no rotation unit on the device.

The experimental procedure was thoroughly explained to the
participants in both oral and written form before the experiment
and each of the participants was given a written informed consent
form. The experiment was performed according to the WMA
Declaration of Helsinki and was preliminarily approved by the
Work Ethical Committee of DLR.

3.4. Experimental Protocol
Each subject would sit comfortably, their back against the
backrest of the chair and their elbow placed near the furthest
edge of the armrest relative to them (cf. Figure 6). The hand with
which the participants would perform the experiment would be
alternatively switched between subjects. The tactile bracelet was
placed at the lower arm location with the greatest muscle bulge,
i.e., near the proximal end of the forearm, as shown in Figure 6.
In order to avoid any undesired change in the signals due to tissue

FIGURE 6 | A bird’s-eye view of the experiment.

accumulation between the tactile bracelet and the inner side of
the elbow, the subjects were told to keep their forearm at an angle
of 90◦ with their upper arm. The default/resting hand position
was a flat hand with the palm facing the side of the body.

The experiment consisted of a training session on a set
of single activations of the hand and wrist actions (rest,
power, flexion, extension, pronation, supination) and of tasks
to reproduce single and combined actions that are detailed in
Table 2. The above mentioned set of actions (except “rest”)
are labeled as “single actions”: subjects train on them and
these actions should be reproduced individually during the task
reaching test. Additionally, we define any combination of single
actions as combined actions. Each action to be reproduced had a
specific level to make it realistically possible in terms of muscle
coordination and to prevent muscle overload (cf. Section 2).

In order to set the different levels and limitations of the power
grasp for the visual stimulus, an average over all studies (over the
methods) of Table 1 was calculated.

Since to the best of our knowledge there are no studies on the
limitation of forearm and wrist DoFs without the power grasp
(i.e., pronation/supination and flexion/extension), we defined
these specific threshold limitations according to an initial round
of trials. The amputee performed the experiment with the same
target thresholds as the able-bodied subjects.

We added an alleviating factor of 80% to these extreme
limits of the hand and wrist movements in order to make the
experiment more comfortable for the participants and to leave
a safety margin to impossible target positions.

On the computer screen, positioned in front of the
participants, two realistic 3D hand models were displayed:
one acted as the visual stimulus, which pose the subject had
to match with his/her own hand (or with a virtual hand
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TABLE 2 | Single- and multi-action combinations performed during the

experiment with the different thresholds chosen for each action with an 80%

factor.

# Power grasp Pronation Supination Extension Flexion Comb. type

1 80% (100%)

Single

2 80% (100%)

3 80% (100%)

4 80% (100%)

5 80% (100%)

6 56% (70%) 40% (50%)
Combined

without

power

7 56% (70%) 40% (50%)

8 56% (70%) 40% (50%)

9 56% (70%) 40% (50%)

10 70% (87%) 56% (70%)
Combined

with

power

11 78% (98%) 56% (70%)

12 78% (97%) 40% (50%)

13 53% (66%) 40% (50%)

The values in bold represent the ones extracted from the literature or chosen from a

pre-round of testing in the case where no power grasp was involved.

prosthesis in case of the amputee) and the second one showed
the predicted intended movement, calculated by the machine
learning algorithm working on the captured tactile bracelet data.
The experiment started with a training phase, in which the
recording would take around 2 min: each participant was asked
to perform three repetitions of the stimulated single actions
defined previously. The data collected during this phase was used
to train the learning machines (RR and RR-ROIG as explained
in Subsection 3.2), which in the later stage of the experiment
would drive the second hand model. Then, in order to counter
the learning effect and to adapt to the system, each participant
was asked to perform a familiarization phase, consisting of six
tasks to reproduce. Additionally, pressure-based data are prone
to drifting: a problem that was already identified in Castellini
et al. (2018). This is supposedly due to the elasticity of the skin
and the memory effect of the foam (cf. Subsection 3.1.1). To
avoid this issue, 2 repetitions of training were inserted after the
familiarization phase and in between each repetition of task-
reaching phases.

