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Today, climate change has caused a decrease in agricultural output or overall yields that

are not as expected; however, with the ongoing population explosion, many undeveloped

countries have transformed into emerging countries and have transformed farmland to

be used in other types of applications. The resulting decline in agricultural output further

increases the severity of the food crisis. In this context, this study proposes an outdoor

agricultural robot that uses Long Short-Term Memory (LSTM). The key features of this

innovation include: (1) the robot is portable, and it uses green power to reduce installation

cost, (2) the system combines the current environment with weather forecasts through

LSTM to predict the correct timing for watering, (3) detecting the environment and

utilizing information from weather forecasts can help the system to ensure that growing

conditions are suitable for the crops, and (4) the robot is mainly for outdoor applications

because such farms lack sufficient electricity and water resources, which makes the

robot critical for environmental control and resource allocation. The experimental results

indicate that the robot developed in this study can detect the environment effectively

to control electricity and water resources. Additionally, because the system is planned

to increase agricultural output significantly, the study predicts the variables through

multivariate LSTM, which controls the power supply from the solar power system.

Keywords: artificial intelligence, robot, deep learning, intelligent agriculture, automation equipment, long short-

term memory

1. INTRODUCTION

The world is currently facing energy and food crises; moreover, many countries are transforming
farmland into industrial land for related usage because they are transforming from being
undeveloped to being emerging countries. All of these factors have reduced agricultural output
tremendously. The literature (Liu et al., 2018) has mentioned that rapid economic development
and urbanization are consuming the resources of the planet extremely rapidly and that, especially
due to the impact of climate change, the yields of many crops are declining or are not as expected.
Therefore, the huge challenge arises of rethinking our exploitation of food and energy. On the other
hand, traditional agriculture requires labor and machinery to irrigate and harvest; yet, with the
impact of an aging agricultural labor population, a large amount of farmland is deserted or fallow.
Consequently, agriculture needs to be upgraded to intelligent production, which could increase
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output while reducing labor because farmers would then
only need to calibrate the smart equipment and set
relevant parameters.

Precision Agriculture (PA) works to detect relevant
environmental information around the farmland to enhance
automated production; the PA system controls automated
machinery and the related irrigation equipment while farmers
will only need to calibrate the equipment and confirm
correctness; this will reduce agricultural labor and ensure a
good crop-growing environment Narvaez et al. (2017). Hu et al.
(2019) utilized an intelligent agriculture system to handle the
tasks of irrigation and production, as well as doing the watering
work according to the environmental conditions of the farmland
to manage the growing environment. In another study Ayaz et al.
(2019), the farmland environment was detected via the Internet
of Things (IoT), which supports equipment, such as lighting
and watering equipment, to make sure that the crops grow in a
suitable environment. Furthermore, the article pointed out that
for farmland in extreme climate areas, there are difficulties over
a huge amount of farmland in planting proper crops to grow in
such an environment; thus, the development of smart agriculture
can re-analyze farmland environments to find suitable species of
crops for the farmers. Finally, a study by Chebrolu et al. (2018)
used unmanned aerial vehicles to check and monitor farms; these
can detect the environment and ease the agricultural labor issue.

Based on the aforementioned issues, this study offers an
approach for building outdoor agricultural machinery that
utilizes LSTM. Additionally, because most farmland is located
beyond the reach of power equipment or where there are not
enough water resources, this study proposes a system that uses
solar power as the key electricity supply andmakes the equipment
movable. Due to the limited electricity offered by the solar
power system, the approach detects the equipment and conducts
watering tasks by LSTM to avoid energy waste, the detectors used
in the experiment monitor the soil temperature and humidity,
pH value, and sunlight conditions in the farmland. The study
also collects forecast information, such as temperature and the
Probability of Precipitation, from the Central Weather Bureau
and uses this to predict soil humidity and sunlight conditions
via LSTM. The robot will forecast the best time to activate the
watering equipment, and when the prediction result exceeds
the set suitable conditions, the server will notify the farmer.
This approach is an application designed for outdoor usage
and is shown to be practical on a farm. The experimental
result proves that the proposed method is feasible; moreover,
the equipment presented is cost-efficient, which makes it well-
suited to widespread distribution and massive adoption for
general applications.

