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To overcome novel challenges in complex domestic environments, humanoid robots can

learn from human teachers. We propose that the capability for social interaction should

be a key factor in this teaching process and benefits both the subjective experience of

the human user and the learning process itself. To support our hypothesis, we present a

Human-Robot Interaction study on human-assisted visuomotor learning with the robot

NICO, the Neuro-Inspired COmpanion, a child-sized humanoid. NICO is a flexible, social

platform with sensing and manipulation abilities. We give a detailed description of NICO’s

design and a comprehensive overview of studies that use or evaluate NICO. To engage

in social interaction, NICO can express stylized facial expressions and utter speech via

an Embodied Dialogue System. NICO is characterized in particular by combining these

social interaction capabilities with the abilities for human-like object manipulation and

crossmodal perception. In the presented study, NICO acquires visuomotor grasping

skills by interacting with its environment. In contrast to methods like motor babbling,

the learning process is, in part, supported by a human teacher. To begin the learning

process, an object is placed into NICO’s hand, and if this object is accidentally dropped,

the human assistant has to recover it. The study is conducted with 24 participants with

little or no prior experience with robots. In the robot-guided experimental condition,

assistance is actively requested by NICO via the Embodied Dialogue System. In

the human-guided condition, instructions are given by a human experimenter, while

NICO remains silent. Evaluation using established questionnaires like Godspeed, Mind

Perception, and Uncanny Valley Indices, along with a structured interview and video

analysis of the interaction, show that the robot’s active requests for assistance foster

the participant’s engagement and benefit the learning process. This result supports the

hypothesis that the ability for social interaction is a key factor for companion robots

that learn with the help of non-expert teachers, as these robots become capable of

communicating active requests or questions that are vital to their learning process. We

also show how the design of NICO both enables and is driven by this approach.

Keywords: crossmodal learning, developmental robotics, neurocognitive models, human-robot interaction,

visuomotor learning
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1. INTRODUCTION

In the future, robots may perform complex visuomotor tasks in
domestic environments as human assistants and companions.
Today, this is still a challenge due to the complexity of the
dynamic, non-standardized environments and tasks involved. A
promising approach for coping with this complexity is to take
inspiration from biological systems and develop neurocognitive
learning models embodied in developmental robots (Cangelosi
and Schlesinger, 2015) that learn, similar to a human child or
infant, from interaction with the environment and imitation
of, or teaching by, adult experts. A spectrum of such learning
approaches exists in the literature, ranging from relying entirely
on the imitation of a human teacher to nearly autodidactic
approaches without any human assistance. Imitation approaches
often face challenges when the robotic anatomy diverges from
that of the human demonstrator: though anthropomorphically
designed, robotic hands usually do not match the degrees of
freedom (DoF) of the human hand sufficiently to allow a direct
mapping (Gupta et al., 2016). Furthermore, external tracking
approaches for hands and objects are often constrained to
laboratory settings. On the other hand, deep reinforcement
learning promises human-level control (Mnih et al., 2015)
through autonomous interaction with the environment. The
agent learns through trial and error to achieve a given goal.
However, most robot platforms and environments are not suited
to the large number of interactions in the real world or the
possibility of harmful actions. Therefore, many intermediate
approaches have been developed that combine autonomous
learning with human expert knowledge in the form of
instructions (Cruz et al., 2016), or imitation (Gupta et al., 2016).
The presented research follows the concept of developmental
robotics, which aims to leverage efficient learning strategies
inspired by nature. We adopt the principle of scaffolding, a
teaching approach based on collaborative interaction between the
learner and an expert (Newson, 1979), which plays a crucial role
in early human development, for a robot.