A task-reaching phase is a TAC test consisting of 26 tasks
(13 tasks for each tested machine learning algorithm) in a
randomized order while still maintaining an alternation between
RR and RR-ROIG, every other subject starting with RR. These
tasks can be single actions, or a simultaneous combination of
actions with a certain percentage of the full activation defined in
Table 2. The desired task was demonstrated by the visual stimulus
and the subject had 15s to match it with the second virtual
hand, driven by his muscle stimulus. To succeed in the task, the
participant had to keep the controlled virtual hand in the same
position as the visual stimulus for 1.5 s. Matching was defined
as remaining within 20% of each target activation value. For the
amputee this error threshold was set to 25% and the starting
machine learning was RR. The task-reaching phase was repeated
3 times with 2 repetitions of training in between each of them in
order to counter the drift induced by the bracelet. Figure 7 shows
the experimental procedure.

To evaluate the performance of the participants for each
action and the different machine learning algorithms, we assessed

FIGURE 7 | Diagram of the experimental procedure.

the success rate over all 39 tasks (SR - Success Rate), the time
that the subject took to accomplish the task (TCT - Time to
Complete Task) and the cumulative time in the target (TIT -
Time in Target). A video of the TAC test showing the experiment
with an amputee and one able-bodied participant can be found in
the Supplementary Material.

3.5. Statistical Analysis
For the statistical analysis we used the libraries provided by
the programming language R. We first performed a Friedman
test to see the influence of the repetitions on the SRs, which
could eventually indicate a learning effect. Its result (p =

0.3927) showed that there was no statistical difference between
the three repetitions of the TAC test. We can suppose that the
familiarization phase was efficient and we will therefore aggregate
the data of the 3 repetitions for the rest of the analysis. To
evaluate the difference of SRs between the two feature selection
methods, we tested the normality of the aggregated dataset with
both Shapiro–Wilk and Jarque–Bera normality tests which both
concluded that the distribution of the data is not significantly
different from normal distribution. Therefore, we performed
a paired t-test on the two feature selection methods. Then,
after an initial round of analysis between “single actions” and
“combined actions,” we realized that the power grasp was creating
the difference between the two groups. For this reason, we
decided to carry out the analysis with the Holm-Bonferroni
adjustment method for these three subgroups: “single actions,”
“combined actions without the power grasp,” and “combined
actions including the power grasp.” We tested the normality of
the aggregated datasets before each pairwise statistical test with
both Shapiro–Wilk and Jarque–Bera normality tests. Both tests
resulted in not rejecting the normality hypothesis. To assess the
difference between the three previously mentioned subgroups,
we used the multiple pairwise t-test with Holm-Bonferroni
adjustment method as well as Cohen’s d effect size. Regarding the
time-related performance measures, no inferential statistical test
was performed due to the fact that the condition of completeness
of the dataset was not observed: the TCT can only be considered
for successful tasks since a time limit of 15 s was fixed and, for
the same reason, we decided to separate the analysis of the TIT
between successful and failed tasks. Therefore, we kept this part
of the statistical analysis on a descriptive level.

4. EXPERIMENTAL RESULTS

This section provides the results of the experiment described in
the previous section. First, a detailed analysis on the results of
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the 12 able-bodied participants will be presented. In particular,
in Subsection 4.1, we compare the two machine learning
methods, and present the difference between the single and
the combined actions and the success rate action by action.
In Subsection 4.2, we analyse the results of the TCT and TIT
relative to the learning algorithm and the type of combined
movement. Then, we analyse the results of the amputated subject
in Subsection 4.3.

FIGURE 8 | Boxplots and means of the success rates for all tasks across all

participants grouped according to the machine learning method used.

4.1. Success Rate
Figure 8 shows the difference of the success rates according
to the machine learning method tested across all subjects. No
statistically significant difference can be observed (paired t-test
p = 0.2123), although the average performance of RR was
around 8% better than that of RR-ROIG (59.0 ± 17.6% vs.
51.9± 17.2%).

When comparing the success rate action-wise, we can
subdivide it in three groups: “single actions,” “combined actions
without the power grasp,” and “combined actions including the
power grasp” (as detailed in Table 2). The SR of RR and RR-
ROIG in each of these three groups is described in Figure 9. The
difference within each group is also not statistically significant
between the two algorithms: p = 0.17 for “single actions,” p =

0.48 for “combined actions without the power grasp” and p =

0.86 for “combined actions including the power grasp.”
As we can take from Figure 9, the average SR of the “combined

actions including the power grasp” — for RR 36.1 ± 21.7% —
is much lower, by more than 30%, than the average SRs of the
two other groups — for RR 68.1 ± 20.4% for “combined actions
without the power grasp” and 70 ± 21.2% for “single actions.”
This difference is also present for the RR-ROIG algorithm with
22.8% between the SR of “combined actions without the power
grasp” and the SR of the two other groups. In order to assess the
significance of this difference, a multiple paired sample t-test with
Holm-Bonferroni adjustment method was performed.

