
ORIGINAL RESEARCH
published: 21 April 2020

doi: 10.3389/fnbot.2020.00021

Frontiers in Neurorobotics | www.frontiersin.org 1 April 2020 | Volume 14 | Article 21

Edited by:

Cheng Fang,

University of Southern Denmark,

Denmark

Reviewed by:

Valery E. Karpov,

Kurchatov Institute, Russia

Eiji Uchibe,

Advanced Telecommunications

Research Institute International (ATR),

Japan

*Correspondence:

Yong Liu

yongliu@iipc.zju.edu.cn

Received: 28 October 2019

Accepted: 27 March 2020

Published: 21 April 2020

Citation:

Cao J, Liu W, Liu Y and Yang J (2020)

Generalize Robot Learning From

Demonstration to Variant Scenarios

With Evolutionary Policy Gradient.

Front. Neurorobot. 14:21.

doi: 10.3389/fnbot.2020.00021

Generalize Robot Learning From
Demonstration to Variant Scenarios
With Evolutionary Policy Gradient
Junjie Cao 1, Weiwei Liu 1, Yong Liu 1* and Jian Yang 2

1 Institute of Cyber Systems and Control, Zhejiang University, Hangzhou, China, 2China Research and Development

Academy of Machinery Equipment, Beijing, China

There has been substantial growth in research on the robot automation, which aims to

make robots capable of directly interacting with the world or human. Robot learning

for automation from human demonstration is central to such situation. However, the

dependence of demonstration restricts robot to a fixed scenario, without the ability to

explore in variant situations to accomplish the same task as in demonstration. Deep

reinforcement learning methods may be a good method to make robot learning beyond

human demonstration and fulfilling the task in unknown situations. The exploration

is the core of such generalization to different environments. While the exploration in

reinforcement learning may be ineffective and suffer from the problem of low sample

efficiency. In this paper, we present Evolutionary Policy Gradient (EPG) to make robot

learn from demonstration and perform goal oriented exploration efficiently. Through goal

oriented exploration, our method can generalize robot learned skill to environments with

different parameters. Our Evolutionary Policy Gradient combines parameter perturbation

with policy gradient method in the framework of Evolutionary Algorithms (EAs) and can

fuse the benefits of both, achieving effective and efficient exploration. With demonstration

guiding the evolutionary process, robot can accelerate the goal oriented exploration to

generalize its capability to variant scenarios. The experiments, carried out in robot control

tasks in OpenAI Gym with dense and sparse rewards, show that our EPG is able to

provide competitive performance over the original policy gradient methods and EAs. In

the manipulator task, our robot can learn to open the door with vision in environments

which are different from where the demonstrations are provided.

Keywords: learning from demonstration, generalization, exploration, reinforcement learning, evolutionary

algorithms

1. INTRODUCTION

Hand-engineering of a controller is the basic approach to make robots autonomous for a certain
task. For tasks whose execution depends on the circumstances of the environment or the interaction
with human, robots must handle complex perception. However, the hand-engineering method
for such task is tired, especially for vision-based tasks which are exceptionally difficult. In order
to overcome those problems, a significant research area in contemporary robotics centers on
approaches where the robot controller is learned rather than programmed (Rahmatizadeh et al.,
2017). Learning from demonstration (LfD) allows humans to demonstrate a specific task to the

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.00021
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.00021&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yongliu@iipc.zju.edu.cn
https://doi.org/10.3389/fnbot.2020.00021
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00021/full
http://loop.frontiersin.org/people/817315/overview
http://loop.frontiersin.org/people/861857/overview
http://loop.frontiersin.org/people/258653/overview

Cao et al. Evolutionary Policy Gradient

robot without having any knowledge about the robot’s dynamic
model or programming the control commands. One direct
approach to learning from demonstration is Behavior Cloning,
where human demonstrates the desired behavior to the robot –
as supervisory signals of what the robot should do in the same
states. However, the demonstrations are expensive to acquire
and it is difficult to acquire complex manipulation skills just
from demonstration.

On the other hand, the learned behavior is restricted to
specific environment where human provide demonstrations.
In order to generalize robot learning from demonstration to
other scenarios, robot should to explore in the new situations.
Reinforcement learning, learning to control through exploration
by trial and error, provides a promising method for robot
learning with generalization. For exploration, novel control
policies are needed to gain diverse experience that is informative
about the environment. The diverse experience is used to
optimize the policies in return. In exploitation, the learning
procedure exploits the good policy to collect state-action pairs
with high rewards and further improve the performance of the
good policy. In contrary to the exploration that may find best
policy slowly and globally, exploitation aims to optimize the
policy more efficiently and locally. To generalize robot learning
and be sample efficient, preventing the mechanical wear, it
usually needs to trade-off between exploration and exploitation
in interaction with the real world. Proposing efficient and
effective robot learning method has always been the hot spot
in robotics.

Random perturbation of the agent’s action is the classic
method to induce novel behaviors, such as ǫ-greedy for Q-
learning (Sutton and Barto, 1998) and policy gradient with
action noise (Silver et al., 2014). However, action noise is usually
independent of states and in fact is local perturbation, which
generates unsmooth trajectories and is unlikely to produce
various large-scale behavioral patterns for effective exploration
(Osband et al., 2017). Recent works (Fortunato et al., 2017;
Plappert et al., 2017; Gangwani and Peng, 2018) have show
that exploration with parameter noise outperforms action noise,
especially in tasks where the reward is sparse. Instead of
promoting exploration with parameter perturbation, a lot of
other explore strategies rely on the state novelty to increase
the diversity of experience and obtain outstanding results in
computer games (Bellemare et al., 2016; Houthooft et al., 2016;
Pathak et al., 2017; Tang et al., 2017).

Evolutionary Algorithms (EAs) have been successfully used
to optimize policy represented with neural network (Such
et al., 2017) by perturbing and searching directly in the policy
parameter space. The policy parameter evaluation of EAs is based
on the cumulative reward received in the whole episode. Thus,
EAs optimize the policy with more comprehensive insight and
can solve the sequential decision making problems that have
sparse reward signals.