We hypothesize that there are two requirements of the robotic
learner to enable successful scaffolding:
(1) Sensory and motoric similarity: human and robot need to
have a substantial overlap in their motor and sensory abilities
to enable the robot to profit from human demonstration and to
enable the human to affect the learning of the robot positively.
Especially, non-expert users rely on their intuitive ability for
human-to-human teaching to convey their skills. Different
sensory modalities, body forms, and degrees of freedom can
hinder this transfer. Therefore, a robotic companion needs to
mimic human sensory and motor abilities to a certain degree.
As an example, the way a human grasps or handles an object
might not be applicable to a robot with a non-hand-like end-
effector. Also, the robot’s size is essential; while smaller robots
might be easier to construct and require less powerful motors or
materials, a robot must have a sufficient size to operate efficiently

in a domestic environment.
(2) Approachability and social interaction: the robot’s physical

design and behavior need to encourage users to engage in

teaching interactions. Not only are safety issues a concern

when it comes to physical human-robot interactions; perceived
safety and approachability are important because they encourage
especially non-expert users to engage in (physical) interactions
to improve the learning outcome, for example, reaching into
the robot’s workspace while the robot is performing a manual
task. Furthermore, the robot should encourage an intuitive,
natural teaching interaction that relies on natural language and
social cues.

Through meeting these criteria, we expect the Neuro-Inspired
COmpanion robot, NICO (see Figure 1), an open-source
developmental robot platform developed by the Knowledge
Technology group1, to be able to acquire visuomotor skills with
the assistance of non-expert users. We present an update to the
NICO platform with a focus on the properties that are relevant
for this study and a review of related studies; we examine the
assumption that social interaction and human-like sensorimotor
abilities are a key to robots learning from humans by conducting
a Human-Robot Interaction study with 24 participants in which
we evaluate the effect of an active role of a humanoid in a
grasp-learning experiment. In a novel comparative crossmodal,
visuomotor learning study, NICO is supported by a non-expert
participant in a visuomotor learning task. This study, for the first
time, evaluates the interplay between NICO’s social interaction
and visuomotor learning abilities. NICO learns to grasp by
repeatedly placing and re-grasping an object at different positions
in its workspace. During this semi-autonomous grasp learning,
NICO requires the aid of human assistants to initialize the
learning process and to provide aid in case NICO loses the
object. Two experimental conditions are evaluated, in which
NICO either takes a passive or an active role in the learning
process: in the baseline human-guided condition, all instructions
toward the participant are given by the experimenter; in the
active learning condition, the robot uses a crossmodal Embodied
Dialogue System to actively guide a non-expert participant
through the learning process and to request assistance when
needed. The experimenter is present during this time but does
not communicate with the participant. We show that the active,
communicative, and emotional engagement of the robot in a
teaching situation leads not only to a subjectively better rating
of the robot using a set of established measures for HRI research
but also to an increase in the engagement of the human, non-
expert teachers, which in turn can lead to better visuomotor
learning results.

We would also like to address the methodological gap between
machine learning in robotics and neurorobotics. The embodiment
of state-of-the-art machine neural machine-learning in a physical
platform allows training and evaluation that is hardly possible
in simulation, e.g., physical interaction between a robot’s hand
and a soft, deformable object. More importantly, we argue
that research communities for machine learning in robotics
and developmental robotics are growing closer together. While
classical roboticists focus on human-in-the-loop approaches that
rely on imitation learning and demonstration, developmental
roboticists have been researching scaffolding by caregivers to

1Visit http://nico.knowledge-technology.info for further information, the open

NICO API, NICO CAD files, and released datasets.
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FIGURE 1 | NICO, the Neuro-Inspired COmpanion, is being taught how to grasp a training object by a human assistant and is giving positive feedback with its facial

emotion display.

learn complex cognitive and visuomotor skills. The underlying
idea is the same: leveraging human competence can be an
essential part of robotic learning. This competence can be
supplied by trained experts as well as non-expert users. In the
latter case, one of the main goals is to enable these non-expert
users to use their intuitive teaching abilities in a robotic scenario,
which in turn relies on an intuitive and natural communication
with the robot.

