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Brain-Computer Interface (BCI), in essence, aims at controlling different assistive devices

through the utilization of brain waves. It is worth noting that the application of BCI is

not limited to medical applications, and hence, the research in this field has gained

due attention. Moreover, the significant number of related publications over the past

two decades further indicates the consistent improvements and breakthroughs that

have been made in this particular field. Nonetheless, it is also worth mentioning

that with these improvements, new challenges are constantly discovered. This article

provides a comprehensive review of the state-of-the-art of a complete BCI system.

First, a brief overview of electroencephalogram (EEG)-based BCI systems is given.

Secondly, a considerable number of popular BCI applications are reviewed in terms

of electrophysiological control signals, feature extraction, classification algorithms, and

performance evaluation metrics. Finally, the challenges to the recent BCI systems are

discussed, and possible solutions to mitigate the issues are recommended.

Keywords: brain-computer interface (BCI), electroencephalogram (EEG), machine learning, classification, feature

extraction

INTRODUCTION

Communication, or social interaction, is one of the key principles of human civilization. This
quality enables one to share emotions, expectations, and creative thoughts amongst human
beings. In the event that this communication is established through speech, gesture, or writing,
human communication becomes easier and devoid of constraints. Nonetheless, people who are
suffering from locked-in syndrome do not have the aforementioned options for interaction.
Patients with locked-in syndrome could not interact or express themselves, although they
are well-cognizant of things around them (Ashok, 2017). Amyotrophic lateral sclerosis (ALS),
cerebral palsy, brain stem stroke, multiple sclerosis, cerebral palsy, and spinal cord injury
are the main causes of locked-in syndrome (Holz et al., 2013). It is almost impossible for
a person who is affected by the locked-in syndrome to communicate with other persons,
and hence, Brain–Computer Interface (BCI) is a promising means to furnish them with
basic communication abilities. Fundamentally, the human brain and devices are interfaced
through the concept of BCI in which the users will have to generate a variety of brain waves
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that will be recognized and converted into commands to the
devices (Volosyak et al., 2017). In its earlier days, researchers
intended to use this technology to develop assistive devices for
medical purposes only. Nonetheless, the employment of this
technology has expanded, and it has found its way into non-
medical applications. It is discernible that over the last 15 years,
a considerable number of original articles as well as reviews
have been published on BCI. An excellent review article on BCI
spelling systems was published in Rezeika et al. (2018), giving
a concise description of some successful recent BCI spelling
models, including their categories, methodologies, and results.
The authors also listed some limitations of the current systems
as well as making recommendations for directions that could be
pursued to overcome the issues. However, it is worth mentioning
that the content of the review emphasized and was restricted
to only BCI spellers. There are other notable BCI reviews that
cater to specific applications, for instance, wheelchair control
(Fernández-Rodríguez et al., 2016; Al-qaysi et al., 2018), BCI
mobile robot (Bi et al., 2013), emotion recognition using EEG
(Al-Nafjan et al., 2017), biometrics (Del Pozo-Banos et al., 2014;
Alariki et al., 2018), and virtual reality and gaming (Kaplan
et al., 2013; Ahn et al., 2014; Cattan et al., 2018). Nevertheless,
some pertinent information was missing or not duly reported,
for instance, descriptions of methodology and evaluation metrics
employed, and/or future directions of the research.

Electroencephalogram (EEG) control signals and their
classifications have been briefly discussed in an excellent review
(Ramadan and Vasilakos, 2017). The authors reviewed state-
of-the-art BCI solutions with regards to both hardware and
software; however, it was noticeable that the applications, as
well as the signal processing methods, were not taken into
consideration. Likewise, Hwang et al. (2013) have summarized
articles related to EEG-based BCI systems published from 2007
to 2011. Notwithstanding, the review did not entirely reflect the
current state-of-the-art and did not provide any future directions
for the research. Conversely, in Abdulkader et al. (2015), the
fundamental aspects that cover the wide spectrum of EEG-based
BCI systems were reviewed; however, the number of articles
reviewed was rather limited. Lotte et al. (2007) provided a review
of the classification algorithms used in EEG-based BCI systems
up to 2006. In their second review (Lotte et al., 2018), the
application of machine learning algorithms used on BCI systems
from 2007 to 2017 was reviewed. In both articles, the authors
surveyed EEG control signals, features, classification methods,
and classification accuracy. Moreover, the authors provided some
guidelines on selecting the appropriate classification algorithms;
nonetheless, the articles lacked evaluation of the performance
metrics. A review on portable and non-invasive modalities such
as EEG-, functional transcranial Doppler (fTCD)-, and near-
infrared spectroscopy (NIRS)-based hybrid BCI was reported in
Banville and Falk (2016). Twenty-two items were investigated
from 55 journal articles published between 2008 and 2014.
The authors reviewed non-invasive modalities, EEG control
signal, experiment protocol, signal processing methods, and
system evaluation, as well as shedding some light on future
directions for EEG-based BCI research. However, a comparison
of the experimental results between the BCI applications or EEG

modalities were notmade available, and a similar observation was
also noticed in Abiri et al. (2019).

Therefore, the objectives of this article are to review EEG-
based BCI systems with regards to the different brain control
signals, feature extraction methods, classification algorithms, and
evaluation metrics utilized. Moreover, a concise overview of
EEG-based BCI systems is presented here so that the reader(s)
may select the most appropriate method for a specific BCI
system. In addition, related research gaps that warrant further
exploration are also presented in this paper. Of note, salient
problems associated with EEG-based BCI systems are listed in
terms of its applications, and possible solutions to mitigate the
issues are also recommended. Moreover, this review, unlike other
published review articles with regards to EEG-based BCI systems
that were specific in nature, particularly with respect to either
its specific applications or part of the methodology employed
(e.g., feature extraction, signal processing, and classification,
amongst others), provides a more comprehensive overview that
can easily be comprehended by the readers to identify the
gaps in the body of knowledge. This article is structured in
the following manner: section Essential Components of BCI
Technology presents a brief discussion on BCI overview, section
Popular EEG Based BCI Applications Aspect illustrates the
review of popular EEG-based BCI applications, section Current
Challenges and Directions discusses the challenges, giving
recommendations, section Conclusion draws the conclusion of
the present review paper.

ESSENTIAL COMPONENTS OF BCI
TECHNOLOGY

Brain–Computer Interface (BCI) is an effective as well as
a powerful tool for user-system communication. Through
this system, from the issuance of the commands to the
completion of the interaction, no external devices or muscle
intervention is required (Van Erp et al., 2012). Nicolas-
Alonso and Gomez-Gil (2012) defined brain–computer interface
(BCI) or brain–machine interface (BMI) as a hardware and
software communications strategy that empowers humans to
interact with their surroundings with no inclusion of peripheral
nerves or muscles by utilizing control signals produced from
electroencephalographic activity. Every BCI system essentially
consists of five components: brain activity measurement,
preprocessing, feature extraction, classification, and translation
into a command (Mason and Birch, 2003). Figure 1 depicts a
typical block diagram that illustrates the different stages of EEG
signal processing for BCI. In the brain activity acquisition phase,
the brain activity from the targeted user is captured through
the various types of EEG sensors (Wolpaw et al., 2006). The
raw EEG data includes a variety of artifacts, and these artifacts
are eliminated in the pre-processing phase (Bashashati et al.,
2007a). Feature extraction aims at describing the signals by a
few relevant values called “features;” often, at this stage, the
selection of significant features is also investigated (Bashashati
et al., 2007a). The extracted features are then classified through
different machine learning and deep learning algorithms in the

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2020 | Volume 14 | Article 25

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

FIGURE 1 | General architecture of a brain-computer interface.

classification phase (Lotte et al., 2007). Finally, the classified
outcomes are translated into device commands to develop real-
life BCI application (Kubler et al., 2006).

Branches of BCI Technology
Generally, BCI frameworks may be separated into a number
of classes. Figure 2 illustrates the three categorization schemes,
namely by dependability, recording technique, and method of
operation (Lotte et al., 2015). Regarding dependability, BCI can
be classed as either dependent or independent BCI. Dependent
BCIs require some form of motor control by the user or healthy
subjects, for instance, gaze control (Lalor et al., 2005). MI-
based BCIs are an ideal example of dependent BCI systems and
have been extensively utilized. Conversely, independent BCIs
do not require any form of motor control by the user; this
type of BCI is ideal for stroke patients or severely impaired
patients. In Tello et al. (2016), an SSVEP-based independent BCI
system was proposed to identify two different targets, and it was
demonstrated to be successful.

With regard to recording method, BCI can be categorized
into invasive and non-invasive. Microelectrode arrays are often
required to be implanted inside the skull for invasive BCIs.
Two common invasive modalities that have been reported in
BCI research are intracortical recording and electrocorticography
(ECoG). Conversely, if the brain signals are acquired by means
of sensors placed on the scalp, it is known as non-invasive BCI.
Amongst the non-invasive modalities often utilized are EEG,
MEG, PET, fMRI, and fNIRS. In BCIs, EEG is the most widely
employed non-invasive modality, where a variety of control
signals, including SCP, SSVEP,MI, ErrP, and P300, can be evoked.

Finally, BCI can have either a synchronous or asynchronous
mode of operation. The interaction between the user and the
system may be either time-dependent or time-independent. In
the event that the interaction is carried out within a certain period
of time upon a cue imposed by the system, then the system is
known as synchronous BCI. In contrast, in asynchronous BCI,
the subject can generate a mental task at any period of time to
interact with the application. In comparison with asynchronous
BCI, synchronous BCIs are not user-friendly, but designing such
a system is much easier than for asynchronous BCI (Bashashati
et al., 2007b).

Brain Activity Measurement Modalities
To avoid the risk of surgery, most BCI researchers prefer the
non-invasive approach. EEG, MEG, PET, fMRI, and fNIRS are
among the non-invasive modalities that are often utilized. The
selection of the measurement method depends on a variety of
parameters, for instance, spatial resolution, temporal resolution,
invasiveness, measured activity, cost, and portability, amongst
others. Owing to its desirable traits, namely high temporal
resolution, low cost, ease of portability, and non-invasiveness,
EEG is the most commonly employed neuroimaging modality
among BCI researchers.

EEG records voltage fluctuations due to the flow of ionic
current during synaptic excitations in the neurons of the brain
(Baillet et al., 2001). In this modality, electrodes are attached to
the scalp to obtain brain signals. Its non-invasive and inexpensive
characteristics havemade EEG themost popular modality among
the BCI research community. The electrode number varies from
1 to 256 for different EEG headsets. The measured EEG signal is
the voltage difference between the active and reference electrode
over time, with its amplitude in micro-volts (µV). Generally, the
EEG amplitude ranges from −100 to +100 microvolts. The EEG
signals can be categorized according to frequency bands, and
each of these bands has specific biological significance. The EEG
frequency bands with relevant characteristics are listed in Table 1
(Wang et al., 2016).

EEG Control Signals Used in BCI
Applications
Some neurophysiological EEG signals have been decoded to
enable the BCI to understand the subject’s intentions, and these
signals are known as EEG control signals. BCI aims to identify
the specific neurophysiological signals of a given subject in order
to associate a command to each of these signals. Some of these
control signals are relatively easy to identify, as well as being
relatively easy to control by the user. The extensively utilized
EEG control signals include SCP, P300, MI, MRCP, ErrP, SSVEP,
SSAEP, and SSSEP.

The movement-related cortical potential (MRCP) is a low-
frequency negative shift in the EEG recording that takes place
∼2 s prior to the production of voluntary movement. MRCP
replicates the cortical processes employed in the planning and
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FIGURE 2 | Classification of BCI systems in terms of dependability, recording method, and mode of operation.

preparation of the movement (Shakeel et al., 2015). It is mainly
beneficial for those BCI applications where the delay between the
intention to act and the feedback from the system is crucial to
induce plasticity.

The error-related potential (ErrP) has recently been utilized
as an ERP component that can be used to correct BCI errors.
The ErrP occurs when there is a mismatch between a subject’s
intention to perform a given task and the response provided by
the BCI (Abiri et al., 2019). For instance, if a user wishes to move
a cursor from the middle of a monitor to the left side of the
monitor but the cursor erroneously moves to the right, an error-
related potential will be generated. The ErrP is most pronounced
at the frontal and central lobes. The delay and non-stationarity
characteristics of this signal are still a challenge for real-time BCI
implementation (Abiri et al., 2019).

Spontaneous signals are generated voluntarily by the
user, without external stimulation, following an internal

cognitive process. The most typical spontaneous signals used
are undoubtedly sensorimotor rhythms. However, other
neurophysiological signals have been used, such as slow cortical
potentials or non-motor cognitive signals.

Slow Cortical Potentials (SCP) are very slow variations in
cortical activity that can last from hundreds of milliseconds
(ms) to several seconds (s) (Kleber and Birbaumer, 2005). It is
possible to make these variations positive or negative via operant
conditioning. As the control of SCP is achieved by operant
conditioning, mastering such a signal generally requires a very
long training time. This training by operant conditioning is
even longer for SCP than for motor rhythms (Birbaumer, 2006).
However, it seems that SCP would be a more stable signal.

Non-motor cognitive processing tasks are also extensively
used to operate a BCI. These tasks are, for instance, mental
mathematical computations, mental rotation of geometric
figures, visual counting, mental generation of words, and music
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TABLE 1 | EEG frequency bands with properties.

Band Frequency (Hz) Amplitude (µV) Location Activity

Delta 0.5–4Hz 100–200 Frontal Deep sleep

Theta 4–8Hz 5–10 Various Drowsiness, light sleep

Alpha 8–13Hz 20–80 Posterior region of head Relaxed

Beta 13–30Hz 1–5 Left and right side,
symmetrical distribution,
most evident frontally

Active thinking, alert

Gamma >30Hz 0.5–2 Somatosensory cortex Hyperactivity

imagination, amongst others (Chiappa and Bengio, 2004). All
of these mental tasks generate specific EEG signal variations in
specific cortical regions and frequency bands, which make them
relatively easy to identify.

Steady-State Evoked Potentials (SSEP)
SSEP appears when the user perceives a periodic stimulus
like a flickering photo or an amplitude-modulated sound. An
important characteristic of SSEP is that the stimulation frequency
or harmonics is equivalent to the EEG signal frequencies (Gouy-
Pailler et al., 2007). The stimulation of a fixed frequency evokes
SSEP by yielding EEG activity of the identical frequency as
the stimulation is generated (Maye et al., 2011). According
to visual, auditory, and somatosensory stimulation, SSEP can
be further divided into Steady-State Visually Evoked Potentials
(SSVEP) (Valbuena et al., 2010), Steady-State Auditory Evoked
Potentials (SSAEP) (Fairclough and Gilleade, 2014), and Steady-
State Somatosensory Evoked Potentials (SSSEP) (Muller-Putz
et al., 2006).

Every SSVEP-based BCI needs a specific number of visual
stimuli that indicate specific BCI output commands. These
stimuli flicker continuously, with distinguishable frequency
bands ranging from 6 to 30Hz. In the event that a subject
concentrates on a particular flickering stimulus, an SSVEP with
an identical frequency to that of the target flicker is generated.
For example, if the frequency of the targeted stimulus is 15Hz,
the frequency of the generated SSVEP will also be 15Hz.
Therefore, the user pays attention visually to a target, and the BCI
determines the target through analyzing the SSVEP features.