Policy gradient methods are usually used to search best policy
greedily, promoting better exploitation. As the original version of
policy gradient algorithm, REINFORCE (Williams, 1992) tends
to be of high variance due to the gradient estimation with
Monte Carlo method. Actor-critic methods (Mnih et al., 2016)

use the value function to reduce the variance and improve the
performance of policy gradient. In order to improve the accuracy
of gradient estimation and stabilize the learning procedure,
Schulman et al. (2015, 2017) constrained the step size of policy
gradient descent within a local area of previous policy. Results
from previous research show that policy gradient methods are
sample-efficient by taking advantage of the temporal structure
of the experience. However, those policy gradient methods with
action noise tend to converge to the local optimum, especially
when the exploration is insufficient.

In this paper, we introduce Evolutionary Policy Gradient
(EPG), incorporating the policy gradient methods with
Evolutionary Algorithms (EAs). In our framework of
evolutionary algorithm, population-based approach generates
different policies with parameter perturbation to improve
exploration. With demonstration guiding the evolutionary
procedure, our EPG guides the robot to behave similarly
to the demonstrations, which prevent robot exploring in
unpromising area. By selecting elites based on the fitness metric
that evaluates the cumulative reward of an entire episode,
EPG pushes the next generation of policy toward regions
that lead to higher probability of task accomplishment in the
current situation. Thus, our EPG can explore to generalize with
diverse policies and also prevent the ineffective exploration with
demonstration guiding.

2. RELATED WORK

In recent years, Learning from demonstration (LfD) has been
successfully used in the field of robotics for applications in
autonomous helicopter maneuvers (Abbeel et al., 2010), playing
table tennis (Calinon et al., 2010), multi-task manipulation
(Rahmatizadeh et al., 2017), and deformable object manipulation
(Matas et al., 2018). A major challenge in LfD is to extend
these demonstrations to unseen situations (Argall et al.,
2009). To mitigate this problem, one obvious way is to
acquire a large number of demonstrations covering as many
situations as possible. With limited demonstration data, Sylvain
et al. (2007) and Calinon et al. (2009) propose to hand-
engineer task-specific features. Different from those methods
we use smaller number of demonstrations, but change the
learning model by exploring in new situations to generalize
better. We resort to reinforcement learning and evolutionary
algorithm to learn from demonstration and generalize to unseen
situations. Rajeswaran et al. (2018) also combined reinforcement
learning with demonstration to accomplish complex dexterous
manipulation tasks in the same environment as where the
demonstrations come from. While our goal is to generalize the
learning behavior with the demonstration from one specific
situation to behave well in other situations. Nair et al. (2017)
avoided invalid exploration in reinforcement learning with
demonstration. Our experiments also present such benefits
of demonstration in comparison with pure reinforcement
learning, even though the demonstrations in our experiments
is coming from environment with different configurations. We
have not find any previous works focus on generalizing the

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

skill learning from demonstration to other situations. But we
think the reinforcement learning after imitation learning can
accomplish such goal and we also compare our algorithm with
such method.

Exploration during learning from demonstration is the core
of our work. And the lack of effective exploration are also
the major challenges in Reinforcement Learning, especially in
the environments with long time horizon and sparse reward.
Many explore strategies, which rely on the state novelty,
have been proposed to improve the diversity of trajectories
(Bellemare et al., 2016; Houthooft et al., 2016; Pathak et al.,
2017; Tang et al., 2017). One common point of those works is
the need of complex supplementary structures to estimate the
novelty which will introduce some additional sensitive hyper
parameters and are suited mainly for exploration in video games.
However, our EPG, which explore with the framework of EAs,
is more general with an easy modification to the original policy
gradient method.

ES and PGPE which explore with parameter perturbation
can be regarded as Evolutionary Algorithm and are scalable
to be implemented in parallel. Salimans et al. (2017) have
demonstrated that ES is suited for the problem with long
time horizon and delayed reward and does not need the
approximation for the value function. PGPE (Sehnke et al., 2010)
performs gradient based search in parameter space with low
variance and is similar to ES. Wang et al. (2017) improve PGPE
with EM-based policy exploration and an adaptive mechanism.
To further improve exploration in ES, especially on sparse
or deceptive Reinforcement Learning problems, Conti et al.
(2017) hybrid novelty search and quality diversity algorithms
with ES. Unlike ES, NES, and PGPE which are gradient based
methods, recently, Such et al. (2017) evolve the weights of a deep
neural network with Genetic Algorithm to solve RL problems.
By comparing DDPG with CMA-ES, de Broissia and Sigaud
(2016) conclude that policy gradient methods are significantly
more sample-efficient than ES. And it is the same for other
EAs, without taking advantage of temporal structure in the
trajectories. Our EPG incorporates the policy gradient into the
framework of EAs to exploit the sample efficiency of policy
gradient methods.

Recent works (Fortunato et al., 2017; Plappert et al., 2017)
proposed to explore by adding noise to the parameter space
and optimizing policy with gradient descent. Their results
have shown that parameter perturbation can successfully be
combined with reinforcement learning algorithms and often
lead to improved performance compared to adding noise in
action space. Similar to those works, our EPG also combines
parameter perturbation with policy gradient methods. To further
improve the exploration and parallelizability, our EPG resorts
to the framework of EAs. Inspired by the Genetic Algorithms,
Gangwani and Peng (2018)mutate the policy with policy gradient
methods. However, without perturbing policy parameter vector
during policy evolution, the diversity of policies and exploration
in their method are limited. Our EPG retains themajor benefits of
the recent works, and the whole procedure can be approximated
to the optimization of an objective function that evaluates the
Gaussian distribution of policy parameter.

3. BACKGROUND

3.1. Learning From Demonstration (LfD)
With Behavior Cloning
In recent years, LfD was successfully used in the field of robotics.
Behavior cloning, as the simplest learning from demonstration
method, can be performed using standard, efficient supervised
learning methods. Compared with reinforcement learning
methods that learn from scratch, behavior cloning requires fewer
interactions with the environment.

Provided with the observation-action pairs, behavior
cloning can fit a stochastic policy with supervise learning,
mapping observations to distributions of action directly, just by
maximizing the log likelihood of the demonstrated actions:

L = −E(s,a)∼demo[logπ(a|s)]. (1)

where (s, a) represents the state-action pair from demonstrations,
E represents expectation over (s, a) and π is the stochastic policy
to be optimized.