Our main claim is that non-expert users can teach visuomotor
skills to a developmental robot; however, the more these non-
experts are engaged in the teaching experience, the more they
tend to use intuitive teaching approaches that in the end lead
to more efficient teaching. This effect requires a humanoid
platform that enables intuitive and engaging social interaction
and, at the same time, has sufficient sensing and motor abilities
for the learned action. In section 2, we report on different
robot platforms and robotic visuomotor learning approaches. In
section 3.1, we present the updated NICO and a comprehensive

review of studies on its sensory, motor, and HRI abilities.
We show how its design both enables and is driven by the

interplay of social interaction and sensorimotor learning by

summarizing previous studies that often focused either on social
interaction or on crossmodal and visuomotor learning. We bring
these aspects together in section 4, where we detail the grasp-
learning approach, the Embodied Dialogue System, and the
setup for the HRI experiment, which couples social interaction
and visuomotor learning, and we show, in section 5, how an
engaging social interaction can enhance the quality of robotic
visuomotor learning. We conclude with a discussion of the
results and examine their implications as a contribution to the
future development of learning companion robots in section
6, finding that the ability of a balanced robotic platform to
engage non-expert users can benefit the learning of non-social
tasks. The social aspect not only enhances the user’s subjective

experience but also to enables non-experts to apply intuitive
teaching approaches.

2. RELATED WORK

2.1. Humanoid Platforms
Today, a wide range of robots is available, though not all
of them fulfill the above-mentioned criteria of possessing a
sensory and motoric similarity to humans in addition to an
approachable design and social interaction abilities: a humanoid
is expected to have two arms with a human-like range of
motion and hand-like end-effectors to use tools and manipulate
objects in domestic environments. Often, the hands’ fingers
have tactile sensors to enhance grasping, tool use, and in-
hand manipulation but also to create shared, embodied sensory
concepts with human interaction partners regarding haptic
properties like softness or texture. The locomotion of a humanoid
is usually bipedal. Though complex to realize, walking allows the
navigation of domestic environments, for instance, a cluttered
floor. However, for better stability and easier handling, many
platforms use a wheeled base instead. A humanoid also has a
head with eyes. Though other sensing setups might be more
efficient for specialized tasks, such as 360◦ laser scanners for
mapping, eye-like cameras can enable shared attention with
human interaction partners and thus also fulfill a critical
communicative role. Many humanoids feature some form of
emotional expression on their face, ranging from color changes
of status LEDs to stylized and animated facial expressions and
mouth movements. An alternative to an actual face is a monitor
or tablet that displays a virtual avatar or face. Another important
criterion for research platforms is an open design that allows
customization of the platform toward novel experimental setups,
easy maintainability of the platform, and compatibility with
common software standards.
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One way to categorize humanoids is by their size. Small,
infant-sized humanoids are affordable, easy to handle, and secure.
For example, the NAO from Aldebaran is well-used in research
on developmental robots, while the DARwIn-OP from Robotis
was a popular walking platform for the RoboCup competitions
(Ha et al., 2011). However, these small platforms cannot interact
with most domestic environments, cannot use tools, and are not
able to manipulate everyday objects.