SSAEP are commonly extracted by trains of click stimuli,
tone pulses, or amplitude-modulated tones, with a repetition or
modulation rate between 20 and 100Hz. The resulting brain
response can be localized at the primary auditory cortex (Hill and
Schölkopf, 2012). Although the SSAEP-based BCI system yielded
promising results, only highly experienced users could maintain
the high level of attention needed in order to obtain high accuracy
(Punsawad and Wongsawat, 2017).

In the SSSEP paradigm, vibrotactile sensors are placed at
pre-determined parts of the body, and these sensors generate
stimulations at different frequencies (Hamada et al., 2014). The
stimulations of these sensors will then be reflected in EEG
signals recorded from the scalp. In comparison to visual- or
sensorimotor rhythm-based BCI research, limited studies of

SSSEP have been published. This is primarily due to the lack of
a well-designed standard tactile stimulator with which to extract
the SSSEP signals.

P300
BCI systems with P300 rely upon stimuli that flash in succession.
These stimuli may be symbols or letters and are used for different
BCI applications, for instance, controlling a robot arm, cursor,
or mobile robot. P300 is generated in the Pz areas of the brain,
∼300ms after the stimulus is presented (Farwell and Donchin,
1988). It has been reported in the literature that the response’s
peak amplitude is much larger, even with less probable stimulus
(John et al., 1996). Amongst the advantageous features of P300-
based BCIs is that they do not require any form of training.
However, it is worth mentioning that in the event that infrequent
stimulus decreases the amplitude of P300 that, in turn, reduces
the overall performance of the system.

Motor Imagery
Moving a limb or even contracting a single muscle changes brain
activity in the cortex. Preparation for themovement or imagining
movement [also known as motor imagery (MI)] generates
oscillations in the brain motor areas known as sensorimotor
rhythms (SMR). Increase and decrease of oscillatory activity
in a particular frequency band are referred to as event-related
synchronization (ERS) and event-related desynchronization
(ERD), respectively. The most influential frequency bands for
motor imagery are the alpha and beta brain waves. Activity
invoked by the left and right hand MI is generated from the
C3 and C4 areas of the brain, respectively, whereas the foot
movement imagery is originated from Cz. Left and right foot
movements are almost impossible to distinguish in EEG due to
the fact that the corresponding cortical regions are extremely
close. The cortical areas must be large enough to produce
detectable patterns in the background EEG. The cortical areas
of the left hand, right hand, tongue, and foot, are large and
distinguishable. Thus, the movement of those body limbs via
imagination can be controlled by BCI applications (Schlögl et al.,
2005).

EEG Acquisition Framework for BCI
Application
The human brain consists of two main parts, i.e., the
cerebral cortex and subcortical regions. The essential and vital
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FIGURE 3 | Standardized electrode placement scheme.

functions, including body temperature, respiration, heart rate,
and emotional responses, including reflexes, fear, learning, and
memory, are controlled by the subcortical regions. Conversely,
the cerebral cortex, commonly known as the cerebrum, regulates
sensory and motor processing as well as higher-level functions,
for example, language processing, pattern recognition, reasoning,
and planning. The cerebral cortex is partitioned into two
hemispheres, in which every hemisphere is classified into four
lobes, namely the parietal, occipital, frontal, and temporal lobes.
The parietal lobe is in charge of numerous functions, for
instance, spelling, objects, manipulation, perception, and spatial
awareness. Conversely, the language, memory, recognizing
faces, and generating emotions are the main functions of the
temporal lobe. The third lobe, i.e., the frontal lobe, involves
organizing, social skills, planning, flexible thinking, problem-
solving, conscious movement, attention, and emotional and
behavioral control. The occipital lobe is related to interpreting
visual stimuli. Additionally, another essential system of the
human body is the nervous system, which is classified into two
main parts: the central and peripheral systems. The spinal cord
and the brain are the two parts of the central nervous system. In
contrast, the peripheral nervous system includes the autonomic
nervous system, which controls functions such as digestion,
secretion of hormones, breathing, and heart rate.

The 10/20 system is a universally recognized method that
indicates the locations of electrodes on the scalp. The system
depends on the connection between the electrode location and
the underlying area of the cerebral cortex. The numbers 10 and 20
indicate that the distances among adjacent electrodes are either

10 or 20% of the total front-back or right-left distance of the
skull. In each site, a letter is used to denote the lobe, whereas
the hemisphere location is represented by a number. In the 10/20
system, the frontal, parietal, temporal, and occipital lobes can be
denoted by the letters F, P, T, and O, respectively, as depicted in
Figure 3. The central lobe is not included; the letter C is utilized
only for identification purposes. Z (zero) implies that an electrode
is placed on the midline. Even numbers (2, 4, 6, 8) are utilized to
indicate the right hemispheres electrode positions, whereas left-
hemisphere electrode positions are denoted by odd numbers (1,
3, 5, 7) (Rojas et al., 2018).

Hardware Technology for EEG Signal Acquisition
There are two main methods of acquiring EEG signals: wireless
or wired. Typically, EEG signal measurements are performed
using a number of electrodes varying from 1 to about 256. These
electrodes are generally attached using an elastic cap. The contact
between the electrodes and the skin is commonly enhanced
through the utilization of a conductive gel or paste. However, this
makes the electrode embedding procedure a generally tedious
and lengthy operation. Nonetheless, it is worth noting that the
use of dry electrodes, which do not require conductive gels or
pastes, has been proposed and validated (Popescu et al., 2007). In
spite of this success, it is worth pointing out that the performance
of this method in terms of maximum information rate is, on
average, 30% lower than that obtained with a BCI based on
electrodes that employ conductive gels or pastes. Though the
wired system is well-established, it has some notable limitations.
It is evident that connection using wires between the electrodes
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TABLE 2 | Summary table of recent EEG devices.

Device name No. of channels Sampling frequency Communication No. of publications

NeuroScan SynAmps:64
Grael:32

NuAmps:40
Siesta:32

SynAmps:20 kHz
Grael:4,096Hz

NuAmps:1,000Hz
Siesta:1,024Hz

Wired 12,300

Brain Products LiveAmp: 8/16/32 Between 250, 500, and
1,000Hz

Wireless 6,690

BioSemi 16, 32, or 64 2/4/8/16KHz Wired 5,750

Emotiv INSIGHT: 5
EPOC+: 14

EPOC FLEX: 32

128Hz Wireless 3,990

NeuroSky 1 512Hz Wireless 2,290

Advanced brain monitoring ABM B-Alert X24: 24 256Hz Wireless 790

g.tec nautilus 64 500Hz Wireless 430

AntNeuro eego 64 2,048Hz Wireless 340

Neuroelectrics Enobio 32 32 500Hz Wireless 317

Muse 4 256Hz Wireless 207

OpenBCI Up to 16 channels 256Hz Wireless 201

Cognionics Mobile 72 500–1,000Hz Wireless 128

mBrainTrain 24 250–500Hz Wireless 38

MyndBand EEG headset 3 512Hz Wireless

Enobio 8, 20, or 32 500Hz Wireless

and the acquisition part is often complicated, as it is a rather
time-consuming procedure. Moreover, the user’s movement is
restricted owing to the tethered nature of cable constraints.
Hence, wireless BCI systems have gained due attention, primarily
owing to their ability to mitigate the aforesaid restrictions. One of
the attractive natures of the wireless EEG headset is that it is non-
invasive. Moreover, it does not hinder the motion of the user.
Table 2 lists the types of EEG devices that have been reported
in the literature with their specifications. It is evident that the
selection of the type of EEG headset or device is dependent on
the BCI application itself1.

EEG Data Pre-processing Strategies
A small SNR and different noise sources are amongst the greatest
challenges in EEG-based BCI application studies. Unwanted
signals contained in the main signal can be termed noise,
artifacts, or interference. There are two sources of EEG artifacts:
external or environmental source and physiological source. The
external sources of noise include AC power lines, lighting, and a
large array of electronic equipment (from computers, displays,
and TVs to wireless routers, notebooks, and mobile phones,
amongst others). Physiological noise arises from an assortment
of body activities due to movement, other bioelectrical
potentials, or skin resistance fluctuations. The predominant
physiological noises include electrooculographic activity (EOG,
eye), electrocardiographic activity (ECG, heart), scalp-recorded

1Top 14 EEG Hardware Companies [Ranked]. Available online at: https://
imotions.com/blog/top-14-eeg-hardware-companies-ranked/ (accessed February
03, 2019).

electromyographic activity (EMG, muscle), ballistocardiographic
activity (heart-related pulsatile motion), and respiration (Somers
et al., 2018).

Pre-processing is a non-trivial process, as it is carried out
to remove any unwanted components embedded within the
EEG signal. Good preprocessing leads to an increase in the
signal quality, which in turn results in better feature separability
and classification performance. Simple low, high, and band-
pass filters are the primary attempts to attenuate artifacts in
the measured EEG. However, these are only effective when
the frequency bands of the signal do not overlap (Sweeney
et al., 2012). In case of spectral overlap, where artifacts are
recorded with the EEG, alternative artifact removal techniques
are required such as adaptive filtering, Wiener filtering, Bayes
filtering (Sweeney et al., 2012), surface Laplacian transforms
(Fitzgibbon et al., 2013), regression (Gratton et al., 1983),
Common Average Referencing (CAR) (Zaizu Ilyas et al.,
2015), EOG correction (Croft and Barry, 2000), and blind
source separation (BSS) (Oosugi et al., 2017), as well as
more modern attempts, for instance, the wavelet transform
(WT) method (Punsawad and Wongsawat, 2017), empirical
mode decomposition (EMD) (Zhang et al., 2008), Canonical
Correlation Analysis (CCA) (de Clercq et al., 2006), and non-
linear mode decomposition (NMD) (Iatsenko et al., 2015). It is
worth noting that the BSS methods are also called component-
based techniques, as they employ principal component analysis
(PCA) or independent component analysis (ICA). Kilicarslan
et al. (1976) proposed a quick artifact segment identification
technique through the combination of dynamic time warping
(DTW) and temporal motifs. Chavez et al. (2018) proposed a
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data-driven algorithm, namely surrogate-based artifact removal
(SuBAR), to remove muscular and ocular artifacts effectively
from EEG. A joint approach combining BSS and REG, the online
EEG artifact attenuation technique, has also been proposed for
BCI applications (Guarnieri et al., 2018). Although there is no
single gold standard in EEG artifact removal algorithms, the
authors of Urigüen and Garcia-Zapirain (2015) recommend
using an ICA algorithm based upon second-order blind
identification (SOBI) due to its success in removing different
types of EEG contaminants.

Real-time BCI applications require artifact removal methods
that are automatic and of low computational cost. Regression
and filtering approaches can be executed automatically when
they have a reference signal. Moreover, BSS methods will be
automatic when there is a subsequent procedure. Although
ICA is the most commonly used technique among these BSS
methods, it disregards the temporal or spatial relations within
sources, which will result in the loss of relevant information.
Nevertheless, a CCA algorithm can mitigate this problem as
it takes little computational time, which makes the algorithm
applicable for real-time performance. Another factor that should
be taken into account is the number of measurement channels.
It should be noted that for home healthcare environments,
fewer channels are often expected. BBS algorithms cannot be
utilized in such a situation, due to the principle of BSS that
it requires more channels in order to allow it to be more
accurate. However, it should be noted that wavelet transform
and EMD-based methods can be executed with a single channel,
as they can decompose from a single record into multiple
components (Chen et al., 2014). However, a reduction in
the number of measurement channels will cause an increase
in computational complexity, which will not be suitable for
BCI applications.

In addition, it is worth noting that automatic methods are not
commonly used for artifact removal, as there are multiple types
of artifacts that exist in the recordings. Hence, the availability
of reference signals will improve the accuracy and robustness
of artifact removal by providing satisfactory complementary
information. Also, the information on the artifact epochs
obtained by the reference channel will reduce the computational
cost. However, having a reference channel for each muscle
contributing to EEG muscle artifacts is not feasible. Apart from
the aforementioned methods, there are plenty of innovative and
efficient approaches for artifact removal that have been recently
proposed. One recently emerging BSS algorithm, independent
vector analysis (IVA), integrates the advantages of CCA and
ICA into one single framework. This technique could remove
muscle artifacts by synchronously extracting the sources with
maximal independence and maximal autocorrelation (Chen
et al., 2017a,b). In addition, the combination of EEMD and
IVA has been demonstrated to outperform other existing
methods in a situation where there are few channels (Xu X.
et al., 2018). More recently, a modified joint BSS approach
and quadrature regression IVA (q-IVA) provided a more
effective artifact removal technique in both the time and
frequency domains, paving the way for future research (Lee
S. et al., 2019). Dhindsa (2017) proposed a filter-bank-based

supervised machine learning approach to detect artifacts from
a single channel, and the approach outperformed statistical
thresholding for EEG artifact rejection due to its ability to
identify small artifacts in the presence of high-amplitude
EEG. Mohammadpour and Rahmani (2017) have utilized an
HMM architecture to remove eyeblink artifacts. Contrary to
conventional algorithms, machine learning-based approaches
have gained due attention, particularly for their ability to
identify artifacts. To attenuate eye blink artifacts, a multichannel
Weighted Weiner filter has been proposed (Manojprabu and
Sarma Dhulipala, 2020), where Hierarchical Fully Connected
Topology (HFCT) and Ad-hoc Nearest-Neighbor Topology
(ANNT) are utilized. The proposed approach provides 5% better
results for artifact attenuation when compared with the other
existing approaches like PCA and ICA. However, it should be
noted that the proposed approach has not been employed in real
medical devices.

Feature Extraction Approaches in
EEG-Based BCI Systems
After the noise removal phase, the most discriminative and non-
redundant information within the EEG is extracted through
different feature extraction techniques. Time-domain, frequency-
domain, time-frequency domain, and spatial domain are
the popular types of feature extraction techniques in EEG-
based BCIs.

A typical time-domain-based feature extraction approach,
autoregressive (AR)modeling, is a linear regression of the current
observation of the series against one ormore earlier observations.
A combination strategy of feature extraction, where each feature
vector consists of AR coefficients and approximate entropies, was
also proposed. In many recent articles (Lawhern et al., 2012;
Zhang and Xiaomin, 2015; Chai et al., 2017b), the AR model
has been implemented as the strategy of feature extraction in
EEG-based BCI systems. AR models are preferred by researchers
due to their resolution, smoother spectra, and applicability to
short segments of data. Lower model orders represent the signal
poorly, while higher orders increase noise. Hence, identifying
the appropriate AR modeling order is an open challenge.
Conventional ways of modeling order estimation incorporate a
Bayesian information criterion, Final prediction error, or Akaike
Information Criterion (AIC). It was hypothesized in Atyabi
et al. (2016) that an adequate mixture of AR features derived
from various AR modeling orders is a better representative
of the underlying signal compared with any fixed modeling
order. For the detection of drowsiness state from EEG signals,
the analysis of respiratory rate variability from EEG (Guede-
Fernández et al., 2019), adaptive Hermite decomposition (Taran
and Bajaj, 2018), and RR time series (Tripathy and Rajendra
Acharya, 2018) have been employed to extract features. In
emotion recognition using an EEG signal, the fractal dimension
of raw signals has been implemented to extract the feature by
using the Higuchi technique (Anh et al., 2012; Kaur et al., 2018).
In AydIn et al. (2009), the authors proposed the use of log
energy entropy to extract EEG features; this approach could
investigate how much randomness is captured in the signal. A
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hybrid feature extraction technique consists of PCA, and the
cross-covariance technique has been developed in Zarei et al.
(2017) to excerpt discriminatory information from the mental
states of EEG.