3.2. Policy Gradient and Explore With
Action Noise
Reinforcement Learning (RL) is popular in solving sequential
decision making problems where a robot interacts with an
environment, sequentially choosing an action at according to a
policy π(a|s) based on the state st at time t. After taking the action
at , state st transforms to the next state st+1. And the robot receives
a scalar reward r(st , at) from the environment. In the Markovian
environment, the probability distribution over the next state st+1,
called transition probability, is satisfying Markov property, i.e.,
st+1 ∼ p(st+1|st , at). The objective of robot learning with RL is
to obtain a policy π which maximizes the expected discounted
cumulative reward, i.e., J(π) = Eτ

[
∑

t γ
tr(st , at)

]

, where γ is
the discounted factor that trade-off between shorter and longer
term rewards. Solving such problem can be modeled as Markov
Decision Process (MDP).

Policy Gradient method is one kind of reinforcement learning
algorithms. For exploration in action space, stochastic policy
samples from a Gaussian distribution πθ ∼ N (µ(s), σ (s)2I) with
µ(s) and σ (s) parameterized by θ , at each time step. Stochastic
policy gradient methods maximize the expected cumulative
reward by estimating the performance gradient ∇θ J(πθ) based
on the Stochastic Policy Gradient Theorem (Sutton et al., 2000).
For deterministic policy gradient methods, such as DPG (Silver
et al., 2014) and DDPG (Lillicrap et al., 2015), the critic estimates
the state-action value functionQ(s, a) using off-policy data which
is sampled with a noisy policy. The noisy policy improves the
exploration by adding additive action noise to deterministic
policy: π̂θ (s) = πθ (s) + w, where w represents the action
noise with its variance annealing to trade-off between exploration
and exploitation.

3.3. Policy Search With Evolutionary
Algorithms
Most real-world problems can be modeled as MDP in which
agents or robots only receive a reward signal after a series of

Frontiers in Neurorobotics | www.frontiersin.org 3 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

actions. In the MDP where rewards are sparse, it is difficult to
associate actions with rewards. This situation is often denoted
as the temporal credit assignment problem (Sutton and Barto,
1998).

Inspired by natural selection, Evolutionary Algorithms
(EAs) are a series of black box optimization methods which
are heuristic search procedures with several operators: new
solution generation, mutation, selection, crossover and so
on. Evolutionary Algorithms for sequential decision making
problems are invariant to sparse rewards with long time horizons
(Fortunato et al., 2017). Population-based approach in EAs
has the advantage of promoting exploration, by parameter
perturbation (mutation). The redundancy in a population and
the selection of elites improve the robustness and stability of
the heuristic search procedure. In computation complexity, EAs
outperform back propagation methods in optimizing neural
network with only forward evaluation of the parameter. Because
of these merits of EAs, a number of recent research in RL
problems have used EAs as an alternative to standard RL
algorithms. Such et al. (2017) use genetic algorithms (GAs) to
train deep neural networks for policy search. Conti et al. (2017)
and Salimans et al. (2017) indicate that evolutionary strategies
(ES) is scalable alternative to Reinforcement Learning and can
improve exploration in RL.

In policy gradient methods, after sampling on each time
step, the gradient is calculated by differentiating the policy
with respect to the parameters. However, the derivative of the
policy may not exist or be difficult to calculate. And sampling
from the noisy policy on each time step leads to the noisy
gradient estimation. Some EAs address such variance problem
by replacing the random action sampling with parameter vector
sampling, like natural evolution strategies (NES) (Wierstra et al.,
2008) and policy gradients with parameter-based exploration
(PGPE) (Sehnke et al., 2010). These algorithms represent the
population with a probability distribution p(θ |ρ) over policy
parameters θ , where ρ is the parameter of the distribution.
Instead of sampling action at each time step with stochastic
policy, PGPE samples a policy parameter vector from p(θ |ρ)
to construct a deterministic policy, from which actions are
taken. So PGPE addresses the variance in trajectory and noisy
gradient problems by generating an entire trajectory with only
one parameter vector sampled before exploration. The objective
function to be maximized by searching ρ with stochastic gradient
ascent is the expected cumulative reward over all parameter
vectors:

J(ρ) =

∫

θ

∫

τ

p(τ , θ |ρ)R(τ)dτdθ , (2)

where R(τ) represents the cumulative reward in a trajectory τ .
Differentiating this objective function with respect to probability
distribution parameter ρ, the gradient can be estimated by
sampling θ from p(θ |ρ), then running the policy with parameter
θ to generate trajectory τ , which submits τ ∼ p(τ |θ). PGPE will
choose Gaussian distribution as the policy parameter probability
distribution, i.e., p(θ |ρ) = N (µ, σ 2I) with ρ = [µ, σ].
Optimizing µ and keeping σ as a constant, PGPE (Sehnke et al.,
2010) reduces to evolution strategies (ES) (Salimans et al., 2017).

The ES, NES, and PGPE, introduced above, perform stochastic
gradient descent with the calculation of gradient similar to the
finite-difference methods, and are gradient-based algorithms. As
another kind of classical Evolutionary Algorithms (EAs), a truly
gradient-free method, Genetic Algorithm can also train deep
neural networks for policy to solve the challenging sequential
decision making problem. However, EAs for policy search
do not exploit the information of each state-action pair in
trajectories which make the policy gradient algorithms more
sample-efficient. Thus, EAs need more samples of environment
interaction (de Broissia and Sigaud, 2016).

4. METHOD: EVOLUTIONARY POLICY
GRADIENT

Based on the framework of EAs, in this work, we define the policy
with parameter vector θ and fixed neural network structure as
individual. The mutation operator in our EPG includes random
mutation and optimal mutation. EPG selects some elites, i.e.,
good policy parameter vectors according to the evaluation of
the fitness function. As most EAs for reinforcement learning
problems, the fitness function in EPG is defined as the average
cumulative rewards of several episodes, where the rewards are
received by robot after accomplishing tasks. Usually, EAs perform
crossover directly in parameter space (Floreano et al., 2008)
to increase the diversity of population. Instead, the crossover
operator in our EPG combines the elites in the action distribution
of the policies. And the combination is highly relied on the
demonstration guided imitation learning.

Evolutionary algorithms (EAs), usually regarded as black box
optimization processes, are heuristic and lack the theoretical
guarantee. Although EPG is based on the framework of EAs, in
this section, we will first derive the stochastic policy gradient
method for the perturbed policies in mathematics and then
propose our improvement to fit the framework of EAs with
demonstrations guiding its procedure.