Child-sized robots overcome this challenge while still being
relatively easy to handle in terms of weight and size. The iCub
resembles a 3.5-years-old child (Metta et al., 2010). The iCub
has many relevant features for developmental robot research
and HRI: 53 human-like DoF, five-fingered hands, eyes with
mechanical gaze shift, an LED-based display for stylized emotion
expression, and optional tactile sensing skin. However, its holistic
design impedes individual modifications. More modular are
the NimbRo-OP (Schwarz et al., 2013) and its slightly larger,
novel design Nimbro-OP2X (Ficht et al., 2018) from the AIS
(Autonomous Intelligent Agents) group of the University of
Bonn. These platforms are designed for the RoboCup TeenSize
and AdultSize league and, as such, prioritize walking over
manipulation ability: the arms have non-actuated end-effectors
and serve primarily for balance and getting up from a prone
position. The Poppy robot (Lapeyre et al., 2014) is a 3D-printable
open-source robot developed in 2014 by a research group at
the French Institute for Research in Computer Science and
Automation (INRIA). The objective of the robot is to be a robot
base for scientists, students, and artists originally aiming to study
the role of morphology in sensorimotor control. The software
API of the Poppy robot is based on Pypot2, a framework for
modeling controllers for custom robots, which is used by the
NICO robot as well. The Reachy robot is a commercial robot
torso developed by Pollen robotics3 in 2017. The robot has 7-
DOF arms and can lift up to 500 g (Mick et al., 2019). The
software of Reachy is Python-based. The strengths of the robot
seem to be in the field of manipulation, as the capabilities of the
arm are sophisticated for a robot of this size category. The Pepper
by Softbank (formerly Aldebaran) (Pandey and Gelin, 2018) is
mainly designed for Human-Robot Interaction. Its human-like
torso is fitted onto a wheeled platform. Pepper has 20 DoF and
human-like arms with five-fingered hands; however, its arms and
fingers are mainly designed as a means for making gestures.

Soft-skin platforms offer a more realistic human-like
appearance. The CB2 (Child with Biomimetic Body) from Osaka
University (Minato et al., 2007) is a 130-cm tall platform for
cognitive developmental robotics and features soft skin and
flexible pneumatic actuators; it has a total of 63 degrees of
freedom. Its face has actuators for eyeballs, eyelids, eyebrows,
cheeks, and mouth to display emotions. In addition to cameras
and microphones, skin tactile sensors in the skin can mediate
haptic interaction. It is designed with a view to social interaction
with a human caregiver. Affetto (Ishihara and Asada, 2015)
has a similar design. It is an upper-body platform that has the
proportions of an 80-cm tall child and has 22 degrees of freedom.

2https://github.com/poppy-project/pypot
3https://www.pollen-robotics.com

It is designed to appear human-like, including in terms of its
visual and tactile impression. Among the adult-sized robots, the
high-performance biped Talos from PAL robotics (Stasse et al.,
2017) is a further development of their REEM robot and offers
a platform for research in complex industrial environments. It
is well-suited for physical manipulation tasks and can traverse
rough terrain but is not designed for social interaction. The
PR2 from Willow Garage, a wheeled robot with two 7-DoF
arms endowed with grippers with tactile sensors, has a similar
function. Like the Talos, it has no means for emotion-expression
and is instead designed for physical tasks rather than HRI.
Finally, the InMoov (Langevin, 2014) is an open, 3D-printable
robot with a human-like design and tendon-operated five-
fingered hands. Instead of displaying emotions, it can move its
jaw to emulate talking.

In summary, many robotic platforms are available, though
currently, no single platform offers a combination of object
manipulation, sensing, and HRI qualities in an affordable and
open design. This gap in the state of the art is addressed with
the NICO robot (Kerzel et al., 2017c), whose design will be
summarized below.

2.2. End-to-End Visuomotor Learning
Visuomotor skills map raw sensory input to motor actions.
Modular approaches divide this task; they process sensory
information into explicit internal representations like
coordinates that are then used as input for modules like
inverse kinematics solvers. However, these approaches
often have difficulties adjusting to novel challenges due to
their lack of inherent learning ability. A complementary
approach is to learn visuomotor skills through interaction
with the environment (Cangelosi and Schlesinger, 2015). Deep
reinforcement approaches employ trial and error learning.
Based on initial random exploration, rewards for successful
actions drive the learning of visuomotor policies. Lillicrap et al.
(2016) introduced the Deep Deterministic Policy Gradient
algorithm (DDPG) to solve a series of visuomotor tasks in
a simulated two-dimensional environment. This approach is
based on early direct motor model learning, where motor skills
are learned in the target space only based on minimizing the
error from observations Rolf et al. (2009), Nguyen-Tuong and
Peters (2011). However, adapting these algorithms to physical
robots is challenging. The trial and error exploration can be
harmful to the robot or its environment; a large number of
required trials can cause material stress and might be too time-
consuming. Therefore, extensions to the DDPG algorithm and
related algorithms have been suggested to enhance the sample
efficiency and reduce the required training episodes. These
approaches leverage the principles of intrinsic curiosity (Hafez
et al., 2019), imagination (Andrychowicz et al., 2017), and task
simplification (Kerzel et al., 2018). However, the basic problem
of reinforcement learning of possibly unproductive and harmful
exploratory actions remains.