2. RELATED WORK

To date, many studies have offered intelligent agriculture-based
approaches for improving the quality of crops. A study by Liu
et al. (2018) mainly used natural resources to support farm
planting; for example, it used overproduced energy to provide
watering and lighting or utilized solar energy and rainwater to

take care of the farm. Using natural resources can significantly
reduce resource waste and achieve eco-friendliness. Narvaez et al.
(2017) used spectral data to monitor the growing conditions of
crops and decide whether to trim or spray pesticides. Hu et al.
(2019) utilized wireless sensor networks to transfer detector data
and reduce installation cost as well as using the network to lower
the energy consumption of the detectors. Ayaz et al. (2019),
meanwhile, detailed the structures of intelligent agriculture
performed through IoT and cloud networks. IoT equipment
supports the delivery of the environmental data collected to a
cloud server, which enables agricultural experts to analyze data
for decision-making. Two other studies, Chebrolu et al. (2018)
and Farooq et al. (2019) utilized unmanned aerial vehicles to
monitor farmland regularly to detect the growing conditions of
the crops; additionally, Shadrin et al. (2019) used a Convolutional
Neural Network to judge whether the growing conditions had
reached expectations, and Bayrakdar (2019) combined detectors
with wireless sensor networks to check whether there were holes
underneath the farmland and used sonar to determine whether
the area was suffering from plant diseases and pest damage.
The method presented in this article can detect the growing
environment of the crop regularly to ensure the quality of
the crop.

Because Internet equipment cannot be robustly installed in
outdoor farms, it is better to develop a Wi-Fi system to transmit
the data and ensure delivery quality. A study by Chen and
Yang (2019) offers an intelligent agriculture method to improve
growing for farmers significantly by using relevant data to build
decision systems or Knowledge-Based Systems. Lozoya et al.
(2016) constructed modular agriculture that helps diverse farms
to adjust system modules based on their requirements, which
ensures an optimal automated process. Herrera et al. (2016)
combine four-wheeled vehicles with sensors to tour around the
farm; with fixed routes, the vehicle would collect the growth
information of each selected part and transfer the data back for
analysis. The method presented by Murugan et al. (2017) can
be used in latifundios (large farms) because it uses aerial shots
to identify crop maturity; this method can substantially reduce
agricultural labor pressures. Another study, Elijah et al. (2018)
developed a wireless sensor network system for farmland that
can collect farm information effectively; with data analytics, the
system could activate the equipment rapidly and ensure that
crops were growing under the most suitable environment. In
Liu et al. (2019) study combining IoT and cloud computing to
record the relevant environmental factors of the farm, the crop
quality was increased because the system protected the farm from
pollution. Lin et al. (2020) used R-CNN to conduct pest control
and detection; instead, this study suggests using a 4G network to
improve transmission quality.

Palangi et al. (2016) searched keywords online through LSTM;
due to the massive amount of data on the Internet, LSTM
helps find the required files rapidly by utilizing the concept of
keywords. Wang et al. (2018) examined the production yield
of wafers via bilateral LSTM. Park et al. (2018) mainly used
LSTM to develop keyword recognition in speech recognition for
drivers; because the level of device computation available in a
car is usually low, keywords are required to boost searches to
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fulfill the needs of drivers. Zhou et al. (2019) presented a system
that predicts sunlight and estimates the electricity produced by
solar power systems through LSTM, which becomes the basis
of solar power equipment management. Finally, Zhang et al.
(2019) utilized LSTM in edge computing; when video files are
too large, an LSTM technique helps predict the buffer memory
for each edge computing, node. Guardo et al. (2018) mainly
used Fog Computing to reduce the workload of centralized
servers. Additionally, Arachchi et al. (2019) scheduled video
time arrangements via LSTM, which is beneficial for composing
various videos chronologically. The current article uses the LSTM
technique to detect the experimental environment and effectively
control water resources and electrical power conditions.

In this study, outdoor agricultural machinery was built that
has a solar power system to provide electricity because outdoor
farms usually lack sufficient electricity and water resources. Due
to limited solar power energy, for achieving the performance
of monitoring the farm environment and maintaining good
growing conditions, the experiment used LSTM to monitor
the environment and control the watering system. It combined
information on sunlight, soil humidity, temperature, and weather
forecasts from the Central Weather Bureau with LSTM to
set system schedules and avoid wastage of electricity and
water resources.

3. THE PROPOSED SCHEME

This chapter introduces the following details: the system model;
signal delivery and control; data normalization; long short-term
memory prediction.

3.1. System Model
The article proposes the system model shown in Figure 1.
The equipment includes lighting and sensors that detect the
barometric pressure, soil temperature and humidity, and pH
value in an outdoor farm, and also a sprinkler motor. We
attached an IoT development board to the machinery (I0) that
uses stored electricity from the solar power system; the sensors
on the equipment deliver the collected data to the server (S0)
via 4G networks. Furthermore, the server updates the weather
forecast data through a web crawler and combines this with the

FIGURE 1 | System model.

sensor data to conduct LSTM analysis. The LSTM system will
set watering schedules based on the analytic results to ensure
that the growing environment provides a suitable humidity
and temperature for the crops. On the other hand, outdoor
farmland usually lacks sufficient water resources and electricity;
in particular, the installation cost of electrical equipment is a
huge burden for farmers. Therefore, this research presents a
solar power system for reducing the cost stress; additionally,
the designed equipment is movable to any location on the
farm, which also reduces the workload of farmers. The system
uses LSTM to predict soil conditions and weather changes, the
equipment sets the schedules for activating the machinery, and
the design saves electricity to avoid waste; all of these improve
the growing environment for crops.