For RR, the difference between “combined actions including
the power grasp” is highly significant when compared with
“single actions” (p = 0.0001, d = 1.5802) as well as when
compared with “combined actions without the power grasp” (p =

0.0039, d = 1.5178) after the Holm–Bonferroni correction. For
RR-ROIG, the difference between “combined actions including
the power grasp” is significant (p = 0.0007, d = 1.3362)
when compared with “single actions,” and also significant when

FIGURE 9 | Boxplots and means of the success rates across all participants grouped according to the machine learning method and the type of combined

movement used. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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FIGURE 10 | Means and standard errors of the success rates per actions separated into 3 groups: single actions (A), combined actions without the power grasp (B)

and combined actions including the power grasp (C).

compared with “combined actions without the power grasp”
(p = 0.0310, d = 1.0764) after the Holm–Bonferroni
correction. For both methods, there is no significant difference
between “single actions” and “combined actions without the
power grasp.”

Figure 10 describes the SR action-wise among all participants.
The “combined actions including the power grasp” are seemingly
lower than the “single actions” and the “combined actions
without the power grasp.” In particular, power grasp combined
with wrist extension and power grasp combined with supination
seemed to be the most difficult tasks to achieve.

4.2. Time-Related Metrics
Other than the success rate, the Time to Complete the Task
(TCT) and the total cumulative Time In the Target (TIT) were
also measured.

TCT for successful tasks:We can see in Figure 11 that the TCT
for “single actions” and “combined actions without the power
grasp” was almost 2 s faster than the TCT for “combined actions
including the power grasp,” which would indicate that actions
combined with a power grasp were harder to reach.

TIT for failed tasks: For the combined actions in general,
irrespective if the power grasp was included or not, the TIT was
higher with RR than with RR-ROIG. On the contrary for single
actions, the TIT seems higher with RR-ROIG. For all failed tasks
the TIT is relatively low compared to the fixed goal of 1.5 s.

TIT for successful tasks: The cumulative TIT for successful
tasks is relatively close to the targeted time of consecutive 1.5 s:
this means that when a task could be completed, it would usually
be achieved without wobbling around the goal and it would not
depend on the type of action it is (combined or not).

4.3. Results Obtained by the Amputated
Subject
The amputee achieved 20.5± 21.7% of success rate over all tasks
with RR-ROIG and 15.4 ± 25.9% with RR. We here introduce

a new performance index of reachability to verify if the task was
reached by being in the target for one sample) at least once during
the TAC test. The SR is however still measured the same way as
previously described in the Experimental Procedure section, the
subject having to keep the target during 1.5 s within the time of 15
s. As shown in Table 3, half or more of the types of action were
attainable at least once during the three repetitions for each of
the three combination groups. However, the success rates were
on average 17.9± 23.5%. By calculating the time to complete the
successful tasks, Table 3 shows that it took on average 5.1 ± 4.3s
for “single actions,” 7.6± 4.1s for “combined actions without the
power grasp,” and 9.0± 5.0s for “combined actions including the
power grasp.”

When comparing the same data grouped according to the
repetition of the task-reaching phase in Table 4, we can see that
in the first repetition the participant achieved relatively high
reachability with an average of 38.5 ± 49.6% and a success rate
of 46.2± 51.9% for the RR-ROIG algorithm. The two remaining
repetitions did not seem to increase the SR nor the reachability
of the tasks with respectively 15.4 ± 36.8% and 26.9 ± 45.2% for
repetitions 2 and 3.

Moreover, it has to be noted that for the second repetition
of task-reaching phases, the control of the 3D-hand model
was blocked after approximately half of the tasks and that
the extension and power were problematic during the third
repetition. This might be due to a drift in the signals or a sliding
of the tactile bracelet on the stump that has a conical shape to
which the tactile bracelet is not adapted.