Frequency-domain analysis has also been employed to extract
features from different EEG-based BCIs. Among frequency-
domain-based techniques, there are those that use fast Fourier
transform (FFT) (Hortal et al., 2015; Djamal et al., 2017; Bousseta
et al., 2018; Yang C. et al., 2018), power spectral density (PSD)
(Chiappa and Bengio, 2004; Carlson and Millan, 2013; Mara
et al., 2013; Pham et al., 2013; Bascil et al., 2016; Liu Y. et al.,
2017; Nguyen et al., 2017; Chakladar and Chakraborty, 2018b),
band power (Mandel et al., 2009; Serdar Bascil et al., 2015;
Kreilinger et al., 2016), and spectral centroid (Murugappan et al.,
2014). The PSD of a signal can be calculated through the FFT
and Welch’s method (Oikonomou et al., 2017). Welch’s method
reduces the artifacts in the PSD, in contrast to FFT, but produces
a poorer frequency resolution. Another frequency domain-
based feature extraction technique that does not require FFT
to compute the PSD is local characteristic-scale decomposition
(Liu A. et al., 2017). This procedure disintegrates the raw
data into inherent segments that convey the properties of the
primary signal. Fourier analysis decomposes the signal into its
frequency components and determines their relative strengths.
Due to the non-stationarity and non-Gaussianity properties of
the EEG signals, classic spectral analysis techniques are not
suitable for extracting useful and important information. Gursel
Ozmen et al. (2018) introduced a biologically inspired frequency
domain-based feature extraction approach that extracts the
most discriminative spectral features from the PSD of the
EEG signals. Meziani et al. (2019) presented novel spectral
estimators, namely the quantile periodogram, and the lasso
quantile periodogram, which are based on quantile regression
and L1-norm regularization, respectively.

The use of spectral characteristics for feature extraction
is sometimes ineffective due to the absence of temporal
characteristics. Similarly, time-domain interpretation
occasionally neglects spectral characteristics that may be
important to the classifier. To overcome the shortcomings of a
single domain that is either time domain or frequency domain,
time-frequency analysis is assumed to be able tomitigate the issue
as it leverages both domains. This approach could be promising
for EEG-based BCIs. A variety of time-frequency-based feature
extraction approaches have been employed in EEG-based
BCIs. The most widespread approaches are short-time Fourier
transform (STFT) (Tabar and Halici, 2017; Chaudhary et al.,
2019; Ha and Jeong, 2019; Tian and Liu, 2019), continuous
wavelet transform (CWT) (Borisoff et al., 2004; Lee and Choi,
2019; Ieracitano et al., 2020), discrete wavelet transform (DWT)
(Guo et al., 2015; Bajwa and Dantu, 2016; Djamal and Lodaya,
2017; Ji et al., 2019; Lin and She, 2020), and wavelet packet
decomposition (WPD) (Bong et al., 2017; Dhiman et al., 2018;
Wang et al., 2019). CWT (Ortiz-Echeverri et al., 2019; Mammone
et al., 2020), and STFT (Dai et al., 2019) have been utilized to
generate spectral images that can be classified through deep
learning approaches. An EEG-basedmotor planning exercise was
investigated by Mammone et al. (2020), where a time-frequency

map, generated through beamforming and CWT, was utilized
as input to the CNN. Decomposition techniques, for instance,
DWT and WPD, are efficacious because significant information
is carried in different EEG bands (Kevric and Subasi, 2017), and
these approaches are capable of decomposing the brain waves at
multiresolution and multiscale (Li et al., 2016a). Moreover, they
are able to extract dynamic features, which is crucial for EEG
signals due to their non-stationary and non-linear characteristics
(Kevric and Subasi, 2017). In Kevric and Subasi (2017), three
distinct decomposition techniques, namely, WPD, EMD, and
DWT, have been investigated to gain optimum accuracy.
Higher-order statistics (HOS) features have been extracted from
the decomposed EEG sub-bands. The frequency resolution of
DWT coefficients is comparatively lower than that of WPD,
and the deficiencies of wavelet strategies could be neutralized
by HOS.

Zhou et al. (2018) combined the utilization of DWT and
Hilbert transform (HT) for feature extraction. The EEG signal
is decomposed through DWT, and the wavelet envelope of the
decomposed sub-bands was computed throughHT. They utilized
both time-series and envelope information, which assisted in
obtaining optimum accuracy. Göksu (2018) proposed wavelet
packet analysis (WPA) to extract features from an EEG-SCP
response. The WPA sub-images were further studied through
log energy entropy. Yang et al. (2016), proposed Fisher wavelet
packet decomposition (WPD)-CSP for extracting features, in
which EEG channels are decomposed byWPA, the average power
of each subband is calculated, and then, finally, CSP is employed
to the selected subbands.

Another powerful feature extraction approach known as the
common spatial pattern is extensively utilized in EEG-based BCI
(Zhang R. et al., 2019). This technique utilizes a spatial filtering
method that converts brain waves into a unique space where
the variance of one group is magnified, while lower variance is
seen in the remaining group. The pure CSP approach sometimes
cannot achieve sufficient performance due to the subject-specific
optimal frequency band. Hence, the choice of an optimized filter
band may enhance performance, but the selection of the optimal
sub-band through pure CSP takes a large amount of time. To
overcome this issue, numerous changes have been applied to
the CSP. The common spatio-spectral pattern approach (CSSP)
combines an FIR filter with a CSP algorithm and was observed to
improve performance relative to pure CSP (Reddy et al., 2019).
Common sparse spatio-spectral patterns (CSSSP) (Dornhege
et al., 2006) are a comparatively more advanced procedure where
the common spectral patterns across channels are investigated.
In sub-band common spatial pattern (SBCSP) (Khan et al.,
2019), EEG is first filtered at different sub-bands, and then
CSP features are calculated for each of the bands. Frequency
bands of the CSP, for instance, filter bank CSP (FBCSP), were
implemented in Korik et al. (2019), whereas wavelet CSP (WCSP)
has been implemented (Lin et al., 2019) by considering the
effect of frequency resolutions. However, these strategies are not
significantly relevant to EEG data from selected electrodes. To
mitigate this issue, a new technique for feature extraction from
selected channels known as regularized CSP (RCSP) has been
proposed (Jin et al., 2019).
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The efficient frequency recognition algorithm in SSVEP-based
BCIs performs a crucial role in overall system performance.
Among these algorithms, the most prevalent are based
on multivariate statistical algorithms, for instance, canonical
correlation analysis (CCA) (Chen et al., 2015) and multivariate
synchronization index (MSI) (Zhang Y. et al., 2016). Recently,
another MSI-based frequency recognition approach known as
CORRCA, which is based on correlated component analysis
(COCA), has been proposed (Zhang et al., 2018). The CORRCA
approach performs substantially better than the state-of-art
CCA process. Authors in Zhang Y. et al. (2019) proposed
a hierarchical feature fusion architecture that consists of
the spatial dimension and frequency dimension to improve
the performance of frequency identification techniques in
SSVEP-based BCI.

Batres-Mendoza et al. (2016) proposed a novel feature
extraction approach based on quaternions, which represent
objects within a three-dimensional space with regards to
their orientation and rotation. Islam et al. (2018) proposed
a multiband tangent space mapping with sub-band selection
(MTSMS) approach to improve EEG-MI classification accuracy,
and the authors claim that the proposed framework outperforms
state-of-the-art methods. Authors in Lee S. B. et al. (2019)
investigated the comparative analysis of EEG features in
three different domains, namely spectral, temporal, and
spatial, to classify multi-class MI data. According to their
investigation, the time-domain parameter (TDP) has been
observed to be superior as compared to the CSP and PSD.
Another study explored the use of tunable Q-factor wavelet
transform (TQWT) for the identification of drowsiness EEG
signals (Al Ghayab et al., 2019). With this approach, TQWT
decomposes the EEG signals into band-limited sub-bands,
and the drowsiness and alertness EEG signal characteristics
from TQWT-provided sub-bands are extracted using time-
domain measures. These measures are based on the statistics
of Hjorth mobility. Moreover, a novel hybrid feature extraction
technique has been proposed (Asadur Rahman et al., 2019),
which consists of PCA and t-statistics. In Guede-Fernández
et al. (2019), the analysis of respiratory rate variability of
EEG has been utilized to monitor the state of drowsiness in
a driver.

Classification Methods
To operate a BCI system, the subject needs to create various
brain activity patterns that can be identified by the system
and translated into commands. It is worth noting that either
regression or classification algorithms could be utilized to
achieve the said objective. However, the usage of classification
algorithms is presently reported to be the most popular
approach (Lotte et al., 2007). The design of the classification
step includes the choice of one or several classification
algorithms from many alternatives. Numerous classification
algorithms have been presented in the published EEG-based
BCI literature, for instance, support vector machine (SVM),
neural network (NN), linear discriminant analysis (LDA),
Bayesian classifier, k-nearest neighbor (k-NN), as well as deep
learning and its iterations. The aforesaid classifiers are described

briefly, and their essential properties for BCI applications
are highlighted.

Conventional Machine Learning Approaches in

EEG-Based BCIs
The k-NN algorithm depends on the principle that the features
corresponding to the several classes will form individual clusters
in feature space. The features that are closer to each other are
recognized as neighbors and are therefore grouped together.
This classifier takes k metric distances into account between
the test sample features and those of the nearest classes in
order to classify a test feature vector. The metric distances are a
measure of the similarities between the features of the test vector
and the features of each class (Nicolas-Alonso and Gomez-Gil,
2012). It is worth highlighting that the k-NN algorithms are not
exceptionally popular in the BCI community because they are
known to be very sensitive to the dimensionality of the feature
vector (Borisoff et al., 2004). Nonetheless, when the algorithm
is utilized in BCI systems with low-dimensional feature vectors,
the algorithm could be useful. Thus, the k-NN algorithm can
provide good results when it is combined with other efficient
feature selection and reduction algorithms. In k-NN architecture,
the number of neighbors and the type of distance metrics are the
key factors.

LDA is employed to find the linear combinations of feature
vectors that describe the characteristics of the corresponding
signal. The LDA seeks to separate two or more classes of objects
or events representing different classes. It utilizes hyperplanes to
accomplish this mission. The isolating hyperplane is achieved
by searching for the projection that maximizes the distance
among the classes’ means and minimizes the interclass variance
(Abdulkader et al., 2015). This technique has a very low
computational requirement, and it is simple to use. The LDA
has been successfully applied in a variety of BCI systems, for
example, motor imagery-based BCI, P300 speller, multiclass,
or asynchronous BCI (Long et al., 2012a). However, while
it provides expected outcomes due to its immunity to non-
stationary issues, its linearity can cause performance degradation
in a few circumstances containing complex non-linear EEG data.
Moreover, numerous updated algorithms have been presented
depending on LDA, for example, Fisher LDA (FLDA) as well as
Bayesian LDA (BLDA) (Hoffmann et al., 2008). FLDA does not
work well if the number of features becomes too large in relation
to the number of training examples. This issue is called the small
sample size problem (Hoffmann et al., 2008). On the other hand,
the BLDA is considered as an expansion of FLDA that mitigates
the small sample size problem through the incorporation of
a statistical method called regularization. The regularization is
estimated through Bayesian analysis of training data and is
utilized to prevent the overfitting problem of high-dimensional
as well as possibly noisy datasets. Overfitting means that the
classifier has lost generality and is therefore undesirable in a
classifier. If a classifier is overfitted, it is only able to classify the
training data or similar data. Unlike FLDA, the BLDA algorithm
gives higher classification accuracy and bitrates, particularly in
those situations where the size of the training sample is large
(Hoffmann et al., 2008). Furthermore, BLDA requires slightly
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more computational time, which is a crucial constraint in real
BCI systems.

SVM is a classifier that builds a hyperplane or set of
hyperplanes for separating the feature vectors into several classes.
However, in contrast to LDA, SVM selects the hyperplanes
that maximize the margins, that is, the distance between the
nearest training samples and the hyperplanes (Burges, 1998).
SVM that empowers classification by utilizing linear decision
boundaries is called linear SVM. This type of classifier has
been applied successfully to a moderately large number of
synchronous BCI problems (Garrett et al., 2003; Rakotomamonjy
et al., 2005). However, it is advantageous to make non-linear
decision boundaries with a low increment of the classifier’s
complexity by utilizing the “kernel trick.” The kernel usually
utilized for BCI research is the Gaussian or Radial Basis Function
(RBF) kernel. The corresponding SVM is called Gaussian SVM
or RBF SVM. The RBF SVM has also shown to be robust for
achieving good results in BCI applications (Garrett et al., 2003;
Kaper et al., 2004; Rakotomamonjy et al., 2005). Generally, the
SVM has been broadly recognized as the simpler algorithm used
in BCI applications. In addition, the algorithm is shown to be
robust with a high-dimensional dataset, which implies that a large
training set is not required for good outcomes, even with high-
dimensional feature vectors (Kaper et al., 2004). It is worth noting
that these favorable circumstances do not hinder the execution
speed during the integration of real-time BCIs (Thulasidas et al.,
2006).

The neural network (NN) has the special capacity to extract
patterns and identify trends that seem to be complicated, either
by humans or by computerized techniques. A trained NN
system can be considered as an “expert” in the classification of
information that it has been provided to analyze. This algorithm
is one of the fundamental tools utilized in machine learning. The
term “neural” denotes that it is considered to be a brain-inspired
system that is intended to replicate the way that humans learn.
A NN consists of input, output, and hidden layers. A hidden
layer consists of units that transform the input into something
that the output layer can utilize. It is an excellent tool for
discovering patterns that are too complex or numerous for a
human programmer to extract and to teach the machine to
perceive. One of the most well-known ANN structures is the
multilayer perceptron (MLP) introduced by Rumelhart et al.
(1986). MLPs are flexible classifiers with the ability to classify
any number of classes as well as to adapt to various different sets
of problems. In BCIs, the MLP has been applied to classify two,
three, and five tasks and to design synchronous (Haselsteiner
and Pfurtscheller, 2000) as well as asynchronous (Millan and
Mourino, 2003) BCIs. Additionally, the MLP has been utilized
to preprocess EEG signals prior to the feature extraction step
rather than the classification step to improve the separability of
EEG features (Coyle et al., 2010). Other than MLP, numerous
sorts of NN architecture have been utilized in the design of BCI
systems, including Fuzzy ARTMAP Neural Networks, Finite
Impulse Response Neural Networks (FIRNN) or Probability
estimating Guarded Neural Classifiers (PeGNC), Probabilistic
Neural Networks (PNN), Time-Delay Neural Networks
(TDNN) or Gamma dynamic Neural Networks (GDNN),

Learning Vector Quantization (LVQ) Neural Networks,
Bayesian Logistic Regression Neural Networks (BLRNN),
RBF Neural Networks, and Adaptive Logic Networks (ALN),
amongst others.