The research developed an outdoor robot for detecting
environmental conditions and controlling the watering system.
The robot transmits the data to the server for further analysis,
and the server can use environmental factors and weather
forecasts to predict the environmental conditions. Different kinds
of crops grow under different conditions; hence, through the
analysis, the result can help to judge whether the environmental
conditions are beyond expectations. If the growing conditions
are not suitable for growing the crop, the system will warn the
farmers. Moreover, because weather data exhibits linear growth,
the study applies LSTM to calculate environmental variables so
as to predict the environmental factors and conditions of the
farmland to increase output.

3.2. Signal Delivery and Control
This study uses Extensible Messaging and Presence Protocol
(XMPP) to collect information from the sensors on the machine
and uses LSTM to predict soil temperature and humidity so as to
judge the activation time of the equipment. As shown in Figure 2,
the machinery and the IoT development board will maintain a
low power consumption status. When the LSTM system suggests
starting the equipment, the server will send a signal to the IoT
development board to activate the sprinkler system and the
sensor. When the task is finished, the IoT development board
will also send a signal back to the server and provide the sensor

FIGURE 2 | Signal delivery and control model.
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data for analysis. Due to the low power consumption, the IoT
development board can avoid wastage of electricity; hence, when
the server receives the sensor data, it will further conduct LSTM
prediction analysis and set the next schedule for activation.

3.3. Data Normalization
The machinery with sensors can detect soil temperature and
humidity, sunlight, and related information, which will be
delivered to the server through 4G networks. Nonetheless, packet
loss might occasionally occur, causing data error, and insects
might also cause the sensors to detect incorrect information; thus,
it is necessary to judge the data correctness. Firstly, to check
the correctness of the detected temperature, we input the lowest
and highest temperatures from the Central Weather Bureau and
check the current time to judge the rationality. The algorithm is
shown below:

Algorithm 1: Temperature detection algorithm.

//If the value of the current temperature minus the estimated
temperature is smaller than a set threshold.
if (|Tect − PTes|) < Threshold then

Correct
else

Re-detect
end if

Tect means the current soil temperature detected from the
sensor, and PTes is the temperature loaded from the Central
Weather Bureau. If the temperature between 06:00 and 17:00 is
set to be the highest temperature, the temperature during the rest
of the day will be set to be the lowest temperature. The threshold
presents the defined value; the detected temperature is correct if
the difference is smaller than the threshold; otherwise, the system
will re-detect the temperature.

Regarding humidity, the study uses the evaporation equation
presented by Priestley (1970) to judge whether the soil
evaporation fulfills the prediction. Moreover, we combine
weather forecast data to check whether it will rain. The
evaporation equation is ET0 = αS (Rn− G) / (s+ γ ), where Rn
is the net radiation, α is the equilibrium evaporation parameter,
G is the sensible heat flux, and γ is the humidity. A large
evaporation value means that the soil humidity is low, and the
condition is normal. The study uses weather forecast information
to judge whether the sensor is detecting correctly and further
improve the correctness of LSTM.

3.4. Long Short-Term Memory Prediction
The study conducts Multivariate LSTM to manage the watering
and detect the farm conditions. Firstly, the experiment judges
whether the targeted crop can grow under the weather conditions
as forecasted; if not (for example, when the temperature is too low
or too high or when it will rain heavily), the system will send an
alarm to notify the farmer. The equation is shown below:

Algorithm 2: Farm Environmental Detection algorithm.

//If the temperature is suitable for growing the targeted crop.
if

(

ATe < PTeh and ATe > PTel
)

then

Normal
if

(

QPF < Threshold
)

then

Normal
else

Alarm
end if

end if

The aforementioned equation checks whether the growing
temperature (ATe) is set between the predicted highest (PTeh)
and lowest temperatures (PTel); if not, the system will notify the
farmer to take care of the issue. On the other hand, the system
will also confirm whether the Quantitative Precipitation Forecast
(QDF) is higher than the threshold; if so, this means that the rain
will be too heavy and will damage the crops.