This issue can be addressed in several ways. Nair et al.
(2018) combine imitation and reinforcement learning. Instead
of random explorations, the learner first learns to mimic the
actions of a human teacher. The learner then refines its policy for
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exploration once a sufficient level of performance is reached to
avoid unproductive or harmful actions. The basic idea behind this
approach is to give the learner a set of good samples to bootstrap
the learning process. A variation of this strategy is not to use
an external teacher to imitate but to design the learning setup
such in a way that the learner can generate these good learning
samples autonomously. In the Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017), imagination is used after
the execution of an action to, in hindsight, imagine the optimal
goal for the previously executed action. This imagined training
sample is then used to update neural policy models. However,
though the creation of imagined samples works well in simulated
environments, it can prove difficult in real environments. A
related strategy is to let the learner generate good samples through
physical actions. This strategy is employed by Levine et al. (2016),
who utilize the known forward kinematic of the PR2 robot.
Samples are generated by having one of the robot’s hands move a
target object while the other hand tries to grasp the object. Kerzel
and Wermter (2017b) introduced a related approach where a
robot generates samples for grasp learning by repeatedly placing
and re-grasping an object at a random location. This approach
has the advantage that the kinematics of the robot do not need
to be known. However, human assistance is needed to initialize
the process and to interfere in the case of re-grasping errors.
A second approach, adopting a strategy from human learning,
is to have an expert observe the reinforcement learning process
and interfere in critical situations by giving advice and warnings
to the learner in case of harmful actions (Cruz et al., 2018a).
In summary, human teachers play an essential role in making
reinforcement learning more sample-efficient, be it as models for
imitation, physical assistants, or advisers.

2.3. Natural Teaching of Robot Learners
To ease the transfer of humanoid social robots from laboratories
to the cluttered surroundings of domestic life, they need to be
able to adapt their behavior dynamically and learn new skills
through the instructions of non-expert human users. Humanoid
social robots have the advantage that they generally foster a
human-like interaction with the user, allowing users to easily
anthropomorphize the artificial agent (Epley et al., 2007). Social
interaction through spoken dialogue is the most intuitive way to
enable such communication since it does not require additional
knowledge and training from the non-expert user. The robot
has to be a transparent learner, with its observable behavior and
spoken feedback motivating the user to teach it further.

In a study by Thomaz et al. (2006) examining the way people
teach a virtual agent in a reinforcement learning simulation,
evidence was found for people’s willingness to view their
interaction and teaching of the agent as a collaboration. The
human teacher guides and adjusts the training behavior of the
agent, with a tendency toward positive feedback. Even without
any specific amplifying behavior by the artificial agent, there
seems to exist a clear concept of partnership in human-robot
teaching scenarios. However, in comparison to a virtual agent,
a physical robot has to be much more transparent about its
intentions and internal states to ease the cooperation between
human and robot.

A typical teaching cycle usually consists of the teacher
demonstrating the desired skill for the student, followed by a
series of supervised repetitions by the student. During these
repetitions, the teacher might offer spoken feedback, display
corrective behavior, or provide additional demonstrations to
further improve the performance of the student (Nicolescu and
Mataric, 2003). To enable teaching behavior that feels natural
to the teacher while being effective for the robot learner, one
must consider the design and behavior of the artificial agent. A
childlike design, according to the baby schema (Lorenz, 1943),
with round eyes set low in a comparatively big head, can help in
facilitating intrinsic teaching methods like scaffolding.