Additionally, some trajectories of reached-but-failed tasks and
of non-reachable tasks are depicted in Figure 12 with PCA
(Principal Component Analysis) for a 3D visualization with a
percentage of variance of 88.41% for RR and of 84.82% for RR-
ROIG. It can be seen in Figure 12 that the amputated subject
went from the rest position (red) to a target position that seems
to be a somehow linear combination of supination (yellow) and
flexion (cyan). The subject then reached the target but did not

Frontiers in Neurorobotics | www.frontiersin.org 10 February 2020 | Volume 14 | Article 11

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Connan et al. Online Myocontrol of Combined Actions via TMG

FIGURE 11 | Means and standard deviations of the TCT for successful tasks, TIT for failed tasks, TIT for successful tasks according to the machine learning method

and the type of combined movement.

TABLE 3 | Means and standard deviations of the reachability of the tasks, the success rate, the time in task and the time to complete the successful tasks for the

amputee according to the type of combined movement.

Type of combined

movement

ML method Reachable (%) SR (%) TIT (s)

[successful tasks only]

TCT (s)

[successful tasks only]

Single
RR 60.0 (54.8)

50.0 (53.5)
13.3 (18.3)

13.3 (17.2)
2.1 (0.8)

1.8 (0.6)
7.0 (6.2)

5.1 (4.3)
RR-ROIG 40.0 (54.8) 13.3 (18.3) 1.5 (0.0) 3.2 (1.6)

Combined without power
RR 25.0 (50.0)

62.5 (51.8)
16.7 (33.3)

25.0 (29.5)
3.1 (0.2)

2.3 (0.8)
9.6 (3.2)

7.6 (4.1)
RR-ROIG 100.0 (0.0) 33.3 (27.2) 1.8 (0.6) 6.6 (4.5)

Combined with power
RR 25.0 (50.0)

50.0 (52.7)
16.7 (33.3)

16.7 (52.2)
1.9 (0.5)

1.7 (0.3)
7.3 (7.8)

9.0 (5.0)
RR-ROIG 75.0 (50.0) 16.7 (19.2) 1.5 (0.0) 10.6 (1.7)

All actions
RR 38.5 (50.6)

53.8 (50.8)
15.4 (25.9)

17.9 (23.5)
2.4 (0.8)

2.0 (0.7)
8.0 (1.8)

7.3 (4.3)
RR-ROIG 69.2 (48.0) 20.5 (21.7) 1.7 (0.4) 6.8 (4.2)

TABLE 4 | Means and standard deviations of the reachability of the tasks, the success rate, the time in task and the time to complete the successful tasks for the

amputated subject according to the three repetitions of the task-reaching phase.

Repetition ML method Reachable (%) SR (%) TIT (s)

[successful tasks only]

TCT (s)

[successful tasks only]

Rep. 1
RR 23.1 (43.9)

38.5 (49.6)
15.4 (37.6)

30.8 (47.1)
3.0 (0.5)

2.0 (0.7)
10.1 (3.8)

6.9 (4.4)
RR-ROIG 53.8 (51.9) 46.2 (51.9) 1.7 (0.5) 5.9 (4.3)

Rep. 2
RR 7.7 (27.7)

15.4 (36.8)
7.7 (27.7)

7.7 (27.2)
1.5 (NA)

1.5 (0.0)
1.8 (NA)

4.3 (3.6)
RR-ROIG 23.1 (43.9) 7.7 (27.7) 1.5 (NA) 6.9 (NA)

Rep. 3
RR 30.8 (48.0)

26.9 (45.2)
23.1 (43.9)

15.4 (36.8)
2.2 (0.8)

2.1 (0.7)
8.6 (5.2)

9.4 (4.5)
RR-ROIG 23.1 (43.9) 7.7 (27.7) 1.5 (NA) 11.9 (NA)

successfully maintain the virtual hand in the position for the
required amount of time of 1.5 s. Subjects were advised at the
beginning of the experiment that it can be easier to first execute

one of the actions of the combination and then the other one
to move toward the target; however, they could choose which
strategy to actually use. This proposed strategy can be very well
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FIGURE 12 | PCA of some actions (failed or non-reachable) performed by the amputee during the first repetition. Legend items starting with “stim,” “pred,” and

“interm” represent respectively the trained action clusters, the samples when the subject is in the target and the intermediate values while trying to reach the target.