A Hidden Markov Model (HMM) is a Bayesian classifier
that produces non-linear decision boundaries. An HMM is a
sort of probabilistic automaton that gives the likelihood of
observing a given sequence of feature vectors (Rabiner, 1989).
For BCI, generally, these probabilities are Gaussian Mixture
Models (GMM) (Obermaier et al., 2001). HMMs are perfectly
appropriate algorithms for the classification of time series
(Rabiner, 1989). As the EEG components that are used to
operate BCI have specific time courses, HMM is applicable to the
classification of temporal sequences of BCI features (Obermaier
et al., 2001; Cincotti et al., 2003), even for classifying raw
EEG signals.

Deep Learning Approaches in EEG-Based BCIs
The ability to acquire a robust automatic classification of EEG
signals is an essential step toward making the use of EEG
more practical in many applications and less reliant on trained
professionals (Alexander et al., 2018). It is worth noting that
although conventional BCI systems have made tremendous
advances in the past few decades, nonetheless, the research still
faces significant challenges in EEG classification. The challenges
include various biological and environmental artifacts in EEG,
a low SNR, and dependency on human expertise for extracting
meaningful features. In addition, most existing machine learning
research, if not all, centers on static data and, hence, is not able
to classify rapidly changing brain signals accurately (Lotte et al.,
2018). Of late, the availability of large EEG data sets has led to
the utilization of Deep Learning (DL) architectures, especially
to uncover relevant information from the signals that were not
possible to acquire via conventional approaches and has shown
success in addressing the aforesaid challenges. Fundamentally,
DL is a specific machine learning algorithm in which the
features and the classifier are jointly learned directly from data
(Zhang X. et al., 2019). DL algorithms have been explored for
almost all major types of EEG-based BCI systems, namely P300,
SSVEP, motor imagery (MI), SCP, and passive BCI (for emotions
and workload detection). Here, a number of prevalent DL
models including convolutional neural networks (CNN), deep
belief networks (DBN) restricted Boltzmann machines (RBM),
recurrent neural networks (RNN), a stacked autoencoder (SAE),
and generative adversarial networks (GAN) will be discussed
briefly with regards to their employment in BCI research.

A Convolutional Neural Network (CNN) is a special
type of neural network architecture that is specialized in
spatial information exploration. CNN contains at least one
convolutional layer, and this layer maps input to an output
through a convolution operator (Fan et al., 2019; Zhang X.
et al., 2019). In BCI research, CNN is assumed to capture
the distinctive dependencies amongst the patterns associated
with different brain signals (Lotte et al., 2018). Recently, a
considerable amount of studies (Tang et al., 2017; Aznan et al.,
2018; Dose et al., 2018; El-Fiqi et al., 2018; Shojaedini et al.,
2018; Wang et al., 2018; Waytowich et al., 2018; Amber et al.,
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2019; Amin et al., 2019; Nguyen and Chung, 2019; Olivas-Padilla
and Chacon-Murguia, 2019; Tayeb et al., 2019; Xu et al., 2019)
on the employment of CNN architecture in EEG-based BCI
systems have been published. In Olivas-Padilla and Chacon-
Murguia (2019), the classification of multiple MI using CNN
was explored, with the features being extracted by a variety of
Discriminative Filter Bank Common Spatial Patterns (DFBCSP).
Conversely, the authors in Xu et al. (2019) presented a wavelet
transform time-frequency image coupled with a CNN-based
approach in classifying EEG MI, and a classification accuracy
of 92.75% was attained. Tayeb et al. (2019) classified raw EEG
MI signals using a CNN architecture, achieving an accuracy of
84%, and this model has been successfully adopted in a real-
time robotic arm control system. ACNN-basedmultilevel feature
fusion model was proposed in Amin et al. (2019) for motor
imagery EEG classification. Three other studies also employed
CNN for EEG MI classification with reported the classification
accuracies of 80, 93, and 86%, respectively (Tang et al., 2017;
Dose et al., 2018; Wang et al., 2018). It should also be noted
that the CNN model has also been employed in SSVEP-based
BCI systems. A novel CNN approach for the classification of
raw SSVEP EEG signals was proposed in Aznan et al. (2018).
Here, the CNN architecture achieved a classification accuracy
of 96%, which is significantly better than other competing
DL approaches. In El-Fiqi et al. (2018), raw SSVEPs were
classified using CNN for person identification and verification.
In addition, a 1-D CNN was employed for SSVEP frequency
detection with an average accuracy of 97.4% (Nguyen and Chung,
2019). A compact-CNN approach was proposed in Waytowich
et al. (2018), and it was able to decode signals from a 12-class
SSVEP dataset with a mean accuracy of ∼80%. With regard
to the use of CNN on P300, Amber et al. (2019) presented a
lie detection system from the P300 signals with an accuracy
of 99.6%. In addition, a new adaptive hyperparameter-tuning
method is proposed in Shojaedini et al. (2018) to improve the
training of CNN in P300 signal detection. It was established
from the study that the proposed method is able to improve the
classification accuracy by 6.44% against the conventional Naive
hyperparameter tuning method.

A deep belief network (DBN) is a probabilistic generative
model consisting of a sequence of restricted Boltzmann machine
(RBM) architectures (Abbas et al., 2019). The top two layers in
DBN are connected without directions, while the lower layers
are connected with directions. The RBM consists of a visible
layer and a hidden layer, and the connection lines between
these two layers are undirectional (Abbas et al., 2019). Several
studies have exploredMI classification with DBN (An et al., 2014;
Tang et al., 2015; Lu et al., 2017; Ortega et al., 2017). In Lu
et al. (2017), a novel deep learning scheme based on RBM was
proposed for EEG MI classification in which FFT and wavelet
package decomposition are obtained to train three RBMs. These
RBMs are then stacked up with an extra output layer to form
a four-layer frequential DBN. The authors of Tang et al. (2015)
proposed an EEG MI data recognition technique using DBN.
The findings from the study showed that the recognition rate
of EEG MI data based on a DBN is better than that with the
conventional SVM model. A novel technique of classification of

imagined speech in EEG was proposed in Lee and Sim (2015),
where the classification accuracy obtained was 87.96% with DBN.
A P300-based Guilty Knowledge Test system was proposed in
Kulasingham et al. (2016). Here, the DBN architecture was used
to classify the P300 wave with an accuracy of 86.9%, and the input
to this classifier was the filtered EEG signal without any feature
extraction. Another P300 potential detection method based on
DBN has been proposed in Lu et al. (2018), where the average
accuracy attained was 84.3%. A DBN architecture has also
been exploited successfully for EEG-based emotion recognition
(Zheng and Lu, 2015; Huang et al., 2017). An EEG-based emotion
classification framework based on combining emotional patches
and a DBNmodel was proposed in Huang et al. (2017), and it was
reported that a classification accuracy of 94.92% was achieved,
outperforming other traditional methods. The authors of Kawde
and Verma (2017) implemented an effective recognition system
to examine the emotional state of a human being based on
DBN. The experiment was performed on a benchmark DEAP
database, and the accuracies achieved were 78.28, 70.33, and
70.16% for valence, arousal, and dominance, respectively. In
Bablani et al. (2018), a system for identifying deceit from EEG
has also been proposed. A DBN was developed with four RBMs
stacked together, and EEG data in the form of time-frequency was
fed to this DBN. The accuracy of this systemwas recorded at 81%.
In Chai et al. (2017a), an EEG-based driver fatigue classification
between fatigue and alert states was investigated. The system
employs an AR model as the feature extraction algorithm and a
sparse-DBN as the classification algorithm. It was shown from
the study that a classification accuracy of 93.1% was attained.

RNN architecture is a powerful deep learning classification
method that is specifically applied to sequential data. This type
of DL architecture is able to analyze the overall logical sequence
between the input information. These logical sequences are rich
in content and possess a complex time relationship with each
other. The key concept of RNN is that the hidden state of the
current network will retain the previous input information, and
it is used for the next current network (Li et al., 2019). There are
two typical RNN architectures that have attracted much attention
and achieved great success: long short-term memory (LSTM)
and gated recurrent units (GRU). Two notable studies have been
carried out to recognize the EEG-based sleep stage using RNN
architecture (Michielli et al., 2019;Wang andWu, 2019; Zhang T.
et al., 2019). A novel cascaded RNN architecture based on LSTM
blocks was proposed in (Michielli et al., 2019) for the automated
scoring of sleep stages using EEG, and an average classification
accuracy of 86.7% was achieved. The authors of Wang and Wu
(2019) also developed an automatic sleep stage classification
system where they proposed an RNN based on the attention
mechanism and bidirectional LSTM. This architecture provided
better performance than the C-CNN model but requires more
training time. A novel DL framework called spatial-temporal
RNN (STRNN) was proposed in Zhang T. et al. (2019), where
both spatial and temporal information were integrated for feature
learning. The authors claimed that the experimental results based
on STRNN were more competitive than the state-of-the-art
methods for emotion recognition. In another study (Liu et al.,
2018), the combination of temporal attention and band attention
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mechanisms based on multi-layer LSTM-RNN architecture was
proposed for emotion recognition. Another study (Jawed et al.,
2018) distinguished visual and non-visual learners by considering
the wavelet features of EEG alpha and beta bands. The LSTM-
based RNN framework was also used for classification purposes,
and the mean training accuracy was 87.5 and 86% for beta and
alpha bands, respectively. In relation to EEG MI classification,
Ma et al. (2018) proposed a pure RNN-based parallel method for
encoding spatial and temporal raw data with bidirectional LSTM
and standard LSTM, respectively, reporting an average accuracy
of 68.20%. A deep RNN with a sliding window cropping strategy
(SWCS) to classify EEG MI signals was investigated in Luo et al.
(2018). In addition, an LSTM-RNN architecture for an EEG MI
classification model was proposed in Li et al. (2016b), where
DWT was applied to extract the time-frequency features. A novel
system for cross-day workload estimation using EEG has also
been proposed by Hefron et al. (2017), where the authors applied
an LSTM-based RNN architecture, and the average classification
accuracy achieved was 93.0%.

An autoencoder (AE) is a DL approach used for unsupervised
feature learning with efficient data encoding and decoding.
In the encoding phase, the input samples are often mapped
in the lower dimensional feature space with a constructive
feature representation (Alom et al., 2019). This approach can
be repeated until the desired feature dimensional space is
reached. Conversely, in the decoding phase, actual features are
regenerated from the lower-dimensional features with reverse
processing (Alom et al., 2019). It should be pointed out that
the target output of the autoencoder is the autoencoder input
itself. There are a number of notable AE architectures, i.e.,
Stacked Autoencoder (SAE), Variational Autoencoder (VAE),
and Generative Adversarial Networks (GAN), that have been
employed in EEG signal processing investigations (Tsinalis
et al., 2016; Vareka and Mautner, 2017; Yin and Zhang, 2017;
Ditthapron et al., 2018; Idowu et al., 2018; Nair et al., 2018; Rundo
et al., 2019). The authors of Rundo et al. (2019) developed a
drowsiness detection system from EEG using stacked AE and
achieved an accuracy of 100% in discriminating drowsy from
wakeful. Idowu et al. (2018) proposed a DL-based classification
of EEG signals for given visual stimuli by showing familiar and
unfamiliar faces. The preprocessed signal was fed to an AE that
yielded a mean accuracy of 82.21%. In Nair et al. (2018), five-class
EEG MI data was classified, where SAE was applied to generate
the features, and a softmax layer was then used for classification
purposes. The proposed method produced an overall accuracy
of 98.9%. In Ditthapron et al. (2018), the authors proposed a
multitask autoencoder-based model known as the ERP encoder
network (ERPENet) that can be applied to any ERP-related
tasks. In Vareka and Mautner (2017), an SAE architecture was
proposed for P300 wave detection, and the trained SAE achieved
a classification accuracy of 69.2%. An automatic sleep stage
scoring model that uses a single channel of EEG was proposed
in Tsinalis et al. (2016). Here, the methodology is based on time-
frequency analysis and stacked sparse autoencoders (SSAEs).
The overall accuracy attained was 78%. With regard to the
mental workload (MW) classification, several studies have been
carried out (Yin and Zhang, 2017; Yang et al., 2019; Yin et al.,

2019). An adaptive Stacked Denoising Auto Encoder (SDAE)
was developed in Attia et al. (2018) to tackle cross-session MW
classification from EEG, and it was reported that the proposed
classifier achieved an accuracy of 95.5%.

Apart from the aforesaid standalone DL models, researchers
have attempted to hybridize different DL models in EEG-based
BCI investigations (Narejo et al., 2016; Attia et al., 2018; Yang J.
et al., 2018; Dai et al., 2019; Kanjo et al., 2019), with encouraging
classification accuracies. In Narejo et al. (2016), the authors
developed a system for predicting eye state from EEG signals
using a hybrid DL architecture consisting of DBN and SAE. The
accuracy of this hybrid model was reported to be as high as
98.9%. Another hybrid DL architecture based on CNN-RNN was
proposed in Attia et al. (2018) to classify SSVEP signals in the
time domain directly, and it achieved an accuracy of 93.59%.
Kanjo et al. (2019) proposed a hybrid approach that applied CNN
and LSTM-RNN on the raw sensor data. Through this method,
the need for manual feature extraction is eliminated. The results
show that the adoption of DL approaches is effective in human
emotion classification when a large number of sensor inputs are
utilized (with an average classification accuracy of 95%). Dai et al.
(2019) proposed a hybrid DL model where a CNN architecture
was combined with a VAE for EEGMI classification. In addition,
an LSTM-CNN-based hybrid model has also been proposed by
Yang J. et al. (2018) for EEG MI classification.

The fundamental idea of a Riemannian geometry classifier
(RGC) is to map the data directly onto a geometrical space
equipped with a suitable metric (Lotte et al., 2018). In such
a space, data can be easily manipulated for several purposes,
such as averaging, smoothing, interpolating, extrapolating, and
classifying. In the case of EEG data, the power and the spatial
distribution of EEG sources can be considered fixed for a given
mental state, and such information can be coded by a covariance
matrix (Lotte et al., 2018). Riemannian geometry studies smooth
curved spaces that can be locally and linearly approximated. The
curved space is named manifold, and its linear approximation
at each point is known as the tangent space (Lotte et al., 2018).
Riemannian geometry has been successfully utilized in many BCI
classification problems (Kalunga et al., 2016; Congedo et al., 2017;
Wu et al., 2017; Yger et al., 2017; Gaur et al., 2018; Guan et al.,
2019; Han et al., 2019; Majidov and Whangbo, 2019) and has
demonstrated superior performance. In Han et al. (2019), the
authors implemented an EEG-based endogenous BCI system for
online binary communication by a completely paralyzed patient.
An online classification accuracy of 87.5% was achieved when the
Riemannian geometry-based classification was applied to real-
time EEG data. A number of investigations (Gaur et al., 2018;
Guan et al., 2019; Majidov and Whangbo, 2019) have employed
Riemannian geometry for EEG MI classification purposes. The
authors of Majidov andWhangbo (2019) proposed a Riemannian
geometry-based architecture for EEG MI classification. They
combined the PSD features with covariance matrices mapped
onto the tangent space of a Riemannian manifold, and an average
classification accuracy of 87.94% was obtained. The use of a
Riemannian geometry framework for EEG MI classification has
also been presented in Gaur et al. (2018), where the EEG signals
were preprocessed using a subject-specific multivariate empirical
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mode decomposition (SS-MEMD)-based filtering method. They
achieved a mean Kappa value of 0.60. Kalunga et al. (2016)
investigated the efficiency of Riemannian geometry on SSVEP
wave classification for a four-class BCI application. In the study,
the minimum distance to Riemannian mean (MDRM) algorithm
achieved an average classification accuracy of 90.47+/7.8% and
an ITR of 16.37 ± 5.3 bits/min. A novel feature extraction
approach based on Riemannian geometry was proposed in Wu
et al. (2017), in which a spatial filter is first used to increase
the EEG signal quality and to reduce the dimensionality of the
covariance matrix, and then, finally, the Riemannian tangent
space features are extracted. Moreover, it is worth noting that
there are two review articles (Congedo et al., 2017; Yger et al.,
2017) on the application of Riemannian geometry for BCI
systems, which may be an excellent source of information for
interested readers.