4.1. Optimization of Perturbed Policies
With Policy Gradient
To achieve structured exploration, EPG will perturb current
policy parameter vector to form a set of policies by applying
additive Gaussian noise to the parameter vector of the current
policy: θ = θ ′ + N (0, σ 2I). The policy parameter perturbation
is actually sampling parameters from the probability distribution
p(θ |ρ) with ρ = [µ, σ], and µ is equal to the current policy
parameter vector θ ′. EPG optimizes the mean of the probability
distribution of the parameters with gradient descent, while
initiates the variance of the distribution and anneals it during
the training procedure. The initial σ represents the capability of
exploration and can be tuned according to the sparsity of rewards.
The objective function here is the same as that of PGPE and ES
(i.e., Equation 2).

Now, we derivate the gradient of the same objective J(ρ) in a
different way as in PGPE (Sehnke et al., 2010). After rewriting
equation (2) in the discrete format, noting τ is conditionally

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

independent of ρ given θ , so p(τ , θ |ρ) = p(τ |θ)p(θ |ρ), we have:

J(ρ) =
∑

ǫ∼N (0,I)

∑

τ

p(τ |ǫσ + µ)R(τ). (3)

By sampling ǫ ∼ N (0, I) to construct policy parameters and
executing the policy to generate τ , the gradient of J(ρ) with
respect to probability distribution parameter ρ can be calculated:

∇ρ J(ρ) =
1

N

∑

ǫ∼N (0,I)
τ∼p(τ |ǫσ+µ)

∇ρ log p(τ |ǫσ + µ)R(τ). (4)

For finite horizontal Markov decision process (MDP) with
trajectory τ = [s1 :T , a1 :T], in which s1 :T , a1 :T represents the
sequence of state and action pairs, we have:

log p(τ |θ) =

T
∑

t=0

log p(st+1|st; at)+ logπθ (at|st). (5)

Substituting equation (5) into (4) and noting that we only
optimize µ, we replace ρ with µ and denote πǫσ+µ with πµ

for clarity:

∇µJ(µ) =
1

N

∑

ǫ∼N (0,I)

T
∑

t=0

∇µ logπµ(at|st)R(τ). (6)

To reduce the variance of the gradient estimation, the cumulative
reward R(τ) can be substituted with the advantage function
Aπµ (st , at), which represents the improvement in cumulative
reward obtained so far by taking action at in state st . According to
the previous work (Mnih et al., 2016), we calculate the advantage
function with an approximated value function and the obtained
cumulative reward.

Proximal policy optimization algorithms (PPO) (Schulman
et al., 2017) optimizes a “surrogate” objective function including
a penalty term to constrain the size of the policy update. The
updating equation for optimizing equation (2) with PPO can be
derived as:

∇µJ(µ) =
1

N

∑

ǫ

[

∑

t

Aπµold (st , at)
∇µπµ(at|st)

πµold
(at|st)

− βKL
[

πµold
(·|st),πµ(·|st)

]

]

, (7)

where πµ,πµold
represent the current policy and the policy after

previous iteration, respectively. KL
[

πµold
(·|st),πµ(·|st)

]

is the
Kullback–Leibler divergence between the action distributions
of the two policies, and β works as the coefficient of the
penalty term.

4.2. The Framework of EPG
Our EPG algorithm is derived and approximated from the
optimization of perturbed policies with policy gradient methods,
by adding some heuristic of EAs. As EAs differ in how to perform
those operators, we define the mutation, selection and crossover
to form the framework of our EPG.

For exploration, EPG generates a population of N individuals
(policy parameter vector θi) by parameter perturbation, which
applies additive Gaussian noise to the parameter vector of the
current policy: θi = µ + σǫ, where ǫ ∼ N (0, I). The
parameter perturbation in EPG can be regarded as the random
mutation of the individual. After executing each perturbed policy
(individual) for several episodes, the fitness can be evaluated
by averaging the cumulative rewards received during those
episodes. Then EPG performs truncation selection, where the
top n individuals become the elites. For each elite individual,
EPG optimizes the policies with policy gradient algorithms,
which can be regarded as optimal mutation. Those policy
gradient optimization processes can be implemented in parallel
to accelerate the training procedure. After the optimal mutation,
it is easy to combine those elite optimal policies to one policy by
averaging their parameter vectors.

Using ∇µJ(µ), Equation (7), to update the mean of policy
parameter vectorµ, noting θi = ǫiσ+µ and ǫi ∼ N (0, I), we get:

θ̂ = µ+
1

N

N
∑

i=1

∑

t

Aπθi (st , at)∇µ logπǫiσ+µ(at|st)

≈
1

n

n
∑

i=1

[

µ+ ǫiσ +
∑

t

Aπθi (st , at)∇µ logπǫiσ+µ(at|st)

]

=
1

n

n
∑

i=1

[θi +1θi] .

(8)

where 1θi is calculated with policy gradient methods with
regard to policy parameter vector θi. Equation (8) shows that
the framework mentioned above is actually some kind of
approximation to the gradient descent procedure of optimizing
objective function (2).

The selection of n elites out of the population by choosing
n best policies is a technique called elitism in Evolutionary
Algorithms (EAs). The mutation in EPG includes random
mutation by policy parameter perturbation and optimal
mutation by policy optimization with policy gradient.
The crossover in the parameter space gives few reasonable
explanation. We resort to the ensemble learning to crossover
those elite policies by learning a classifier to choose which elite
policy to take action at every time step. Combining the classifier
and the optimized elite polices, we get a compound policy. In
order to generate the child policy for the next generation, we
first initialize the child policy with the average parameter vector
of elite polices, then minimize the KL divergence between the
action distributions of the child policy and the compound policy.
The overall crossover operator in our EPG can be regarded as the
crossover in the action space, which seems to be more reasonable
since the output of policy is action. The crossover operator is also
equivalent to imitation learning after ensemble, combining the
diverse elite policies. The objective of imitation learning can be
augmented with that of behavior clone to guide the evolutionary
process with demonstration. After the crossover, we get one
individual (child policy) on which random mutation (parameter

Frontiers in Neurorobotics | www.frontiersin.org 5 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

FIGURE 1 | Framework of EPG.

perturbation) can be implemented. It means a new generation
(iteration) begins.

The whole EPG algorithm is scalable to be implemented in
parallel in different computer nodes with different random seeds.
Algorithm 1 illustrate the procedure in one single node of our
EPG. Figure 1 illustrates the complete learning procedure of
EPG. In the rest of this section, the mutation and crossover
operators will be detailed.