(A) PCA with emphasis on failed flex.+sup. for RR, (B) PCA with emphasis on failed pow.+pron. for RR-ROIG, (C) PCA with emphasis on non-reachable supination

action for RR, and (D) PCA with emphasis on non-reachable extension action for RR.

seen in the top right subfigure, we can see that the subject first
moved from rest to pronation to then additionally perform a
flexion. The subject then reached the target for some time but did
not manage to stay in the target for the required amount of time.
The subject returned then slightly toward the rest position before
trying again (which was also an advised strategy) and reaching
the target for new samples, unfortunately not enough to achieve
a successful task. The bottom left subfigure shows the subject
trying to reach 80% of supination but going too far after the
target and never reaching it. We can suppose that he has put
too much strength into his muscles while trying to reach the
target compared to the strength level he had performed during
the training phase. The last subfigure (d) shows the trajectory
going in the direction of the wrist extension cluster but slightly
off, never reaching the 80% target. This shows, in our opinion,
that the subject was able to control the hand but, due to different
limitations (hardware, muscle fatigue, or simply not being able to
reproduce the trained actions), was not able to perform well into
our TAC test with the parameters and timings that we had set (15
s to achieve 1.5 s in task).

To get a better insight, a movie available in the
Supplementary Material is showing part of the TAC test
for the amputated subject.

5. DISCUSSION

In this work we have first thoroughly examined the literature
about the physiological limits of the hand/wrist complex, in
particular, as far as the maximal combined activations of

hand and wrist actions are concerned. This has allowed us to
define a set of muscle activation limits for combined actions,
which can, and to some extent, we claim, should be reused in
similar experiments.

Of course, each amputation results in a different stump with
a different muscle remnant configuration, and, to the best of
our knowledge, biomechanical relationships among muscles in
a stump cannot be estimated. But these findings could be taken
as upper limits while designing a TAC test for amputees, since if
an intact subject cannot reach a specific activation, reasonably,
no amputee will be able to as well. Moreover, amputees usually
strain their muscle remnants while activating them, since they
lack proprioceptive feedback. Limiting the visual appearance of
TAC test targets can only be beneficial.

Having determined this set of limits, we have then engaged
a few intact subjects and an amputated person in such a test,
aimed at checking how well TMG could be used to detect
single and combined hand/wrist actions. The experimental
results presented in the previous section indicate that TMG is
viable for myocontrol, as it had already been discovered (see,
e.g., Radmand et al., 2016; Jaquier et al., 2017; Nissler et al.,
2017): The SRs obtained by our subjects are in line with these
previous works.

But furthermore, and this may be the main finding of
this work, the results denote that, by gathering data while
the subjects perform single actions, TMG is able to predict
combinations of them. This is of valuable interest, considering
that it confirms previous results with HD-EMG (Muceli et al.,
2014; Ison et al., 2016) and, as far as we know, it had not yet been
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discovered using TMG. We can suppose that, a high number of
sensors, independent of the sensor type (force or sEMG), gives
automatically the combined actions, provided a linear algorithm
is used. TMG could detect single and combined actions, with
no statistically significant difference in the related success rates.
Notice that the SRs over all actions is slightly lower than the ones
found in previous studies with TMG: 59.0% for RR in Figure 8

vs. 75.6% in Nissler et al. (2017) where no combined motions
were tested. However, when we remove the “combined actions
including the power grasp” of the picture, results average 69.1%
of SR and are in line with previous literature for TAC tests. The
action of power-grasping leads to a substantial reduction of the
SR when combined with wrist movements. Although still more
than one third of the tasks were achieved, this is a problem which
needs to be tackled. In the current version of the bracelet, it is
due to saturation of most of the taxels, in turn due to the large
number of muscles involved in this action. (When combined
with other actions, the problem is obviously amplified.) To solve
this issue, further versions of the semi-conductive foam and
tuning of the pull-up resistors of the controlling boards are
being tested.