Performance Evaluation of BCI Systems
Overall, BCI performance depends entirely on classifier
performance (Nicolas-Alonso et al., 2015). For the classification
algorithm, the most basic performance measure is classification
accuracy. Sometimes, the Kappa metric or the confusion matrix
are also used to provide further information on the performance
of a classifier (Fatourechi et al., 2008). The sensitivity-specificity
pair or precision can be calculated from the confusion matrix.
When the classification relies on a continuous parameter, the
Receiver Operating Characteristic (ROC) curve, as well as
the Area Under the Curve (AUC), is often utilized. Classifier
performance is generally computed offline on pre-recorded data
utilizing a hold-out strategy: some datasets are set aside to be
utilized for the evaluation and are not part of the training dataset.
However, some authors also reported cross-validation measures
estimated on training data, which may over-rate the performance
(Lotte et al., 2018; Raschka, 2018). A number of researchers
(Farwell and Donchin, 1988; Iturrate et al., 2009a; Yeom et al.,
2014; Obeidat et al., 2015; Ansari and Singla, 2016; Chang et al.,
2016; Cao et al., 2017) also reported either the information
transfer rate (ITR) or the practical bit rate (PBR) (Farwell and
Donchin, 1988). Many articles (Allison et al., 2012; Long et al.,
2012a; Li Y. et al., 2013; Cao et al., 2014; Wang H. et al., 2014)
used task-specific metrics, including task completion time and
the number of successful trials. These metrics are tailored for
each BCI paradigm and/or application, and therefore do not
allow comparisons between studies.

POPULAR EEG-BASED BCI
APPLICATIONS

In BCI technology, human brain signals can be detected
and translated into device commands for controlling assistive
devices. Besides medical applications, the area of this technology
has been expanded to non-medical applications. Recently, the
possibility of a variety of BCI applications is being investigated by
researchers around the world. The most important achievements
in EEG-based BCIs include spelling systems, wheelchair control,
robot control, mental workload, virtual reality, and gaming,

environment control, driver fatigue monitoring, biometrics
system, and emotion recognition.

BCI Wheelchair Control
One of the essential objectives of a BCI wheelchair is to upgrade
the life quality as well as the autonomy of people affected
by motor neuron diseases (MND), for instance, amyotrophic
lateral sclerosis (ALS). This innovation assists the disabled users
to operate the wheelchair using their brain activity, granting
autonomy to travel through an experimental environment. In
2013, Bi et al. (2013) conducted a survey of BCI-controlled
mobile robots, which is partially connected to this field. However,
two articles (Fernández-Rodríguez et al., 2016; Al-qaysi et al.,
2018; Tariq et al., 2018) have been published that contain
extensive reviews on BCI wheelchairs. Four types of EEG control
signal are used to handle BCI wheelchairs, which are MI (Li
J. et al., 2013; Varona-Moya et al., 2015; Tang et al., 2018),
P300 (Rebsamen et al., 2007; Iturrate et al., 2009a; Alqasemi and
Dubey, 2010; Shin et al., 2010; Lopes et al., 2013), SSVEP (Mandel
et al., 2009; Xu et al., 2012; Mara et al., 2013; Duan et al., 2014;
Ng et al., 2014), and hybrid (Li Y. et al., 2013; Cao et al., 2014)
signals. The feature extraction methods are quite heterogeneous;
however, CSP is the most used EEG feature in BCI wheelchair
applications (Li J. et al., 2013; Li Z. et al., 2013; Cao et al., 2014;
Wang H. et al., 2014; Zhang R. et al., 2016). Other researchers
used methods such as PSD (Varona-Moya et al., 2015; Tang et al.,
2018), FFT (Duan et al., 2014), logarithmic band power (Arabnia
and Tran, 2011; Duan et al., 2014), signal averaging techniques
(Alqasemi and Dubey, 2010; Shin et al., 2010; Zhang R. et al.,
2016), the amplitude of the target frequency (Mandel et al., 2009;
Mara et al., 2013; Ng et al., 2014), CCA (Xu et al., 2012; Duan
et al., 2014), and other methods (Rebsamen et al., 2007; Iturrate
et al., 2009a; Lopes et al., 2013). With regard to the classification
techniques, the most widely used algorithm is SVM (Rebsamen
et al., 2007; Shin et al., 2010; Li J. et al., 2013; Li Y. et al., 2013;
Zhang R. et al., 2016), followed by LDA (Iturrate et al., 2009a; Cao
et al., 2014). Performance evaluation is the most challenging part
in BCI research, as it is the most heterogeneous area. However,
the most commonmetrics reported are success rate, classification
accuracy, information transfer rate, path length, time required,
path length optimality ratio, time optimality ratio, number of
user commands, and number of collisions. Cao et al. (2014) used
the highest number of metrics, namely ITR, CA, Collision, Time
Required, Useful Command, Useless Command, and Stopping
Task Time to evaluate their research. Table 3 shows a summary
of some articles regarding EEG-based wheelchair BCI.

BCI Cursor Control
The first attempt to control a cursor by EEG signal was described
in Wolpaw et al. (1991). Here, vertical movement of a cursor
on a video screen was maintained by changing mu-rhythm
amplitude such that the cursor was moved upward by large
amplitude mu-rhythm, while downward movement required
small mu-rhythm amplitudes. The second experiment conducted
by some of the same authors (McFarland et al., 1993) achieved
a target hit rate of 54.85%. The promising result obtained
encouraged other researchers to develop this research further.
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TABLE 3 | Summary of EEG-based BCI wheelchair studies.

References No. of subjects EEG control

signal

No. and types of

control command

EEG features Classification

algorithm

Performance evaluation

Cao et al. (2014) 3 MI+SSVEP 8; Left, Right, Forward,
Acceleration,
Deceleration, Uniform
Velocity, Turn ON,
Turn OFF

CSP for MI;
CCA for SSVEP

RBF SVM ITR: 295.20;
CA: 90.63%;
Collision: 0;
Time required: 370 ± 41;
Useful command: 5 ± 3;
Useless command: 2 ± 2;
Stopping task time: 35 ± 4;

Iturrate et al.
(2009a)

5 P300 18; Fifteen Locations,
Left, Right,
Validate selection

Moving average
technique

Stepwise LDA
(SWLDA)

Success rate: 100%,
Time: 659 s,
Path length: 39.3m.

Long et al. (2012a) 2 MI+P300 4; Left, Right,
Acceleration, Deceleration

CSP LDA Accuracy: 100%,
Path length (pixel): 2843.46
± 105.41,
Time: 84.42 ± 4.63 s,
Collisions: 0.

Mara et al. (2013) 9 SSVEP 4; Right, left,
Forward, Stop

PSD Decision tree Success rate: 83 ± 15%,
ITR: 70.3 ± 28.8 bits/min.

Li J. et al. (2013) 3 MI 3; Right, Left, Forward CSP SVM Success rate: 82.56%

Li Y. et al. (2013) 5 P300+SSVEP 4; Forward, Stop, Turn
ON, Turn OFF

Statistic average
Minimum
energy combination

SVM Task duration: 4.30
s/command;
TPR: 14.18 event/min, FPR:
0.49 event/min, ITR:
21.11 bit/min.

TABLE 4 | Summary of EEG-based BCI cursor control studies.

References No. of

subjects

Control

signal

No. and types of

control command

EEG

features

Classification

algorithm

(CA)

Performance

evaluation

Serdar Bascil
et al. (2015)

2 MI 2; Left/Right BP PNN CA: PNN: 93.05%

Long et al.
(2012b)

11 MI+P300 4; Left, Right, Up,
Down

CSP SVM Success rate: 93.99%
Duration per
trial: 18.19 s

Bascil et al.
(2016)

5 MI 4; Left, Right, Up,
Down

PSD SVM CA: 81.22%;

Chakladar
and
Chakraborty
(2018b)

1 MI 4; Left, Right, Up,
Down

PSD DB-Scan Execution time:
4.663min,
Success rate: 70.36%

Single control signals and hybrid control signals have both
been suggested. Li et al. (2010) presented a BCI that enabled
the subjects to control vertical movement as well as horizontal
movement through P300 and ERD activity, respectively. The
subjects could hit one of the four targets with hit rates between
82 and 96%, with average selection times between 25 and 26 s. In
their second (Long et al., 2012b) experiment, the trial duration
and average accuracy of the target selection were 18.19 s and
93.99%, respectively. The overall outcomes of the experiments
were excellent, and the subjects could move the cursor
diagonally by executing both sorts of activities simultaneously.
However, the cursor control achieved by this system is

not continuous. Allison et al. (2012), meanwhile, introduced
MI/SSVEP-based hybrid BCI for simultaneous cursor control
in two dimensions. The features and classification techniques
utilized in this application are heterogeneous. Table 4 shows a
summary of some recent investigations in the domain of BCI
cursor control.

BCI Spellers
An excellent review article (Rezeika et al., 2018) have been
published where almost all types of recent BCI spellers have
been summarized. Table 5 tabulates the methodology that has
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TABLE 5 | Summary of EEG-based BCI speller studies.

References No. of

subjects

Control

signal

Method Classification

algorithm

Typing speed Success RATE

Obeidat et al.
(2015)

14 P300 Stimuli variation Bayesian BLDA 13.7 bits/min 93.3%

Cao et al. (2017) 3 MI Oct-O-spell SVM 67.33 bits/min 98.23%

Ansari and Singla
(2016)

20 SSVEP Multi-phase spellers SVM 13 chars/min 96.04%

Chang et al. (2016) 10 SSVEP+P300 Hybrid speller CCA, SWLDA 31.8 bits/min 93%

Käthner et al.
(2015)

19 P300 Familiar faces and
symbols

SWLDA 15.85 bits/min 95%

been applied along with the performance of some recent EEG-
based BCI speller system. In 1988, Farwell and Donchin (1988)
presented a P300 speller is known as the matrix speller. It was
the first BCI speller and had a maximum accuracy of 95% and
a speed of 12 bits/min. An adjacency problem arises in the
matrix speller, in that it is difficult to identify a target with a
lot of similar objects surrounding it. This problem was avoided
by a random-set representation and edges paradigm (Obeidat
et al., 2015). Another sort of P300 base speller flashed up a
familiar face over a character to improve the speed of spelling
(Kaufmann and Kübler, 2014). The checkerboard paradigm
(CBP) was presented in Townsend et al. (2010) for avoiding
the adjacency-distraction problem and double flash issues. This
paradigm achieved better accuracy and was more comfortable
than a row-column paradigm (RCP) in ALS patients. A different
sort of P300 base paradigm, namely a gaze-independent block
speller, was also introduced (Pires et al., 2011), which has the
ability to be utilized without ocular movement. Additionally,
this paradigm creates almost the same information transfer
rates as standard to a row-column speller. Acqualagnav et al.
(2010) proposed rapid serial visual presentation (RSVP) with
the aim of forming an efficient gaze-independent ERP speller.
The subject showed better performance with the colored letters
than with monochrome ones. The accuracy of the RSUP speller
is better than that of the matrix speller. It is worth noting
that one of the earliest high-speed SSVEP-based BCI spellers
is the Bremen BCI speller (Volosyak et al., 2009). The efficacy
of this speller was examined on both healthy and disabled
people. The average ITR reported was 25.67 bits/min, with an
accuracy of 93.27%. Furthermore, Cao et al. (2011) proposed a
multi-phage SSVEP-based speller system that allows the input
of 42 characters comprising letters, digits, and symbols. The
mean ITR and mean accuracy of this speller are 61.64 bits/min
and 98.78%, respectively. However, this speller did not include
MND patients as subjects to test the system. In the same
vein, Nakanishi et al. (2018) proposed a multi-target one-
phase SSVEP speller by achieving an 89.83% accuracy and
325.33 bits/min ITR. In general, it is worth noting that a
higher number of targets in SSVEP-based BCI is shown to
increase the spelling speed but also to increase eye fatigue and
target misclassification.

A Hex-O-Spell, which depends on imaginary movement, has
also been reported on Blankertz et al. (2006). The speller was
demonstrated to offer higher performance than the conventional
matrix speller. A recent MI-based speller, namely Oct-O-Spell,
was introduced in Cao et al. (2017), involving an octagon
divided equally into eight sections. These sections contained a
total of 26 letters, characters, digits, or symbols. The interface
showed a similar performance to hybrid BCI spellers. Similarly,
a hybrid BCI speller based on SSVEP and P300 was presented
in Chang et al. (2016), again featuring an octagon divided
equally into eight sections. Each section consisted of a total of
26 letters, characters, digits, or symbols. The interface showed
a similar performance to hybrid BCI spellers. The authors
of Nguyen et al. (2018) proposed a high-speed BCI spelling
system using eye closure and double-blink EEG by means of
an SVM classification algorithm. It was demonstrated from the
investigation that the proposed system is able to achieve an
average classification accuracy of 92.5% with an ITR of five letters
per minute.

BCI Biometrics
Biometrics is the process of identifying one individual among
others by biological means. Biometrics, including iris, face, and
fingerprint recognition, is frequently applied to avoid security
breaches. Nonetheless, the possibility of imitating, replicating,
or stealing original information has made these tools unreliable.
As a result, there has been a growing interest in finding a
better biometric system and brain activity-based biometrics. An
EEG system-based biometric has been identified to have the
advantage of being quite impossible to mimic (Alariki et al.,
2018). Using 15 human participants, Ruiz Blondet et al. (2015)
studied the stability of EEG brainwaves over a 6-month period.
Based on their findings, it was shown that the accuracy of
EEG signals for biometric systems and the stability of human
brain activities could remain stable over a long time. Bashar
et al. (2016) proposed a method for human identification
using EEG signals. The authors used a bandpass FIR filter
to remove noise and then divided the EEG signals into two
sections. Multi-scale Wavelet Packet Statistics (WPS), Multi-
scale Shape Description (MSD), and multi-scale Wavelet Packet
Energy Statistics (WPES) were utilized as the features in this
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TABLE 6 | Summary of EEG-based BCI biometrics research.