Scaffolding is a form of assistive teaching regularly and
often unknowingly displayed by human adults when interacting
with children or infants (Breazeal, 2002). While infants are not
capable of actually requesting assistance, they display a form of
proto-social response that resembles an adult’s behavior closely
enough that the caregiver can assign meaning to them and
act accordingly. By reinforcing the infant’s interaction with the
environment, the caregiver can encourage and assist the learning
of new abilities (Newson, 1979). The adult handles the parts that
are beyond the infant’s or, in our case, the robot’s capabilities,
allowing them to focus on solving the simpler parts of the
problem first. The learning process is supported by the adult
giving affective feedback, reducing distractions, and simplifying
the problem in a way that allows the learner to recognize the
solution to a problem before being able to implement it (Breazeal,
2002).

Designing the robot as an approachable, transparent
interaction partner allows the human-robot team to show
better performance and the learner to reach a higher level of
competence. In a study by Srinivasan and Takayama (2016)
examining how the behavior of the robot during the interaction
influences people’s willingness to help it, one seemingly obvious
conclusion could be drawn: robots that get assistance from
people tend to accomplish more.

3. NICO, THE NEURO-INSPIRED
COMPANION

3.1. NICO Robot Platform
To create a robotic research platform for embodied
neurocognitive models based on human-like sensory and
motor capabilities that is at the same time well-suited for HRI
studies, the Knowledge Technology group at the University of
Hamburg designed the NICO humanoid (Kerzel et al., 2017c)4.

The first version of NICO was developed based on
the NimbRo-OP, which was discussed in section 2.1. It
is constructed mainly from 3D-printed parts and Robotis
Dynamixel servomotors, endowing it with simple maintenance
and high flexibility. This flexibility was used to gradually improve
NICO, driven by experience from experimental setups and
research. The designers followed a modular approach: each new

4Further technical details, including CAD files for 3D-printed parts, a construction

guide, video material, and the NICO API can be found at https://www.inf.uni-

hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html.
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functionality of the robot was first evaluated and iteratively
improved before it was integrated with other functionalities.
Following this scheme, a description of the sensory, motor, and
HRI capabilities of NICO are given below alongside a review
of scientific studies where these capabilities have been used.
Figure 2 shows NICO with optional clothing and a close-up of
its robotic hand with embedded tactile sensors.

3.1.1. Physical Form and Appearance
NICO stands 101 cm tall and has a weight of 7 kg, with its body
proportions and degrees of freedom resembling those of a child
between the ages of three to four. NICO’s face is adapted from the
open iCub design, giving it a stylized, child-like appearance. In its
standard design, NICO has no outer shell, i.e., it is possible to see
through the frame of the robot. To alleviate this, a 3D-printed
cover is being developed. Furthermore, its child-like anatomy
allows the robot to wear off-the-shelf clothing.

3.1.2. Motor Capabilities
NICO has 30 DoF, which are distributed as follows. Two DoF
perform yaw and pitch movements of the head, which has
an important signaling function in human-robot interaction,
in addition to supporting joint attention and addressing
communication partners. The arms have 6DoF, with the shoulder
forming a cluster of three motors that mimic the physiology of
the human shoulder ball joint. An additional DoF allows bending
of the elbows, and the final two DoF for wrist rotation and wrist
flexion are provided by the Seed Robotics SR-DH4D articulated
hands. These three-fingered hands are tendon operated; two
motors contract the two linked index fingers and the opposed
thumb. The tendon operation emulates hand synergies during
grasping (Mason et al., 2001) to simplify the control during
this complex process: only two DoF for closing the hand can
securely grasp a wide range of different objects. Figure 2D shows
a schematic depiction of the mechanical design of NICO’s upper
body. For locomotion, each of NICO’s legs has three DoF in the
hip joint, one DoF in the knee, and two DoF in the foot.