Algorithm 1: The procedure in node i of EPG.

1: repeat

2: Random mutate (perturb) πθ → πθi ;
3: Execute policy πθi for several episodes to collect rollout

trajectories τ ;
4: Optimize policy with policy gradient: πθi → π̂θi ;
5: Send the parameters of π̂θi , cumulative rewards Ri and

visited states Si in τ to every other nodes;
6: Calculate fitness(πθj) by averaging Rj in every nodes;
7: Select optimized elite policies π̂θj according to

fitness(πθj), j ∈ [1, n];
8: Child policy π ′θ ← Crossover(π̂θ1 : n , S1 : n,R1 : n, demo) ;
9: until k times of evolution loop.

4.3. Mutation Operator in EPG
Similar to most EAs in solving sequential decision making
problems, EPG operates mutation by perturbing current policy to
generate a population of policies. Parameter perturbation, called
random mutation, is implemented on stochastic policy instead
of deterministic policy as policy gradients with parameter-based
exploration (PGPE) (Sehnke et al., 2010). The stochastic policy
outputs the mean and variance of a Gaussian distribution from
which action is sampled. The output variance of stochastic
policy and the variance of parameter perturbation determine

the exploration in action and parameter space, respectively. By
combining the exploration both in action space and parameter
space, EPG can avoid local minima more easily.

After selecting elites from the population, EPG modifies each
elite with policy gradient methods in parallel, which is regarded
as optimal mutation. The policy gradient is estimated with the
rollout samples collected by stochastic policy in environment
with different random seeds, thus induces randomness for elite
policies update. So the optimal mutation operator still maintains
sufficient diversity of the population and good exploration in
the state space. The optimal mutation improves EPG’s efficiency
in the usage of sampling data, by taking advantage of the
powerful gradient descent method and reusing the rollout
samples generated for elite selection.

Algorithm 2: Crossover operator in node i of EPG.

Require: π̂θj , Sj,Rj, j ∈ [1, n] of elite policies; Demonstrations
from one fixed environment: (s, a) ∼ demo

Ensure: Child policy π ′θ , generalized to a different situation as in
demonstrations;

1: For s in the k’th trajectory of elite j: ωs =
Rjk−minRj

maxRj−minRj
;

2: Send the gradient of (9): ∇cJ
ML
j to other nodes;

3: Train πc(π̂θj |s) with gradient: 1
n

∑

j ∇cJ
ML
j ;

4: Combine classifier and elite policies to form πexp(·|s)

5: Average θ = 1
n

∑n
j=1 θj to initialize child policy π ′θ ;

6: Initialize data set:
{

τ̂i
}

;
7: repeat

8: Generate one trajectory τ with π ′θ ;
9: Aggregate data set

{

τ̂i
}

with τ ;
10: Calculate the gradient of (10): ∇θ J

IL
j with

{

τ̂i
}

;

11: Send ∇θ J
IL
j to other nodes;

12: Update π ′θ with gradient: 1
n

∑

j ∇θ J
IL
j ;

13: until t times of imitate iterations.

4.4. Crossover Operator in EPG
The crossover operator mixes parent policies and produces a new
child policy. Those policies have identical network architectures.
Floreano et al. (2008) produced the child policy by averaging the
parameters of the parent policies, which called average crossover.
Such crossover operation in parameter space dose not has steady
performance, sometimes producing a worse policy than the
policies before averaging. In our EPG framework, the finite
number of population N usually results in the underestimation
of policy gradient (6). It is more intuitive to crossover the policy
in the distribution of action, since the output of policy is a
distribution of action dependent on the state.

In our framework of EPG, every elite policies are trained
independently with different random seeds, thus have distinct
state distributions encountered. So we propose to first combine
elite policies with ensemble learning, by learning a classifier
πc(π̂θj |s) to choose one elite policy π̂θj according to their visited
state s. The intuition is that given a state we choose the
elite policy, which encountered this state more often before,

Frontiers in Neurorobotics | www.frontiersin.org 6 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

to take action. The objective of the classifier is weighted
maximum likelihood:

JML = −
∑

s

ωs log
∑

j

πc(π̂θj |s)1s∈τj

 , (9)

where 1s∈τj is the indicator function and ωs is the weight for
state s, been the same in one trajectory. The formulation of ωs is
detailed in Algorithm 2, where Rj represents the set of cumulative
rewards of several trajectories generated with elite j and Rjk is the
k’th element of Rj. With the classifier and the elite policies, we get
a compound policy: first select an elite policy and then take action
according to it.

To inherit the essence of the optimized elite policies, our
EPG crossovers them by imitating the compound policy, also
called expert, with imitation learning. The expert, represented
as πexp = πc(π̂θj (·|s)|s), includes a classifier and several elite
policies. Imitation learning is a method that develops new policy
bymimicking expert’s behaviors. The imitation is implemented in
the action distribution by minimizing the KL divergence between
the action distributions of the child policy and the compound
policy: KL[πθ ,πexp]. Then, the resulting πθ is an approximate
Gaussian I-projection of πexp which works as a good guiding
distribution. To improve the sample efficiency, we initialize the
child policy with the same architecture as elite policies and
the average elite policies’ parameter vectors. Moreover, in order
to direct the policy evolution to more likely accomplish the
task, especially at the beginning of exploration, we augment
the objective of KL divergence with the negative log likelihood
of demonstrated actions (Equation 1), resulting the objective
function to be minimized:

JIL(θ) =
∑

s

KL
[

πθ (·|s),πexp(·|s)
]

− λE(s,a)∼demo[logπθ (a|s)].

(10)
The λ in Equation (10) should decay to zero, promoting
generalization to new environments. If the new environment
is more different from where the demonstration is provided,
smaller initial λ or larger decay factor should be chosen. To
refine the result policy and avoid compounding errors due to
the visited state distribution mismatch between the compound
policy and the child policy, we run the result child policy for
one episode to collect new samples to aggregate training set.
With that training set, we optimize Equation (10) with the
compound policy as supervisor. Then, with new child policy, the
data collection and optimization processes can be executed again.
This procedure can be iterated for several times and generates
a final child policy that performs well under its own induced
state distribution. And it is similar to the imitation learning with
Dataset Aggregation (DAgger) algorithm (Ross et al., 2011). The
KL-divergence in Equation (10) promotes high entropy in result
policy, and thus encourages the exploration too. For Gaussian
distribution, the surrogate loss (Equation 10) is easily optimized
with stochastic gradient descent. The crossover operator in EPG
is very sample-efficient. In experiments, we only iterated the
Dataset Aggregation procedure for two or three times. The whole
procedure of crossover operator is shown in Algorithm 2.