Although standard metrics were used, a comparison with
other studies involving combined motions is difficult considering
the different experimental conditions. Considering that offline
and online analysis are hardly comparable, we will here only
examine our results in contrast with articles including an online
test. Muceli et al. (2014) present a very similar work with an
online TAC test investigating the control of the 2 wrist DoFs.
They show that a reduced version of HD-EMG (16 electrodes)
fed to an NMF algorithm results in a successful prediction of
combined movements. The tasks are however slightly easier to
reach than ours: the required consecutive time in task is 300
ms (while the subjects had to maintain 5 times this duration in
our experiment) and the time given to complete the task was
20 s (15 s in our case). In addition, in our experiment, subjects
had a simultaneous control over 3 DoFs: the machine learning
algorithm was fed with one additional pattern for the power
grasp, which can interfere with other actions, and in particular
wrist flexion that involves common muscles. Nonetheless, after
recalculating our results with 300 ms of required consecutive
TIT, we found an increase of more than 10% in the SRs (RR
from 58.3 to 68.5% and RR-ROIG from 51.13 to 62.13%), while
the TCTs decreased in general of 1.5 s or more and of 2 s in
case of “combined actions including the power grasp.” Ison et al.
(2016) accomplish control over 4 DoFs simultaneously where
the participants had to control a 7-DoFs robotic arm in tasks
such as grasping a tennis-sized ball and customized clothespins.
However, the subjects were free in the sequence or combination
of gestures to achieve the tasks. It needs to be noted that all of
these articles use a non-intuitive mapping. Therefore, in these
studies, the cognitive load of the training phase is supposedly
higher than with the direct mapping that we use and the number
of simultaneously controlled DoFs is limited in case no advanced
surgical technique such as e.g., Targeted Muscle Reinnervation
(Farina et al., 2017) is used. Another impressive work, also using
non-intuitive mapping, is the one of Hahne et al. (2018), in which
they focus on wrist rotation and grasping with 8 EMG and linear

FIGURE 13 | A graphical representation of linear superposition of effects in the

input space. A rest cluster XRest, two single-action clusters XFi and XFj and the

combination cluster XFij are depicted. That linear regression can predict

combined actions from single actions only, should imply that XFij largely

coincides with XFi + XFj (Reproduced with permission from Nowak, 2014).

regression by involving 5 amputees in a series of prosthesis tests
(clothespins and box and blocks tests). It is still a goal that has
not yet been achieved by TMG and a limitation of our work,
considering we only tested one amputee. However, TMG requires
much less electronics for the same resolution, provides more
stable signals (Connan et al., 2016) : Indeed force myography
signals provide a stable plateau of activation while EMG signals
present a peak of activation that decreases over time due to
muscular motor-unit recruitment (Merletti et al., 2010a,b). Add
in the fact that it is wearable, it could to a certain degree be easily
integrated in a prosthesis. The computational burden required
to extract the ROIG features is negligible, as already proved
in (Sierra González and Castellini, 2013).

That combined actions can be correctly detected using
single-action data and linear regression indicates that linear
superposition of effects might be present in the input space, as
already suggested in Muceli et al. (2014). This fact needs be
investigated in the future; it is likely that clusters of combined
actions XFij should be to a large extent similar to the linear sum
of the single-action clusters XFi and XFj they are composed of. A
graphical representation of this issue is shown in Figure 13.

In this work, we also compared RRwith RR-ROIG and showed
in Figure 8 that the success rate of RR is slightly higher than
the one of RR-ROIG but the results are comparable. This newly
presented online RR-ROIG would thus be valuable when fewer
dimensions are required to be fed to the learning algorithm. This
would be the case, for instance, in the presence of a high number
of sensors and when there would be a CPU limitation. This is
clearly advantageous when the software will be transferred to a
prosthesis-embedded system in the future.

Our experiment was also tested by one trans-radial amputee.
His results in terms of success rate are relatively low compared
to the ones of the intact subjects. However, in each subgroup of
types of combined movement, half or more of the tasks were
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reachable (without achievement of the 1.5 s in task) at least
once during the 3 repetitions. Moreover, the TIT for successful
tasks was around 2 s, which is comparable to the one for
intact subjects (cf. Figure 11). As for intact subjects, the time
to complete the tasks seems to increase with the complexity
of the task, from “single actions” through “combined actions
without the power grasp” to “combined actions including the
power grasp,” indicating that the tasks became harder to achieve
for the amputated subject as well as for the intact subjects. The
TCT are nonetheless around 1.5 s more for the amputee, the
tasks seemingly being harder to complete for him. However,
as it can be seen in the complementary video, the subject
was able to control the 3D hand model relatively well. Several
possibilities could explain his low success rates. The first one
being that the foam softness might not have been adapted to
the relatively weak muscles of an amputee’s stump and the
amputated bulge could not create enough depth print on the
tactile bracelet. We also speculate that the highly precise tasks
of the TAC test were difficult to achieve for the subject. Lastly,
we wanted the experiment with the amputee to be as similar as
possible as the one with intact subjects. Therefore, we had the
same length of familiarization phase. However, considering the
impairment of the subject as well as the fact that he was not
versed into technology, a longer familiarization phase might have
improved the results.We are aware of the limitations of this study
considering that we only tested one amputated person and, in
the future, we want to test the device on more amputees after
improving this prototype version. This study is, however, a first
step in showing that this technique of TMG could also be used
for the amputees.