3.1.3. Sensory Capabilities
NICO’s head features two parallel See3CAMCU135 cameras with
4K resolution (4,096 × 2,160). The cameras have an opening
angle of 202◦. Via the API, the camera can be configured to
transmit only parts of the image and thus constrain the field
of view to a human opening angle of 70◦. This results in a
reduced amount of data and the possibility of realizing virtual
gaze shifts. NICO’s head is endowed with two SoundmanOKM II
binaural microphones embedded in realistically shaped and 3D-
printed pinnae, which allows human-like binaural hearing for
vertical and horizontal sound source localization. The location
of the microphones and the dampening factor of the head
and also of the pinnae have been designed to mimic human-
child anatomy for providing a realistic distortion of the sounds.
To reduce ego-noise and improve speech recognition, NICO’s
head was designed without internal fans, mechanics, or motors.
Haptic sensing subsumes proprioception and tactile sensing.
While proprioception provides information about body posture,
movement, and forces, the tactile modality registers deformation,

vibration, and temperature. Both sub-modalities are realized in
NICO: information about motor position and torque provide a
proprioceptive sense for all DoF. To allow faster andmore precise
measurement of forces in motors even during movements and
under load, the energy supply to all motors has been redesigned
to exclude artifacts from power spikes due to energy-intensive
motions. For tactile sensing, OPTOFORCE OMD-10-SE-10N7
force sensors were installed in all three fingertips of each hand.
These dome-shaped sensors are slightly deformable and measure
forces of up to 10 N in three dimensions at up to 400 Hz, making
them well-suited to picking up vibration.

3.1.4. Interaction Capabilities
NICO’s head is fitted with three LED arrays in the mouth and
eye areas that can display stylized facial expressions. The areas
behind the eyes consist of 8 × 8 LEDs; the array in the mouth
area consists of 16 × 8 LEDs. The thickness of the 3D-printed
head is reduced in the respective areas and optimized to allow
the LEDs to shine through the material while blurring individual
lights. A set of fixed emotions can be displayed, as well as freely
programmable patterns; thus, emotional expressions can also
be learned over time or be adjusted to individual interaction
partners. Figure 3 shows examples of expressions for happiness,
sadness, surprise, anger, and a neutral mood. These facial displays
can give intuitive feedback to the user about the state of NICO in
the context of a task. In addition to this specialized facial display,
NICO, like many robotic platforms, has an internal speaker for
uttering spoken messages and can express non-verbal social cues
like gestures, poses, and head movements.

3.1.5. API and Virtual Model
The NICO API supports direct control via Python and the
robot operating system ROS. Python allows easy integration
into the most common frameworks for GPU processing and
deep learning like Tensorflow (Abadi et al., 2016). This gives
scientists an easy way to embody neurocognitive models into
the robot. NICO’s full functionality can also be accessed via
ROS (Quigley et al., 2009), the de facto standard in the robotics
community, to allow easy sharing of software modules. The
low-level motor control of the API is based on PyPot (Lapeyre
et al., 2014), which was extended to support NICO’s hands.
The use of Python makes it possible to utilize existing libraries
for control and preprocessing of sensory information, such as
OpenCV for camera and PyAudio for microphone recordings. A
set of predefined facial expressions is provided for the Arduino-
controlled facial emotion display. As virtual environments are
often used in robotics research for allowing extended and
controlled experiments without strain to the robotic hardware,
a virtual realization of NICO for the V-REP robotics simulator
(Rohmer et al., 2013) is provided. V-REP supports simulated
physical interactions, including forces and friction between
different objects. Additionally, the robot model is provided in the
established Unified Robot Description Format (URDF) for use in
other simulation environments. The URDF description contains
information about the kinematics of the robot, its collision
model, and visual representation. The API allows seamless
switching between real and simulated environments.
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FIGURE 2 | (A) NICO humanoid robot sitting on child-sized furniture. (B) NICO can wear regular clothing without being hindered in its motor abilities. (C) NICO’s

three-fingered hand with tactile sensors. (D) Schematic depiction of the mechanical design of NICO’s upper body.

FIGURE 3 | NICO’s facial emotion display showing different expressions: (A) neutral, (B) happiness, (C) sadness, (D) surprise, and (E) anger.