5. EXPERIMENTS

In the first part of this experiment section, we present the
improved exploration capability of our method, comparing with
the state-of-the-art reinforcement learning methods, where no
demonstrations are provided. In the second part, we demonstrate
the generalization capability of our method to different
situations in robot learning from demonstration, where robot
accommodates to new environments with active exploration.
And we present that our method has better performance in
generalization, in comparing with other related methods which
combining imitation learning and reinforcement learning.

5.1. Exploration: Robot Control in State
Space
Reinforcement Leaning methods are well-known as its
capability of exploration in unknown environments without
any instruction or demonstration from “expert.” To present
the improved exploration of our EPG, we set λ = 0 in
Equation (10) and compare our EPG-PPO with the state-of-
the-art reinforcement learning methods, ES and DPPO, in
continuous control problems of OpenAI Gym (Brockman et al.,
2016) without demonstrations. For comparison with related
works and future research, we choose the average cumulative
rewards, provided by the simulator in OpenAI Gym, as the
evaluation criterion.

In our experiments we implement our EPG with PPO
(Schulman et al., 2017) as policy gradient method, called EPG-
PPO. DPPO is the abbreviation of “distributed proximal policy
optimization” method (Heess et al., 2017) which is popular with
its sample efficiency. In DPPO the distributed agents explore
in environments with different random seeds and calculate the
policy gradients which are averaged to update the policy. Our
implementation of DPPO has the same full connected neural
network structure as that of our EPG-PPO, composed with two
hidden layers and “tanh” activation function. The dimension of
each layer is ten times of the dimension of each robot’s action
space. And other major hyperparameters are similar, e.g., 2–5
nodes in parallel and learning rates within [0.0005, 0.001]. ES is
the abbreviation of “evolutionary strategy” (Salimans et al., 2017)
which is good at random exploration. In our implementation
the policy is perturbed to form 5-8 individuals in population to
generate experience and is updated according to the evaluation
of those experience.

In some standard OpenAI Gym environments, such as
“Reacher,” “Hopper,” “HalfCheetah,” and “Swimmer,” robots will
definitely receive a task-related reward signal at each state with
its value dependent on the state and action. Figure 2 illustrate
the scenes of robot control tasks in our experiments. In the first
picture, the goal of “Reacher” is to control a two-arm robot
with torque so as the end-effect approach the target point as
near as possible, in 50 time steps. In the other three pictures,
“Hopper,” “HalfCheetah,” and “Swimmer” are multi-joint robots
which get more rewards by running or swimming forward away.
Figure 3 depicts the comparative performance in environments
with dense rewards. Especially in “Swimmer,” our EPG avoids the
local minima which traps the PPO.

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

FIGURE 2 | Environments for the Robot Control in State Space: “Reacher,” “Hopper,” “HalfCheetah,” and “Swimmer”.

FIGURE 3 | Depict the average cumulative rewards of the policy after the crossover in EPG-PPO, the distributed policies in DPPO and the updated policy in ES,

plotted over the episodes required during training. The solid lines represent the average performance in six repeated experiments with different random seeds and the

shades exhibit the standard deviation of the performance in those repeated experiments.

FIGURE 4 | In environments with sparse rewards, “HalfCheetah-v2-d4” and “HalfCheetah-v2-d5” provide reward signal until HalfCheetah’s position in x axis surpass 4

and 5 units, respectively. “Swimmer-v2-d1” and “Swimmer-v2-d1.5” are modified with rewards delayed for 1 and 1.5 units in x, respectively.

In many real-world problems, robots may only receive
rewards after the task accomplishment, where exploration play a
more important role in robot learning. To construct environment
with sparse reward, we modify the original gym environments,
“HalfCheetah-v2” and “Swimmer-v2,” to be with no reward at the
beginning until the robot walk forward to surpass a threshold. In
such situation robots must explore more to acquire reward signal
and learn to accomplish the goal which, here in our experiments,
is running forward as far as possible. The comparative results are
illustrated in Figure 4, which depicts the performance of EPG-

PPO, DPPO and ES, with the solid lines and shades representing

the mean and standard deviation in six repeated experiments. In
those environments with sparse rewards, the agents are initialized
with random orientations and acquire performance with high

variance in repeated experiments. Although three algorithms
all have worse performance than that in Figure 3 due to the
sparse reward, our EPG has more advantage with regard to the
sample efficiency.

5.2. Generalization: Learning Vision Based
Manipulation From Demonstration
To present the generalization of our EPG, in the complex
manipulation task, we use simulation environment
“Image48SawyerDoorPullHookEnv-v0” provided in
“multiworld”1. In this task, the demonstrations, including
images and corresponding displacements of the end effector, are

1https://github.com/vitchyr/multiworld

Frontiers in Neurorobotics | www.frontiersin.org 8 April 2020 | Volume 14 | Article 21

https://github.com/vitchyr/multiworld
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

collected in original environment, while robot is learning and
tested in different environments with distinct configurations of
the door. The goal of this task is to open the door in 100 time
steps. We train a neural network policy, which is composed with
two convolutional layers and two full connected layers with 100
units for each. And we use “tanh” as the activation functions in
hidden layers. The policy takes as input the images from the fixed
camera and outputs the next displacement of the end-effector.
The image viewed by the robot is with 48 × 48 pixels, shown in
Figure 5. The robot receives a binary reward when the angle of
door is above a threshold.

In the initial environment, we hand-engineer the robot to
open the door and collect only one trajectory including images
and the corresponding actions. We augment the demonstration
dataset by adding minor noises to the actions with the images
copied. Then, we change the configuration of the door, such
as the position, initial angle and its handle’s position. In the

FIGURE 5 | Robot view.

new situation and with our EPG-PPO, robot interacts with the
environment about thousands of time steps and learn from
demonstration at the same time, robot can open the door
with high success rate, as illustrated in Figure 6. While the
robot learned with behavior clone without exploration failed in
adapting to the new situation as depicted in Figure 7.