References Application No. of

subject

EEG features Classification

algorithm

Performance

evaluation

Pham et al. (2013) Person authentication
system

9 PSD SVM Multiple matched policy
is highly secured

Bajwa and Dantu
(2016)

Cancelable
biometrics-based key
generation

Data-1: 7,
Data-2: 120

DFT, DWT SVM CA: Data-set-1:
98.46%;
Data-set-2: 91.05%

Hu (2018) EEG-based gender
recognition

28 Fuzzy entropy Vote classifier Average accuracy:
99.8%

Nguyen et al.
(2017)

Cryptographic key
generation

125 PSD Enroll and KeyGen Success rate: 99%

Bashar et al.
(2016)

Human identification 9 MSD, WPS, WPES SVM The highest accuracy:
94.44%

Ruiz-Blondet et al.
(2016)

Biometric identification 50 Average ERP SVM Accuracy: 100%

method, which were in the time-frequency domain, and SVM
was the classifier. A true positive rate of 94.44% in the aforesaid
method was achieved using nine subjects in an experiment.
Ruiz-Blondet et al. (2016) proposed an ERP-based highly
accurate biometric recognition system designed to extract unique
individual responses from the brain. The authors reportedly
achieved 100% identification accuracy using 50 subjects. Table 6
shows a summary of some BC-based biometrics and other
related research.

BCI Emotion Recognition
Data acquisition from brain signals connected to human emotion
is one of the core steps toward emotional intelligence. Picard
stated that emotions play a vital role in rational decision-making,
learning, and perception, as well as in a variety of functions
(Picard, 2003). The identification of emotion changes from EEG
signals has recently achieved attention among BCI researchers in
the process of developing different BCI devices. There are three
excellent review articles (Al-Nafjan et al., 2017; Soroush et al.,
2018; Xu T. et al., 2018) on EEG-based emotion recognition.
These articles might be of help to the interested readers to further
have an insight of the EEG-based emotion recognition.

A number of emotion-recognition studies have been carried
out by BCI researchers in the last 20 years. Table 7 summarizes
some recent emotion recognition approaches in terms of
the number of subjects, stimulation, emotion types, feature
extraction, classification method, and performance. Mu Li
and Bao-Liang Lu (2009) utilized EEG signals for emotion
recognition in response to emotional pictures. Their study
gained a recognition rate of 93.5% for two emotional states.
Petrantonakis and Hadjileontiadis (2010) presented a user-
independent emotion recognition strategy that achieved an
83.33% recognition rate for six emotion categories. Wei et al.
(2017) proposed a combination of features for achieving
higher accuracy. The experimental outcomes showed that the
combination of Power Spectral Density (PSD), Signal Power (SP),
and Common Spatial Pattern (CSP) as the features achieved
the highest accuracy of 86.83% with LDA as the classification
algorithm, whereas, the accuracy of individual features was

64.73%. Chakladar and Chakraborty (2018a) introduced a
correlation-based subset selection technique for dimensional
reduction and used higher-order statistical features (mean,
skewness, kurtosis, etc.) for classification. The authors classified
four classes of emotion through employing an LDA algorithm,
and an overall accuracy of 82% was attained. Moreover, Anh
et al. (2012) proposed an emotion identification scheme to
identify 2 valence classes and 2 arousal classes, which resulted
in a combination of 4 fundamental emotions (happy, sorrowful,
angry, and relaxed) and the neutral state. The authors affirmed
the fractal dimension for feature selection and SVM as a classifier,
where the average accuracy across all subjects was 70.5%. Liu Y.
et al. (2017) designed a movie-induced feelings recognizer using
EEG. This framework reached 92.26% accuracy in recognizing
neutrality from high arousal with valence emotions and 86.63%
to classify negative from positive emotions. The authors similarly
classified 3 positive emotions and 4 negative emotions with
86.43 and 65.09% accuracy, respectively. Here, STFT was for
feature extraction and SVM for classification. Another study
reported the recognition of three classes of human emotion,
namely sorrowful, excited, and relaxed, in real time using
Wavelet and Learning Vector Quantization (LVQ) with an
accuracy of 72–87% (Djamal and Lodaya, 2017). Moreover, a
group of features, namely power, standard deviation, variance,
and entropy, were classified by utilizing the k-NN algorithm.
Happiness, anger, and calmwere categorized in Kaur et al. (2018).
Here, the fractal dimension feature was classified by utilizing
RBF SVM with 60% accuracy. In another study, a human-vehicle
collaborative driving (HVCD) simulation systemwas designed by
integrating visual information and human intentions to achieve
a comfortable and safe driving experience (Li et al., 2018).
The average accuracy and ITR achieved were 91.1% and 85.80
bit/min, respectively.

BCI Virtual Reality and Gaming
This section has been inspired by some excellent review articles
on BCI-based VR and games that are reported in Cattan
et al. (2018), Ahn et al. (2014), and Kaplan et al. (2013).
The research on BCI systems for healthy subjects has attracted
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TABLE 7 | Summary of EEG-based BCI emotion recognition studies.

References No. of subjects Stimulation Emotion types EEG

features

Classification

algorithm

Performance evaluation

Wei et al.
(2017)

12 Pictures Positive and negative PSD, SP, CSP LDA Average accuracy:
86.83%

Wang X.-W.
et al. (2014)

6 Movie clips Positive and negative PSD LDA CA: 91.77%

Liu Y. et al.
(2017)

30 Movie clips Joy, anger, fear, sadness,
disgust, and neutrality

PSD LIBSVM Average accuracy:
89.45%

Kaur et al.
(2018)

10 Video clips Calm, angry, and happy FD RBF SVM CA: 60%

Özerdem and
Polat (2017)

32 Music clips Positive and negative DWT MLPNN CA: 77.14%

Pan et al.
(2016)

6 Photos Happiness and sadness CSP SVM CA: 74.17%

Djamal and
Lodaya
(2017)

10 Music Excited, relaxed, and sad WT LVQ CA: 87%

Murugappan
(2011)

20 Video clips Disgust, happiness, fear,
surprise, and neutral

Entropy K-NN CA: 82.87%

TABLE 8 | Summary of EEG-based BCI gaming and VR studies.

References No. of

subjects

Control

signal

EEG feature Classification

algorithm

Performance

evaluation

Kreilinger et al.
(2016)

10 MI BP LDA “Upper 10%” MI
detection rates: >70%

Bonnet et al.
(2013)

10 MI CSP LDA CA: >70%

Maby et al. (2012) 2 P300 Shannon
entropy

LDA Average accuracy:
82%

Djamal et al.
(2017)

10 MI FFT LVQ Average accuracy:
70%

considerable interest. The prototypes of BCI-based video games
in existence are based on three BCI paradigms: steady-state
evoked potential (SSVEP), P300 event-related potential (ERP),
and mental imagery (MI). Table 8 shows a summary of some
recent EEG-based virtual reality and gaming systems. Finke et al.
presented a P300-based BCI game known as Mind Game in
which the user moves a character from one field to another on
a game board (Finke et al., 2009). For Mind Game, the authors
reported a 66% mean accuracy (specifically, this was the rate at
which the correct target was selected out of 12 possible targets).
Other P300-based BCI games have also been proposed (Mühl
et al., 2010; Congedo et al., 2011; Angeloni et al., 2012; Ganin
et al., 2013).

Some famous video games, including Pong, Pacman, and
similar games, can be played with motor imagery (Krepki et al.,
2007). The Pacman produces one step every 1.5–2 s with the aim
of giving the gamer enough time to perform a control command.
In another study, a pinball game was developed in order to
illustrate that it is possible to successfully apply non-invasive
recording techniques for complex control tasks (Krauledat et al.,
2009).

Moreover, external evoked potentials have been utilized for
game implementations. Middendorf et al. (2000) designed a
simple flight simulator that is controlled by a BCI based on
Steady-State Visual-Evoked Response (SSVER). This simulator
was very modest, and only two control actions were possible.
The position could only be moved to the left or right.
Two methods were tested over the airplane control trials.
On the other hand, the control command (right or left)
was detected according to the strength of the SSVERs. The
selection was identified by reference to the frequency of
SSVER. The results of the trials with able-bodied participants
showed that the last one was preferred because it required
little or no training since the system capitalized on naturally
occurring responses. Lalor et al. (2005) proposed a game named
Mind Balance in which healthy subjects needed to hold a
tightrope walker in balance. The application was based on
SSVEP, which is generated as a response to phase-reversing
checkerboard patterns.

A final interesting example of this application was recently
presented at the Cybathlon 2016, a competition for participants
with disabilities who compete against each other using assistive
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TABLE 9 | Summary of EEG-based BCI robotic arm studies.

References No. of

subjects

Control

signal

EEG feature Classification

algorithm

Performance

evaluation

Yang C. et al.
(2018)

2 SSVEP FFT CCA Five tasks performed

Hortal et al.
(2015)

2 MI FFT SVM CA: 70%

Bhattacharyya
et al. (2015)

11 MI MFDFA ANFIS Success rate: >60%

Bousseta
et al. (2018)

4 MI FFT RBF SVM Success rate: 85.45%

Roy et al.
(2016)

5 MI WT, PSD SVM CA: 75.77%

technologies. In the BCI discipline, 11 participants with
tetraplegia competed against each other in a virtual environment
where their avatars raced along a virtual obstacle course (Novak
et al., 2018). Since external visual stimuli were not allowed
at the Cybathlon, the participants could not make use of
SSVEPs and P300; instead, they relied on motor control and/or
mental imagery to control their avatars. As expected, the
results varied strongly between the 11 participants, with the
best participant completing the race in the 90 s and the worst
completing it in 196 s. In this competition, every team used
gelled electrodes, indicating that they did not consider dry or
water-based electrodes reliable enough for use in uncontrolled
environments. Similarly, every team used laboratory-grade EEG
amplifiers, suggesting that no team trusted consumer-grade
devices to provide sufficiently good performance. Furthermore,
the competition emphasized the importance of effective BCI
training for the users, as the teams all had very different
participant-training strategies and the winning team stated that
their effective BCI training regimen likely had a major effect on
their success.

BCI Robotic Arm
Because of the advances in robot control (RC) systems, they
are playing an increasingly important role in a wide range of
fields. The relationship between humans and robots has become
increasingly intimate, and many human-robot collaboration
systems have been developed. However, it is hard for a disabled
person to operate a robot because of their loss of motion capacity
or reduced sensing ability (Yang C. et al., 2018). Many studies
have been dedicated to solving this problem (see Table 9). Yang
C. et al. (2018) presented a shared control system by combining
an SSVEP-based BCI and visual servoing (VS) technology
to enable mind control of a robot manipulator. To enhance
the intelligence and accuracy of the shared control system,
the authors proposed an adaptive color adjustment for object
detection, the least squares method (LSM) for camera calibration,
and the coordination of task motion and self-motion (CTS) for
obstacle avoidance. However, the authors tested the system using
only two healthy subjects. Furthermore, Bousseta et al. (2018)
proposed a preliminary outcome for the movement control of a
robot arm for four directions: left, right, up, and down through

mental tasks. Spectral analysis with FFT transformwas combined
with a PCA strategy to produce optimal features to feed into
an RBF Kernel SVM classifier aimed at distinguishing the four
movements. The experiments performed by four volunteers
produced an average accuracy of 85.45%. A hybrid BCI system
consisting of SSVEP andMIwas proposed inDuan et al. (2015) to
provide control commands to a brain-actuated robot. The SSVEP
responses were utilized to tell the robot to move forward, turn
left, and turn right, whereas the MI was utilized to perform the
grasp motion. The authors also developed a visual servo module
to perform the grasping with higher accuracy.

BCI Environmental Control
An important application of EEG-based BCIs is environmental
control, which can improve the quality of life and increase
the independence of paralyzed patients. Various EEG-based
environmental control systems have been developed in
recent years.

Aloise et al. developed a P300-based BCI home electronics
control system that included a DVD player, electric lights, etc.
(Aydin et al., 2018) where the subjects suffered from chronic
neurological disorders. Shyu et al. (2010) proposed a steady-
state visual evoked potential (SSVEP)-based BCI multimedia
control system. Specifically, four flickering buttons were utilized
to perform four different control commands: play or pause the
selected multimedia file, scroll through displayed items, stop the
multimedia system, and adjust the volume up and down. In
another study, the authors proposed the application of an SSVEP-
based BCI hospital bed nursing system (Kleber and Birbaumer,
2005) that enabled the users to move the entire bed up and
down and control the power of the massaging cushion. In a
study carried out by Corralejo et al. (2014), several patients
with different degrees of motor impairment were able to operate
home electronics, including a TV, DVD player, and lights, via
a P300-based BCI. Edlinger and Guger (2012) suggested a non-
invasive subject dependent P300 stimulus-based BCI system that
provides the subject with a stimulus and records his reaction as
an input. The user is provided with a GUI with various icons
representing different tasks like turning a light on/off, opening
a door/window, switching TV channels, etc. In the worst-case
scenario, this system obtained 30% accuracy with 12 participants,
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TABLE 10 | Summary of EEG-based BCI environmental control studies.

References BCI application Control signal No. of subject Method Performance

evaluation

Shyu et al.
(2013)

Hospital bed nursing
system

SSVEP 15 FPGA Accuracy: 92.5%,
ITR: 5.22 s/command

Zhang et al.
(2017)

Environmental
control system

ERP 3 Classifier: BLDA Accuracy: 89.2%

Aydin et al.
(2018)

Environmental
control system

P300 10 Classifier: LDA Accuracy: 93.71%

Kosmyna
et al. (2016)

Control of a smart
home with a BCI

P300, SSVEP 12 Minimum Distance
Classifiers

Average accuracy:
81–77%

whereas, in the best-case scenario, a 100% accuracy was achieved
from one of the subjects.

In another perspective, Carabalona et al. (2010) suggested
a non-invasive visual P300-based BCI system for physically
impaired users to control a smart home environment. The
user is provided with a 6 × 6 matrix of icons. Each icon
represents a command related to an everyday device. The icons
flash on the computer screen one by one. Once the desired
icon is reached, a peak is observed in the neural signals of
the user. This peak is considered to be icon selection. The
system was tested using four participants, and the accuracy rate
observed varied from 33 to 100% among different users. Kim
et al. (2013) also suggested a non-invasive P300 stimulus-based
BCI system to switch TV channels from a viewing distance of
3 meters and a 46-inch TV screen. A total of eight subjects
were provided with a visual stimulus in the form of a flashing
green cursor in the top left corner of each channel icon.
Once the desired channel was reached, a peak in the subject’s
neural signals was considered as input for channel selection.
An average of 92.3% accuracy was attained from the system.
In two other studies (Edlinger and Guger, 2012; Lin et al.,
2014), the authors proposed non-invasive subject-dependent BCI
to control electrical home appliances. Two physiological states
(drowsiness or alertness) of users were used and translated
into commands to interact with different electronic appliances.
Similarly, Akman Aydin et al. (2015) suggested a region-
based selection paradigm for a smart home control system
for physically impaired users. The proposed system is a non-
invasive P300 stimulus-based BCI system that flashes each
region five times on the screen to invoke a response from
the user. Upon acquiring a peak in the neural signals of the
subject, the system considers it as a selection command for that
particular region. The proposed system was able to achieve 95%
accuracy for 49 household tasks using five subjects without any
physical impairment. Masood et al. (2016) suggested a non-
invasive BCI that uses the blink of an eye as a control input
to interact with home appliances. The selection and control
of the device are performed using a GUI. The system has the
potential to be enhanced by adding more devices. However,
the currently proposed system has only 70% accuracy. Table 10
summarizes some recent findings with regard to EEG-based BCI
environmental control.