The study utilizes soil humidity, temperature, the weather
forecasted temperature, UV index, and QDF, and the calculated
evaporation to make a watering prediction. Firstly, the
evaporation equation, ET0 = αS (Rn− G) / (s+ γ ), is used
to calculate the evaporation of the soil. The second step is to
calculate the temperature curve. Because time and temperature
are proportional, assuming that 12:00 to 14:00 is the period of
the highest temperature, the percentage for that period is set
as 100%; as the temperature decreases from 14:00 to 17:00, the
percentages would be 70, 40, and 10%, and as the temperature
increases between 07:00 and 12:00, the percentages would be
20, 40, 60, 80, and 100%. Therefore, the slopes of the current
and predicted temperatures can be calculated from the equation
m = 1y/1x, where 1y is the time percentage of the current
temperature and 1x is the predicted time percentage of the
estimated temperature. After the calculation, using Multivariate
LSTM for further prediction, the variable is calculated by the
equation xi = {Huct ,m,QDF,ET0,UV}, where Huct is the soil
humidity and UV is the UV index. xi is entered to conduct
the LSTM analysis, and tanh is using to transfer the output
value into a number between 1 and −1, as shown in Figure 3.
According to the predicted time and the output value, the
system will judge whether it is necessary to activate the sprinkler
and environmental detection equipment. The system offered
in this research can reduce electricity waste significantly and
control water resources effectively to ensure a good growing
environment for the crops. Building outdoor agricultural
machinery based on LSTM enables farmers to set the desired
watering system and environmental management parameters
according to different crops, which can improve agricultural
output and reduce agricultural labor use.

4. PERFORMANCE

The performance of the system is described in sections
Experiment Results of the System’s Functions and LSTM
Experimental Results.
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4.1. Experiment Results of the System’s
Functions
The experimental area used in this research is an outdoor farm, as
shown in Figure 4. The experiment uses a solar power system to
store energy because there is no other source of electricity at the
farm. The area is 0.2 hectares, and the equipment used is pictured
in Figure 5; the machinery can be flexibly moved around the
farmland, and the hardware and software equipped on the system
are listed in Table 1. The machinery connects with the sensors
and the development board through IoT; there are various types
of sensors, such as barometric pressure and light sensors on the

FIGURE 3 | LSTM diagram.

FIGURE 4 | Experimental area.

machinery, as well as a mini pumping motor, a 3-in-1 soil tester,
and a solar power system.We set up a remote server that not only
collects sensor data but also conducts LSTM analysis; the server
further transfers the analytic results into readable signals for
judging whether the system should activate the sprinkler system
and initiate the environmental monitor.

4.2. LSTM Experimental Results
The study utilized LSTM to monitor the farm and select the
timing for watering. Figure 6 shows the curves from the XMPP
server and Figure 7 pictures the activation of the sprinkler system
after the signals have been judged. The data from the Central
Weather Bureau and the detected data from the environment
were combined for a further prediction. The result is shown in
Figure 8, where the blue line is the actual data, the orange line is
the prediction result after training, and the green line is the result
of the test data. In Figure 8, the number of samples is shown
in the X-axis, while the Y-axis represents the soil humidity. The
experimental results prove that the prediction approach offered
in this study is extremely accurate. The LSTM prediction value is
between 0 and 1, as Figure 9 shows; the blue line represents the
training sample, the orange line shows the test sample, the X-axis
is the number of samples, and the Y-axis is the prediction value.
The threshold value is set to 0.4, and the sprinkler system will be
activated when the value is lower than 0.4.

FIGURE 5 | Experimental hardware.

TABLE 1 | The software and hardware the proposed system.

Hardware Software

IoT Development Board XMPP Platform

Barometric Pressure Sensor Python

Light Sensor MySQL Server

Mini Pumping Motor Windows 10

3-in-1 Soil Tester

Solar Power System
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FIGURE 6 | XMPP platform.

FIGURE 7 | Activation of the sprinkler systems.

5. CONCLUSIONS

This study built outdoor agricultural machinery incorporating
LSTM; the system can carry out watering automatically and

FIGURE 8 | Prediction result of humidity.

FIGURE 9 | Prediction result of LSTM.
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monitor the farm conditions, fulfilling the purpose of an
intelligent machine. The approach presented in this study can
achieve the purpose of green energy effectively and reduce
the waste of water resources. Through the implementation of
LSTM, the system can analyze and predict the best timing for
watering, which can avoid wastage of stored solar power and
ensure an optimal growth environment for crops. Furthermore,
the method can resolve the problem of an aging agricultural
labor population and improve production output. The study
successfully accomplishes the following functions. (1) The LSTM
technique can predict the temperature and humidity of the soil
precisely. (2) The suggested approach uses a solar power system
and stores the electricity in a battery to reduce the workload of the
power installation on the farm. (3) Through an IoT platform, the
presented method is capable of predicting the best time to initiate
the watering function and control water resources effectively.
(4) The system presented in this study is mainly for outdoor
application; the experimental results have proved that practical
usage of the equipment is feasible. The experimental results
show that the proposed approach was practical under testing;
the LSTM experimental data demonstrated decent prediction

performance. In the future, the authors aim to conduct a further
study on monitoring multiple farms with a single server, which is
expected to reduce the installation costs for farmers and enable
the commercialization of the relevant equipment.
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