Even though we do not find any previous works aiming at
generalizing skill learning from demonstration to different
scenarios where the demonstrations are provided, the
reinforcement learning after imitation learning is a good thought
to accomplish such goal. To present the better generalization
capability of our method, we implement “BC + DPPO” as
baseline, where the robot is first trained with behavior clone to
learn from demonstration, then trained with DPPO to generalize
by exploration in new environments.

Figure 8 shows our experiments, where we change the
positions of the door and its handle with an offset relative to their
origins. In those experiments, we compare our EPG with “BC
+ DPPO.” It is obvious that with the same few demonstrations,
our EPG can learn from demonstration and generalize better.
Even though the robot learns from the binary reward signal
it receives, we evaluate our method by calculating the success
rate of the task accomplishment, i.e., door is open, in 100
independent tests during the process of training. Figure 8 shows
the mean values and standard deviations of the success rates in
five repeated experiments.

6. CONCLUSION AND DISCUSSION

In this paper we introduced a new learning from demonstration
method, Evolutionary Policy Gradient (EPG), with

FIGURE 6 | Neural network policy trained with our EPG accomplish the task.

FIGURE 7 | Neural network policy trained with behavior clone failed.

Frontiers in Neurorobotics | www.frontiersin.org 9 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

FIGURE 8 | Success rate comparisons with other method in variant scenarios.

demonstration guiding the evolution of policy. Just providing
the demonstrations from one specific situation, our EPG can
generalize the robot learning from the demonstrations to
accomplish the same tasks in different environments.

With parameter perturbation and evolutionary framework,
our EPG explore in the new environment to accomplish the task.
With demonstration guiding and policy gradient optimization,
robot can acquire the skill to accomplish the task with fewer
interaction with the new environment. In the framework of
EAs, EPG is scalable in parallel to accelerate the training
process. Moreover, our EPG is a general framework and can
be implemented with all kinds of policy gradient methods.
The whole optimization procedure of EPG is based on the
stochastic policy gradient theorem and behavior clone, with a
little approximation to fit the framework of EAs.

Our aim is to improve the generalization of robot learning
skill from demonstration. As the main contribution of our work,
we present that the active exploration of robot can accomplish
the goal of generalization. Next, we discuss the rationality behind
our study from the perspectives of exploration, exploitation
and generalization.

6.1. About Exploration
As a well-known Evolutionary Algorithm, evolutionary strategy
(ES) only relies on exploring with parameter perturbation.
When the reinforcement learning problem is with dense
reward, our results shown in Figure 3 demonstrated that ES
has few advantage over DPPO which exploit the powerful
policy gradient methods. On the other hand, ES outperforms
DPPO in environment with sparse reward. Our results shown
in Figure 4 illustrate that parameter perturbation has more
advantage in exploration. And, our EPG-PPO explores with
parameter perturbation and retains the data efficiency of policy
gradient. Thus, our method combines the merits of both ES
and DPPO.

6.2. About Exploitation and Exploration
Trade-Off
Our policy parameter perturbation with Gaussian noise is also
a sample from Gaussian distribution with the optimized mean
and annealing variance. The policy parameter sampling after
every optimization step can be seen as a posterior sampling.

From this point of view, our EPG is an approximation
to Thompson Sampling (Thompson, 1933) in the policy
parameters. Thompson Sampling, originated from bandits
problems, provides an elegant approach that tackles the
exploration-exploitation dilemma. Previous works, inspired by
Thompson Sampling, focus on problem with discrete action
space by randomly selecting an action according to the
probability it is optimal. Our method are aiming at problems
with continuous action space. Improving our method toward
the Exploration and Exploitation trade-off is a promising
direction for future research. For example, we can take into
the parameter variance optimization into consideration, making
the parameter perturbation procedure bears more similarity to
Thompson Sampling.

6.3. About Generalization
In the unknown environment without demonstration, robot
trained with many state-of-the-art reinforcement learning
methods, including DPPO, can learn to accomplish many
complex tasks by interacting with the environment millions
of time steps. In our experiments, we find that DPPO can
not make robot explore to grasp the skill of opening the
door in thousands of interaction time steps, due to the sparse
reward. Exploration from scratch is sample inefficient and can
not be seen as generalization, though with adaption to new
environments. Our method learning from demonstration and
adapting to new environments with few interactions are actually
generalizing the learning skill from previous situation to new
situation. Our deep combination of learning from demonstration
and reinforcement learning presents a promising direction to
improve the generalization of learning from demonstration
and is worth further research. On the perspective of sample
complexity, it is the generalization from demonstration that
makes the reinforcement learning process more sample efficient.
Thus, our method can also provide a new method to improve the
sample efficiency of Reinforcement Learning methods.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: https://github.com/vitchyr/multiworld,
https://github.com/openai/gym.

Frontiers in Neurorobotics | www.frontiersin.org 10 April 2020 | Volume 14 | Article 21

https://github.com/vitchyr/multiworld
https://github.com/openai/gym
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cao et al. Evolutionary Policy Gradient

AUTHOR CONTRIBUTIONS

JC, WL, YL, and JY conceived the project. YL and JY
acquired funding. JC coordinated the subprojects and wrote the
manuscript. JC andWL conducted the experiments, analyzed the
data, and prepared figures.

FUNDING

This work was funded by Program Project of Zhejiang
Province (2019C01004) and Key Research and Development
Program of Guangdong Province of China under
Grant 2019B010120001.

REFERENCES

Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous helicopter

aerobatics through apprenticeship learning. Int. J. Robot. Res. 29, 1608–1639.

doi: 10.1177/0278364910371999

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey

of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483.

doi: 10.1016/j.robot.2008.10.024

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos,

R. (2016). “Unifying count-based exploration and intrinsic motivation,” in

Advances in Neural Information Processing Systems (Barcelona), 1471–1479.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.

(2016). Openai gym. arXiv 1606.01540.

Calinon, S., D’Halluin, F., Caldwell, D. G., and Billard, A. G. (2009). “Handling

of multiple constraints and motion alternatives in a robot programming

by demonstration framework,” in IEEE-RAS International Conference on

Humanoid Robots (Paris). doi: 10.1109/ICHR.2009.5379592

Calinon, S., D’Halluin, F., Sauser, E. L., Caldwell, D. G., and Billard, A. G. (2010).