Recent Achievements and Innovations in
EEG-Based BCIs
In its early days, BCI technology was regarded as unattractive for
genuine scientific investigation, primarily owing to its restricted
resolution and the unreliability of the information from the brain
as well as its high variability. Furthermore, the data acquisition
of such technology was somewhat expensive. Therefore, brain
activity research was typically constrained to medical use or
exploration of brain functions in the laboratory. However, this
scenario has changed dramatically over the past two decades
due to advances in technology, which have brought down its
associated costs to some degree. Meanwhile, BCI research has
expanded to non-medical applications as well. Over the last
15 years, the number of studies regarding BCI has increased
substantially. Figure 4 depicts the number of companies that
manufacture BCI-based products around the globe2. The two
most well-known technology providers for BCI devices are
Neurosky and Emotive.

The leading social media platform, Facebook, funded a
research project at UCSF that aims to restore the communication
ability of disabled people through their thoughts at a speed of
100 words per minute. Eventually, this company is planning to
launch an EEG headset that lets users control music or interact
in virtual reality using their thoughts. Some findings of this
project were published in Moses et al. (2019), where the authors
demonstrated that high-resolution recordings directly from the
cortical surface can be used to decode both perceived and
produced speech in real time. By integrating what participants
hear and say, they leveraged an interactive question-and-
answer behavioral paradigm that can be used in a real-world
assistive communication setting. Together, these results represent
an important step in the development of a clinically viable
speech neuroprosthesis.

SpaceX and Tesla CEO Elon Musk founded Neuralink, which
is aiming to design ultrafine threads (more tenuous than a
human hair) that can be embedded into the brain to recognize
neural activity. It builds arrays of small and flexible electrode
“threads,” with as many as 3,072 electrodes per array distributed
across 96 threads Musk (2019). This company has also built

2Companies - BNCIHorizon 2020Available online at: at: http://bnci-horizon-2020.
eu/community/companies (accessed February 02, 2019).

Frontiers in Neurorobotics | www.frontiersin.org 20 June 2020 | Volume 14 | Article 25

http://bnci-horizon-2020.eu/community/companies
http://bnci-horizon-2020.eu/community/companies
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

FIGURE 4 | Distribution of BCI companies around the world.

a neurosurgical robot that is capable of inserting six threads
(192 electrodes) per minute. Each thread can be individually
inserted into the brain with micron precision for the avoidance
of surface vasculature and to target specific brain regions. The
electrode array is packaged into a small implantable device that
contains custom chips for low-power onboard amplification
and digitization: the package for 3,072 channels occupies <23
× 18.5 × 2 mm3. The size and composition of the thin-film
probes are a better match for the material properties of brain
tissue than commonly used silicon probes and may, therefore,
exhibit enhanced biocompatibility (Chung et al., 2019). A single
USB-C cable provides full-bandwidth data streaming from the
device, recording from all channels simultaneously. This system
has achieved a spiking yield of up to 70% in chronically
implanted electrodes.

Jiang et al. (2019) have presented BrainNet, which is the
first multi-person non-invasive direct brain-to-brain interface
for collaborative problem-solving. The interface combines EEG
to record brain signals and transcranial magnetic stimulation
(TMS) to deliver information non-invasively to the brain.
Among the three human subjects, two subjects are designated
as “Senders” whose brain signals are decoded using real-time
EEG data analysis. The decoding process extracts each Sender’s
decision about whether to rotate a block in a Tetris-like game
before it is dropped to fill a line. The Senders’ decisions are
transmitted via the Internet to the brain of a third subject,
the “Receiver,” who cannot see the game screen. The Receiver
integrates the information received from the two Senders and
uses an EEG interface to make a decision about either turning the
block or keeping it in the same orientation. Five groups, each with

three human subjects, successfully used BrainNet to perform the
collaborative task, with an average accuracy of 81.25%. This result
points the way to future brain-to-brain interfaces that enable
cooperative problem solving by humans using a “social network”
of connected brains.

Boston area company Neurable has created a brain-controlled
game called Awakening, the central character of which is a child
with telekinetic powers. The character is set the task of escaping
from a laboratory by using mind power to pick up toys such
as a balloon dog and rainbow rings. Players wear a headband
studded with electrodes that connect to a virtual reality headset.
Their brain signals are picked up and analyzed by software that
determines how the character will move. Players are then able to
train their brains to produce the right signals to pick up the toys
(iHuman, 2019).

Over the last two decades, evidence has accumulated on the
capacity of neural interfaces such as those using transcranial
direct current stimulation (tDCS) to enhance performance in
cognitive areas such as working memory and attention as
well as in physical activities such as cycling (Ke et al., 2019).
tDCS involves the use of a headset and electrodes that are
typically contained in sponge bags, with saline solution used
to conduct electricity from the electrodes to the scalp (Cincotti
et al., 2003). Adverse effects are rare—users have reported mild
tingling sensations and occasionally headaches or fatigue. One
study showed how tDCS improved the ability of US Air Force
personnel to “multitask” (Nelson et al., 2016). The participants,
all stationed at the Wright-Patterson Air Force Base in Ohio,
USA, were asked to monitor and respond to four independent
tasks on one computer screen. Their tasks were to: keep dial
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markers centered in a “system monitoring” box; change the
communications channel frequencies as requested by an audible
prompt; keep a target centered in a “targeting” box, and keep
fluids moving in a “resource management” box by turning
tanks on and off. The 10 participants who received active
tDCS stimulation from the headsets, provided by Wales-based
company Magstim, performed about 30% better than those
who did not.

CURRENT CHALLENGES AND
DIRECTIONS

In the past few years, substantial BCI research has been
performed to invent some potential assistive technologies. From
the current status of BCIs, it can be predicted unquestionably
that BCI technology will very soon be launched in the market.
In fact, a few commercial BCI appliances have already been
launched in themarket. A remarkable program, namely the BNCI
Horizon 2020 project, has proposed a future agenda regarding
BCIs. However, some crucial issues and challenges exist in every
component of the BCI paradigm, and these issues should be
addressed by the BCI community to make further advances
in BCIs.

Issues in EEG Modalities for BCI
Applications
The most preferred EEG modalities, namely MI, SSVEP, and
P300, are continuously facing signal processing issues, especially
the identification of the most applicable approaches for feature
extraction and feature reduction. This is primarily owing to the
nature of the EEG signals, namely extremely non-linear, non-
stationary, and artifact-prone. Other notable issues involve data
fusion, in particular how the data from numerous electrodes are
merged to be able to lessen the data dimensionality as well as
to make improvements to the classification results. It is evident
that once individuals have been taught properly, MI strategies
often deliver remarkable outcomes. For an MI-based BCI to be
handled by a targeted user, plenty of training trials are needed
from the targeted user, causing the calibration period to be
unacceptably long for a realistic model. Thus, investigations
should be concentrated on cutting down the calibration period
as well as effective training strategies. P300 shows greater average
ITRs, and it does not call for a training process, although the
degree of severity and variety of the disease may considerably
affect the performance of this modality. Nevertheless, a good
number of studies have also found that even individuals with LIS
are capable of handling a P300-based BCI for long durations.
However, with regards to ITR, it is worth noting that the
healthy individual group yields higher bit rates than disabled
subjects in practically all the previous findings regarding P300-
BCI (Lazarou et al., 2018). The method of stimulation is so
difficult that the experimental process could not be carried out
by the patients. Moreover, a wide range of instructions in a P300-
based BCI system increases the number of trials, which, in turn,
causes reduced overall performance. The coupling of the generic
models with online training could be an excellent alternative

to reduce the calibration period and enhance P300-based BCI
system performance together with consumer satisfaction (Jin
et al., 2020). The SSVEP approach obviates the calibration or
subject training. Hence, this type of speller should be faster in
comparison with P300 spellers. However, a certain number of
individuals generate extremely poor SSVEP responses, which
is tough to explore. Therefore, a hybrid approach could be
an excellent alternative to the use of a single EEG modality.
Further investigations are necessary in order to identify which
EEG modality is the most appropriate type for BCI application.
For instance, MI-based approaches are considered the most
appropriate to handle a prosthetic arm or leg. However, in the
operation of digital radio, an SSVEP-based approach with a 4-
option menu including volume-up, volume down, station-up,
and station-down options may be much intuitive than an MI-
based technique with imaginedmovements being associated with
television controls. Intuitiveness should be a crucial factor at the
time of the initial decision stage when selections of technology
and BCI category are being made. Additional investigations are
also needed to figure out the more appropriate feature set and
classification frameworks for specific EEG modalities. Research
with regards to features and classifiers also need emphasize
figuring out the optimal options to be employed for individuals
affected by CNS injury.

Issues With EEG Headsets
The quality of EEG data for BCI application mostly depends
on the EEG headset. There are some issues regarding EEG
headsets that need to be resolved. First of all, most of the
EEG headsets require gel or liquid on electrodes, which are
very uncomfortable to the user. For practical applications,
users prefer dry electrodes, as it is not mandatory to use
any conductive gel between the scalp skin and electrode pad.
However, it is a matter of open debate as to whether this
type of electrode offers identical signal properties. It has
been reported that the EEG from dry electrodes contains
considerably more artifacts and noise than wet electrodes,
whereas another study reported that the signal properties are
almost identical for wet and dry electrodes. Hence, an in-
depth investigation should be carried out to further validate
the efficacy of dry electrodes. It is worth noting that newly
proposed water-based EEG electrodes are now being investigated.
In Mihajlovi and Peuscher (2012), the authors pointed out
that the performance of dry and water-based electrodes with
shorter hair is comparably superior to gel-based electrodes.
They also recommended continuing further investigation for
the refinement of electrodes to make them applicable with
longer hair and further suggested that dry and water-based
electrodes have the potential to replace gel electrodes. To date,
headsets with dry electrodes are available in the market, but
these contain very few electrodes, and the procedure has not
yet been standardized. There are thousands of EEG headsets
that have already been launched by different companies for
BCI applications. The number of electrodes (for example, 1,
3, 4, 8, 14, 16, 20, 24, 32, or 64) is varied from headset to
headset, and these headsets are not compatible with each other.
Hence, the minimum number of electrodes for specific EEG
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modalities should be standardized. High ownership cost of an
EEG headset is another challenge in allowing BCI technology
to become affordable for the general public around the world
(Abiyev et al., 2016). Hence, the reduction of the price of such
EEG headsets is much lauded. The portability of the BCI model is
also a crucial matter: headsets that transfer data wirelessly permit
individuals to move freely, whereas a wired headset somewhat
limits movements.

Lack of Ideal Data Analysis Methods
Although most of the artifact removal algorithms offer good
performance, the methods listed in section EEG Data Pre-
processing Strategies suffer from different limitations when
utilized in a particular EEG-based application. Indeed, some
methods are only focused on the detection and removal of
particular artifacts. Some methods need reference channels to
enhance the accuracy of artifact removal, which is not feasible for
some specific applications. ICA-based algorithms can deal with
all kinds of artifacts occurring in EEG recordings. Regression
and adaptive filters are more feasible choices when the reference
channels for specific artifacts are available. Apart from ICA, CCA
and its combination with other methods seem to be a good
choice for the removal of muscle artifacts. For application to a
few channels, EMD, IVA, and its hybrid methods with BSS or
WT can be an ideal choice. Moreover, EMD can significantly
improve the signal quality by eliminating noise with fewer
data (Zhang Z. et al., 2019). However, the requirement for a
reference signal limits adaptive filter or regression methods to
the removal of particular types of artifact. Wavelet transform
fails to completely identify artifacts that overlap with spectral
properties. EMD also suffers from the drawback of mode-
mixing. Therefore, it is quite difficult to find a single method
that is both efficient and accurate enough to satisfy all the
conditions perfectly. Thus, one of the future objectives of the
effective attenuation of artifacts is to develop an application-
specific algorithm with better time-efficiency and accuracy.
Also, from the current trend of artifact removal, it can be
concluded that future directions will combine machine learning
and traditional approaches for effective automatic artifact
removal. Apart from that, new artifact removal algorithms for
numerous types of artifacts in multiple scenarios still need to
be identified.

Regarding feature extraction techniques, a wide range of
features have been extracted to figure out the significant
information from the EEG. From previous studies, it has
been seen that the performance of CSP and its modified
algorithms is comparatively encouraging when applied to EEG
motor imagery data. In the case of emotion recognition
or mental workload classification, spectral features are more
suitable, whereas frequency-domain based features perform
better with SSVEP data. However, it is too early to state the
optimum feature extraction technique for a specific EEG control
signal modality.

Based on previous studies, SVM is the most robust classifier
for classifying high-dimensionality feature vectors. Sometimes,
HMM may deal with a high-dimensionality feature set by
analyzing the sequence of feature vectors. In order to avoid

computational complexity, a low-dimensional feature vector
should be preferred. However, feature reduction or selection
algorithms could be considered in the case of high-dimensional
feature sets. Several deep learning approaches have been
implemented to classify MI, SSVEP, emotion recognition, and
ERP data. The architecture of deep networks entirely depends
on network structure and input formalization. Previous studies
showed that CNN- and RNN-based deep learning approaches
outperformed other deep learning methods. Moreover, CNN
offered optimum accuracy when time-series values or spectral
images were utilized as inputs. Hence, it has been suggested
that there should be comprehensive study of the combination
of network architectures, especially the structure and number
of distinctive layers, for example, RBMs, convolutional layers,
fully connected layers, and recurrent layers. Besides network
structure, further studies need to be conducted to distinguish
how deep learning approaches interpret raw EEG against artifact-
prone EEG, as these sorts of studies have not yet been explicitly
conducted. In this article, a wide range of classifiers have been
surveyed that are evaluated in an offline manner. As every BCI
application is essentially an online scenario, the classifiers should
be validated online. Moreover, the classifier model should be
tested to assure lower computational complexity and calibrated
quickly in real-time operation. To design calibration-free BCIs,
domain adaptation, and transfer learning can be an effective
alternative where the combination of superior feature sets, for
example, covariancematrices and domain adaptation algorithms,
may enhance the invariance capability of BCIs. The design of a
stable estimator of the Riemannian median is an open challenge.
This property could make the Riemannian geometry classifiers
more robust.

Performance Evaluation Metrics
It is evident from the previous studies that a variety of
performance evaluation metrics are employed to evaluate BCI
systems. It is almost impossible to compare the same types of
BCI systems when they are evaluated by dissimilar performance
metrics. Hence, the BCI research community should recommend
a standard and systematic approach or a single metric to
quantify a specific BCI application. For example, number
of control commands, types of control commands, distance
covered, time required, number of collisions, classification
accuracy, average success rate, amongst others, should be
utilized to evaluate the performance of a BCI wheelchair
control. If the same performance metrics are used for a
given BCI application, then a direct comparison between
different BCI experiments is possible. Not only are training
models not liable to limit the overall performance of the
system, but testing data can also be utilized. A large number
of BCIs are designed to substitute CNS functionality, and
these BCIs are actually assessed on healthy individuals inside
a controlled laboratory environment. This may misguide to
defective outcomes if the targeted users of these systems
would be disabled patients; for example, BCI performance
seems to be poorer for patients affected by spinal cord
injuries when compared with healthy subjects. Thus, researchers
should emphasize specifying similar performance evaluation
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metrics and, in the meantime, ensure system assessment by
valid data.