One further limitation that we would like to address is the drift
of the tactile bracelet, especially considering that it affected the
experiment design with the necessity of retraining in between the
3 repetitions of the task reaching phase. Though hypothetically
partially based on the elasticity of the skin, we suppose that
the main part was coming from the bracelet itself and more
specifically the foam that we used over the taxels. We tested
several foams to counter this issue, including some harder foams
bringing less drift but impairing the detection of the slight
changes in the muscle pressure signature. However, we did not
yet come to a satisfying definitive solution and are therefore
investigating new innovative conductive materials.

6. CONCLUSION

In this study on 12 intact subjects, we demonstrated the feasibility
of using a new technology called tactile myography for combined
control of 2 combined DoFs in highly complex online TAC-test
with simultaneous control of 3 DoFs (6 actions trained including
rest), instead of the configuration of 2 DoFs, typically used
in the literature. This control was achieved using simple ridge
regression and an intuitive mapping. Performance degradation
was however observed when including the power grasp into
the combined movements. This limitation might yet be due
to the tactile bracelet and further work on it will help us
clear this point. In this study, we show that TMG is a viable

alternative to EMG as a sensing device for gesture recognition.
As a first step toward prosthesis control, we tested it on one
amputee but the bracelet still needs improvements before further
tests on more amputees are reasonable. TMG requires less
electronics for the same resolution and is easily wearable, in
comparison to the bulky EMG sensors, which additionally are
prone to be influenced by sweating and muscle fatigue. For
these reasons, TMG is a desirable alternative to the standard
sEMG. On another note, by this experiment we show that
despite non-linear algorithms being a solution to combined
control over multiple DoFs, they might not be the optimal
solution and a higher dimensionality of eventually different
sensors could be a different path to follow that would be less
cumbersome for the machine learning algorithm. Additionally,
we proposed a feature selection method, selecting a lower
number of sensors, that yields similar results than with the
full set of sensors. We can reasonably argue that it could
thus be a possible solution for embedding into a prosthesis,
where power computation comes into play. Finally, we propose
a set of combined motion limitations that can be re-used in
similar experiments.

Future Work
In the future, further work has to be done to try to improve
the tactile bracelet prototype by increasing its depth resolution
and having it adapt to the conic shape of the stumps. Despite
already several trials, the thickness and the rigidity of the
foam are still not optimal and we are working on fixing
these issues by replacing the foam with a different material.
Further experiments could include a test on the number of
sensors needed to achieve the control of untrained combined
actions, as well as a TAC test with three combined actions —
since the set of limits previously defined already includes 3-
DOF combinations. Moreover, in the advent of deep learning
and with the high density of the sensors that we here
have, different algorithms could be tested on this bracelet
(e.g., de Freitas et al., 2019). Finally, it would be interesting
to compare TMG with HD-EMG in terms of single and
combined actions.

One last remark about the limitations of the present study:
The problem of upper-limb prosthetics is a paradigmatic multi-
disciplinary issue and needs focus from such diverse fields
as, e.g., material science for the socket, movement science for
the ergonomy and physiology of the apparatus as a whole,
mathematics and mechatronics for the device and the control
systems, and statistics to measure the acceptance in the patient
population. In this paper we have focused on a promising
device and approach, which lets us foresee a more-than-sEMG
myocontrol system embedded in a prosthetic socket. Of course,
as already mentioned in, e.g., Cho et al. (2016), tactile myography
is subject to different hurdles and problems as sEMG, and they
need to be taken into account, too. Moreover, a careful study of
further alternatives to tactile myography is required [a promising
one being ultrasound A-mode scanning Yang et al. (2020)], as
well as a study on how the limb-position effect Betthauser et al.
(2018) affects it. In the end, extensive tests on the end-user
population are necessary.
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