Learning and reproduction of gestures by imitation. Robot. Autom. Mag. IEEE

17, 44–54. doi: 10.1109/MRA.2010.936947

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K. O., and Clune, J.

(2017). Improving exploration in evolution strategies for deep reinforcement

learning via a population of novelty-seeking agents. arXiv 1712.06560.

de Broissia, A. D. F., and Sigaud, O. (2016). Actor-critic versus direct policy search:

a comparison based on sample complexity. arXiv 1606.09152.

Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevolution: from

architectures to learning. Evol. Intell. 1, 47–62. doi: 10.1007/s12065-007-0002-4

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., et al. (2017).

Noisy networks for exploration. arXiv 1706.10295.

Gangwani, T., and Peng, J. (2018). Policy optimization by genetic distillation.

Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., et al. (2017).

Emergence of locomotion behaviours in rich environments. arXiv preprint

arXiv:1707.02286.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P.

(2016). “Vime: variational information maximizing exploration,” in Advances

in Neural Information Processing Systems (Barcelona), 1109–1117.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).

Continuous control with deep reinforcement learning. arXiv 1509.02971.

Matas, J., James, S., and Andrew, J. D. (2018). Simto-real reinforcement learning

for deformable object manipulation. arXiv [preprint]. arXiv:1806.07851.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).

“Asynchronous methods for deep reinforcement learning,” in International

Conference on Machine Learning (New York, NY), 1928–1937.

Nair, A., Mcgrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2017).

Overcoming exploration in reinforcement learning with demonstrations. arXiv

1709.10089. doi: 10.1109/ICRA.2018.8463162

Osband, I., Russo, D., Wen, Z., and Van Roy, B. (2017). Deep exploration via

randomized value functions. arXiv 1703.07608.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). “Curiosity-driven

exploration by self-supervised prediction,” in International Conference on

Machine Learning (ICML) (Sydney, NSW). doi: 10.1109/CVPRW.2017.70

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., et al.

(2017). Parameter space noise for exploration. arXiv 1706.01905.

Rahmatizadeh, R., Abolghasemi, P., Bölöni, L., and Levine, S. (2017). Vision-based

multi-taskmanipulation for inexpensive robots using end-to-end learning from

demonstration. arXiv 1707.02920. doi: 10.1109/ICRA.2018.8461076

Rajeswaran, A., Kumar, V., Gupta, A., Schulman, J., and Levine, S. (2018).

Learning complex dexterous manipulation with deep reinforcement

learning and demonstrations. arXiv 1709.10087. doi: 10.15607/RSS.2018.

XIV.049

Ross, S., Gordon, G., and Bagnell, D. (2011). “A reduction of imitation learning

and structured prediction to no-regret online learning,” in Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics,

627–635.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution

strategies as a scalable alternative to reinforcement learning. arXiv 1703.03864.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). “Trust

region policy optimization,” in International Conference on Machine Learning,

1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).

Proximal policy optimization algorithms. arXiv 1707.06347.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., and Schmidhuber,

J. (2010). Parameter-exploring policy gradients. Neural Netw. 23, 551–559.

doi: 10.1016/j.neunet.2009.12.004

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.

(2014). “Deterministic policy gradient algorithms,” in Proceedings of the 31st

International Conference on Machine Learning (Beijing).

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and

Clune, J. (2017). Deep neuroevolution: genetic algorithms are a competitive

alternative for training deep neural networks for reinforcement learning. arXiv

1712.06567.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

Cambridge: MIT Press.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). “Policy

gradient methods for reinforcement learning with function approximation,”

in Advances in Neural Information Processing Systems (Breckenridge, CO),

1057–1063.

Sylvain, C., Florent, G., and Aude, B. (2007). On learning, representing, and

generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybern. B 37,

286–298. doi: 10.1109/TSMCB.2006.886952

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, O. X., Duan, Y., et al. (2017).

“Exploration: a study of count-based exploration for deep reinforcement

learning,” in Advances in Neural Information Processing Systems, 2753–2762.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika 25, 285–294.

doi: 10.1093/biomet/25.3-4.285

Wang, J., Eiji, U., and Kenji, D. (2017). Adaptive baseline enhances em-based

policy search: validation in a view-based positioning task of a smartphone

balancer. Front. Neurorobot. 11:1. doi: 10.3389/fnbot.2017.00001

Wierstra, D., Schaul, T., Peters, J., and Schmidhuber, J. (2008). “Natural evolution

strategies,” in CEC 2008 IEEE Congress on Evolutionary Computation, 2008

(Hong Kong: IEEE), 3381–3387. doi: 10.1109/CEC.2008.4631255

Williams, R. J. (1992). Simple statistical gradient-following algorithms

for connectionist reinforcement learning. Mach. Learn. 8, 229–256.

doi: 10.1007/BF00992696

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Cao, Liu, Liu and Yang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 April 2020 | Volume 14 | Article 21

https://doi.org/10.1177/0278364910371999
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1109/ICHR.2009.5379592
https://doi.org/10.1109/MRA.2010.936947
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/CVPRW.2017.70
https://doi.org/10.1109/ICRA.2018.8461076
https://doi.org/10.15607/RSS.2018.XIV.049
https://doi.org/10.1016/j.neunet.2009.12.004
https://doi.org/10.1109/TSMCB.2006.886952
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.3389/fnbot.2017.00001
https://doi.org/10.1109/CEC.2008.4631255
https://doi.org/10.1007/BF00992696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Generalize Robot Learning From Demonstration to Variant Scenarios With Evolutionary Policy Gradient
	1. Introduction
	2. Related Work
	3. Background
	3.1. Learning From Demonstration (LfD) With Behavior Cloning
	3.2. Policy Gradient and Explore With Action Noise
	3.3. Policy Search With Evolutionary Algorithms

	4. Method: Evolutionary Policy Gradient
	4.1. Optimization of Perturbed Policies With Policy Gradient
	4.2. The Framework of EPG
	4.3. Mutation Operator in EPG
	4.4. Crossover Operator in EPG

	5. Experiments
	5.1. Exploration: Robot Control in State Space
	5.2. Generalization: Learning Vision Based Manipulation From Demonstration

	6. Conclusion and Discussion
	6.1. About Exploration
	6.2. About Exploitation and Exploration Trade-Off
	6.3. About Generalization

	Data Availability Statement
	Author Contributions
	Funding
	References