Trends in Lab-Based BCI Technology
One of the major concerns regarding BCIs is that almost
all of BCI experiments have been conducted in a controlled
lab, regardless of the realistic environment of the targeted
users. Therefore, these EEG data are a crucial factor in the
initial evaluation of signal processing approaches as well as the
advancement of considerably more robust systems. As pointed
out before, heart rate and cortisol may considerably affect the
characteristics of brain waves. Outside the lab, different sensory
stimulations found in the surroundings, like sounds, movements,
and smells, may affect the quality of EEG signals. Hence, during
the design of any BCI system, engineers should consider the
particular environment where the proposed technology will be
employed. For example, the design criteria may not be identical
for the operation of home appliances in a home environment
as compared to the detection of the attention level of a pilot
using EEG while flying a plane. Thus, at the time of system
design, it is important to examine the basic criteria of the system,
environmental aspects, situation, and target users in-depth.

Low ITR of BCI Systems
Higher ITR is the primary requirement of any effective BCI
system. ITR is the metric that is most employed in the BCI
community to assess the performance of BCI prototypes. The
ITR of a given BCI system depends upon three criteria: the
number of classes, target detection accuracy, and target detection
time (Wolpaw et al., 2002; Ramadan and Vasilakos, 2017).
The target detection accuracy can be boosted with the aid of
the enhancement of the Signal-to-Noise Ratio (SNR). Several
strategies are usually employed in the preprocessing phase in
order to increase the SNR, as described in section EEG Control
Signals Used in BCI Applications. Once high ITR is achieved,
more sophisticated applications may be developed by increasing
the variety of classes. A variety of stimulus coding strategies,
for instance, CDMA, TDMA, and FDMA, have already been
adapted for BCI systems (Bin et al., 2011; Jin et al., 2011). In
order to code the intended stimuli, TDMA has been utilized
with P300, whereas CDMA and FDMA have been employed
in those BCIs that deal with VEP. Finally, minimizing the
target recognition period, which assists in boosting the ITR, is
another crucial aspect of BCIs. To accomplish this, adaptive
approaches, namely “dynamic stopping,” may be an excellent
alternative. Moreover, single-trail classifications using machine
learning frameworks and optimized stimulus demonstrations
can also contribute to reducing the target recognition period
(Schreuder et al., 2013).

Commercialization of EEG-Based BCI
Technology
The main consumer of BCI technology is this particular group
of disabled patients, and commercialization is the only way to
spread this technology all over the world. Hence, the BCI research
community should identify the actual causes that prevent the
commercialization of this technology. To further illustrate the

TABLE 11 | Essential features for BCI systems.

Key feature Description

Effectiveness The BCI system should be really helpful to users

Robustness The system must be stable during regular use and robust
with respect to anomalies

Quick operation Task execution time should be as low as possible

More functionality The system should allow the user to perform as many
tasks as possible to increase the autonomy of the user

Safety The system must pose no danger to user health

Comfort The EEG cap should be comfortable to wear for several
hours

Mobility To ensure mobility, the BCI system should be wireless,
lightweight, and compact

User-friendliness The system should be simple to operate and need no
expert help for daily use

Cost-effectiveness The price should be affordable for all kinds of users

obstacles that are preventing the commercialization of BCI
technology, Vansteensel et al. (2017) supplied a set of questions
to more than 3,500 BCI researchers in the field of EEG or
EMG technologies throughout the world. Almost all of the
experts were confident that a particular BCI application would
be launched to the market within the next 5–10 years. This
survey suggests that upcoming research ought to concentrate on
sensor development as well as the overall system performance
of non-invasive BCIs. Kristo et al. (2013) also concluded that
the BCI research community should focus on boosting ITR
(Speier et al., 2013) and exploring the signal processing platform.
In addition to these, there are also some major issues that
prevent the commercialization of an EEG-based BCI system
among the targeted users. First of all, existing BCIs cannot be
handled by disabled patients. Expert assistance is mandatory to
set up the signal-receiving electrodes of current BCIs. Moreover,
almost all of the BCI devices are still under investigation and,
hence, are not readily available for home-usage. Therefore, future
BCI systems should cater for disabled patients lacking any
assistance from experts. BCI illiteracy is an additional barrier
to the widespread use of EEG-based BCI systems. When an
individual is unable to operate the BCI device due to low-quality
brain signals being produced, this phenomenon is regarded as
BCI illiteracy. EEG signal quality may be improved with the
aid of a collaborative co-learning strategy that gives the end-
user audio or visual feedback. Continuous use of BCIs makes
frequent use of specific neural pathways (Padfield et al., 2019),
and additional study needs to figure out the possible health
risks or variations in brain functionality due to such prolonged
exposure. The BCI system should be similar to other ideal off-
the-shelf technologies with regards to its ease-of-use. The BCI
devices should also be user-friendly and have in-built safeguards
to prevent untoward situations. Furthermore, advanced BCI
technology should also be capable of providing stable results
when it is used in multisensory environments such as in a noisy
family home. Table 11 lists the essential features that enable the
commercialization of BCI systems. These features are deemed
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necessary to increase the quality of BCI systems (Miralles et al.,
2015).

Issues in Specific EEG-Based BCI
Applications
The use of P300 in a BCI wheelchair has numerous drawbacks,
for example, when a patient suffers from a neural disease,
specifically ALS (Bashashati et al., 2007a; Kodi et al., 2013).
Usually, BCIs that use a P300 modality have a poor ITR.
Additionally, several studies have stated in their findings that
performance may drop after a long period owing to the
reduction of the P300 amplitude due to familiarization (Iturrate
et al., 2009a; Choi, 2012; Amiri et al., 2013). In a real-time
system, the user needs to concentrate on the mission without
interruption (Iturrate et al., 2009b), which is another weakness
of such a scheme. If users focus on such visual stimuli for
a significant period, they feel fatigued or suffer from sore
eyes (Puanhvuan and Wongsawat, 2012; Chai et al., 2014).
Therefore, such physiological control signals are neither suitable
nor effective for wheelchair operation. Despite the advantages
of using navigation systems that assist the control of the
wheelchair with shared control, limited findings have been
reported. However, it is worth noting that several cases, for
instance, wheelchair operation in a corridor or a free area with
unfamiliar impediments, need to be addressed. In such cases,
a complete wheelchair control system with its main navigation
components including mapping, localization, path planning, and
obstacle avoidance is highly recommended (Widyotriatmo and
Suprijanto, 2015).

With regards to BCI cursor control, only three articles
have reported a success rate of above 90% (Long et al.,
2012b). This information somewhat suggests that an insufficient
number of experiments have yet been carried out in this
area. Therefore, more experiments are needed to explore the
exact limitation behind the low success rate. Although MI,
P300, and hybrid approaches (MI+P300, MI+SSVEP) have
been used in BCI cursor control, it was observed that the
hybrid approach yields the best results (Long et al., 2012b).
However, it is too early to remark on which hybrid strategy
is optimal for multidimensional cursor control, and, hence,
more experiments are needed to evaluate efficacy. Different
factors should be taken into consideration to make a robust
system, such as literacy rate, target size, timeout interval, user
preferences, volume of electrodes, training period, invasiveness,
and movement time.

Most of the previous studies of BCI spellers have been carried
out utilizing the P300 modality owing to its credibility among
researchers. Hence, there are more development opportunities in
the other BCI paradigms, for example, MI, SSVEP, and hybrid.
Almost all of the studies employed mean accuracy and ITR
to evaluate their experiments. Nonetheless, it is noteworthy to
mention that amongst a selected paradigm, the performance
of one study varies from another owing to the utilization
of different experimental resources. The aforesaid resources
include EEG caps, electrodes, GUI, software, and data from
healthy or disabled subjects, as well as the number of subjects.

Hence, for conducting a comparison between different BCI
spellers, the first step should be that the identical hardware
and software must be used. Hitherto, to operate a BCI speller,
users require expert help to set up electrodes at specific
positions. Portability is another challenge to the current BCI
spellers. Typing errors are another issue, as it necessitates a
correction period and influences the spelling rate. Hence, further
enhancements should be made to provide faster, accurate, and
user-friendly spellers.

Some constituents, including data preprocessing strategy,
classification model design, have a considerable impact on the
performance of BCI-based person identification. Although a
variety of features and classifiers have been employed to figure
out the superior approach, the optimum technique has not
been explored. Hence, more experiments should be carried
out to identify the most appropriate technique. Moreover,
more attention should be given to removing artifacts from
EMG, EOG, and ECG. In an EEG-based authentication system,
different paradigms like P300, SSVEP, and MI can be used,
although each paradigm has its own merits and demerits.
Thus, the best paradigm for EEG should be identified based
on the person’s authentication. Moreover, the EEG acquisition
protocols should be user-friendly. Brain activity acquisition
for biometric usage is a crucial matter that has not received
enough attention from researchers (Campisi and La Rocca,
2014). Few partial studies have been conducted, and these
studies emphasized session-wise EEG stability. Moreover, in
these studies, the variation in data acquisition time lay
between 1 week and 5 months (La Rocca et al., 2013; Lee
et al., 2013; Palaniappan and Revett, 2014). Additionally,
the human brain is very sensitive to emotion (Marcel and
Millan, 2007; Lee et al., 2013). No publication has clarified
the stability of EEG regarding the emotional diversity of
BCI-based biometrics. Hence, the emotional diversity of the
human mind should be carefully considered for a realistic BCI
biometric system. Moreover, permanence in terms of elicitation
strategy, applied protocol, and feature selection should also be
investigated critically.

Researchers have attempted to recognize human emotion
or mental state using EEG. However, there are still many
challenges in this particular research domain. The EEG signal
is very weak and is easily disturbed by external factors, such
as subjects’ movements and environment noise. Noise-free
and accurate EEG is the greatest challenge in recognizing
emotional states. The way in which emotions are evoked
contributes significantly in emotion recognition systems. There
are numerous methods of stimulation, i.e., pictures, video clips,
music, memories, self-induction, environmental elicitation like
light, humidity, and temperature, and games, amongst others.
By using good and strong stimulation, emotion recognition is
more likely to be performed with better results and higher
accuracy. A number of emotion types also sometimes affect the
system’s performance. Another crucial matter that significantly
influences the performance of the system is the signal processing
platform, which includes data denoising, filtering, suitable
feature set selection, and classification model design. A variety
of feature extraction and classification algorithms have been
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carried out by the researchers, but it is still difficult to
identify which model is optimal. However, PSD and SVM
have been most widely used for feature extraction and
classification, respectively.

Most BCI games demonstrate very low accuracy and speed
as compared to conventional interfaces, suggesting that there
are issues that must be addressed to facilitate the acceptance of
BCI games. One of the most prevalent issues is the selection
of the EEG control signal. Among SSVEP, P300, and MI, the
P300 paradigm is favored by researchers for BCI-based games.
With regards to tagging problems and hardware impediments,
an optimal setup should be employed, for instance, an EEG
headset, VR machine, and motion sensor can be integrated,
and this joint system may able to trace the rotation together
with the position of the targeted users (De Vos et al., 2014). A
number of notable BCI-based games have been recommended
in Marshall et al. (2013). Although the P300 modality has
been employed to good effect in puzzle games, this system
may be upgraded by motion-based technology. A turn-based
strategy allows the users to pick options at their own pace,
whereas a variety of simulation and adventure games are
more relevant for a BCI+VR game. The performance of real-
time BCI with moving users is a controversial issue. When
the users are walking or moving, the P300 modality can be
stimulated, but the overall performance drops (Debener et al.,
2012). A camera and accelerators can be used for identifying
user movement as well as removing the corresponding EEG
signal from the analysis (Ahn et al., 2014). To ensure noise-
free EEG, a real-time artifact elimination strategy has been
recommended (Barachant et al., 2013). Additionally, some
novel features, including the weighted phase lag index, can be
employed when the subjects are walking (Lau et al., 2012).
However, we have noticed that there is still a lack of studies
outside of a controlled environment, such as Debener et al.
(2012).

A limited number of studies have reported on the use of
BCI in robotic arm control, suggesting that there is more room
for exploration. Moreover, it is apparent that the performance
of these reported systems is still at an unsatisfactory level,
indicating that more experiments should be carried out. Due to
a lack of necessary adaptation and training, the time taken for
such activity to transpire is somewhat lengthened; nonetheless,
this problem can be mitigated through proper training. Some
BCI-based home appliances may able to handle only one
application a time, which does not reflect effectiveness in real-
life scenarios. Hence, the activities of daily living (ADL) of
paralyzed patients will be easier when many home appliances
at a time can be utilized through an independent system.
Most of the proposed environmental control systems have been
assessed on healthy users. Thus, there is a crucial question as
to whether the performance of healthy users is identical to
that of disabled people. Until now, the possibility of the use
of environmental control systems by severely disabled people
has been investigated in very few studies, and, hence, more
effort should be applied to evaluating data obtained from
disabled patients.

CONCLUSION

A thorough review analysis has been carried out in this article
on EEG-based BCI, particularly to investigate its methodological
advantages and disadvantages and the essential contributions
required in this field of research. Each BCI application has been
explored in terms of data acquisition technique, control signals,
EEG feature extraction, classification methods, and performance
evaluation metrics. Finally, potential complications with EEG-
based BCI systems have been addressed, and promising
alternative options have been recommended. Patients with CNS
injury may be able to rehabilitate their motor function through
the progress of emerging BCIs. Owing to wireless recording,
portability of EEG headsets, cost-effective amplifiers, significant
temporal resolution, and proficient signal analysis strategies,
there is keen attention on EEG-based BCI technology for such
purposes. In spite of the many outstanding breakthroughs that
have been achieved in BCI research, some issues still need to
be resolved. First of all, a general BCI standard is currently
the main issue. The BCI community should declare a general
BCI standard that must be adhered to by BCI researchers.
Secondly, the existing BCIs offer somewhat poor ITR for
any type of effectual BCI application. Hence, future research
should concentrate on increasing the ITR of BCI systems.
Moreover, matching the most relevant EEG control signal with
the intended BCI application is another important issue in
EEG-based BCI research. Owing to the present accessibility of
computational resources, researchers have begun to move away
from conventional machine learning models to deep learning
approaches. The use of such contemporary techniques allows
for the classification of non-stationary EEG. Most of the studies
on BCI have used different evaluation metrics on their own
as per their convenience without any uniformity, which makes
it difficult to choose the most efficient method, especially for
new researchers in this field. Hence, it could be of interest
to establish standardized BCI metrics so that all related works
may follow the standard. These metrics would be formed based
on BCI application or EEG modalities. Through this, a fair
comparison could be made between related works accurately
and conveniently, which would help new researchers to pursue
their intended research direction. Finally, the majority of BCI
applications are at the investigative phase, and they are not
readily available for the ADL of the general populace. In addition,
the lack of commercialization of BCI technology is also partly
responsible for impeding its popularity around the world. If the
abovementioned concerns can be addressed, BCI systems could
be an emerging means of human-machine interaction in the
foreseeable near-future.
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