3.2. NICO Evaluation and Studies
Following the design strategy to iteratively evaluate and
improve each functionality of the robot before integrating it
in larger experiments, a set of studies has been conducted
involving NICO’s motor, sensory, and human-robot interaction
capabilities5. In some studies, the main scientific focus was not
on the robot itself but on the neurocognitive models embodied
within it. However, these studies are especially valuable for

5An overview video of selected studies carried out onNICO can be found at https://

www2.informatik.uni-hamburg.de/wtm/videos/NICO_papers_2017-2020.mp4.

NICO’s ongoing design process, as they provide feedback under
realistic research conditions.

3.2.1. Embodied Sensing Evaluation
Embodied Visual Perception. Compared to the typical
applications of computer vision approaches, there are no
differences in a robotic vision system. Therefore, the performance
of state-of-the-art approaches for object detection, e.g., RetinaNet
(Lin et al., 2017) can be utilized without limitations on NICO.
However, a robot offers the ability to combine vision with active
object manipulation: the robot can move and turn an object to
learn a more elaborate visual representation. Additionally, object
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manipulation can also be used to train and evaluate models for
object tracking under deformation and occlusion. Heinrich et al.
(2019) recorded the NICO-object interaction dataset featuring
sixty object-hand interactions, including different push, pull,
grasp, and lift actions on a broad range of toy objects that show
diverse behaviors, such as rolling, bouncing, or deformation.
The exploration procedures were inspired by typical child-like
behavior that could be realized on a humanoid. The dataset was
used to evaluate the HIOB framework, an adaptive convolutional
object tracker based on an incremental update mechanism.
Josifovski et al. (2018) applied a convolutional neural network
for object detection and pose estimation trained with 3D-
models of NICO’s hand. Though the pose of the hand can be
computed via forward kinematics, such models can contribute to
developmental approaches in which the kinematics of the robot
are learned. Furthermore, the work demonstrates the transfer of
models trained on the simulated model to the real world.

Embodied Audio Perception. Like computer vision, audio
processing on a robotic platform does not differ greatly from
any non-robotic audio task. However, the robot’s ego-noise
during operation and its ability to actively manipulate objects
to elicit audio information have to be considered. Humanoids
can perform common audio exploratory procedures like shaking
an opaque container to gain insight into its content. Eppe et al.
(2018) and Strahl et al. (2018) recorded an audio dataset with
1,080 samples of active audio exploration of 30 capsules filled
with different materials, which NICO could shake with its hand,
to train a recurrent neural network classifier. High classification
accuracy of 91% was achieved due to the low ego-noise of the
robot in the head area.

Embodied Haptic Perception. In contrast to audio and
vision approaches, haptic perception is inherently based on
active exploration to gain information about handled objects
and materials. Compressing or squeezing an object can give
information about the compliance of the material, while forces
along themovement direction during lateral motions reveal static
and slip friction as well as texture information. NICO’s haptic
sensory setup enables the use of human-like haptic exploratory
procedures: in two studies, the use of lateral motion across
surfaces to gain texture information and the use of squeezing
objects to gain information about their compliance and shape
was evaluated. Kerzel et al. (2017a) collected a 3200-sample
dataset of lateral motions over a set of 32 samples of common
household materials ranging from metal to different fabrics or
cardboard. High classification accuracy of 99% could be achieved
with a neural model. The study could also positively evaluate
the robustness of the sensors; in over 5,000 trials, no wear
and tear to the sensor occurred. Kerzel et al. (2019b) collected
a dataset of human-inspired active haptic exploration of 16
different toys by enclosing and squeezing the objects in the robot’s
hand. These objects range from foam dice to different plush
and plastic figures. The dataset contains 100 active exploration
trials for each of the 16 objects; in each trial, seven haptic
sensory channels were recorded for 52 time steps. A neural model
that integrates the different haptic sensory channels over time
achieved a 66.6% classification accuracy. Both studies showed
that a key to recognizing haptic properties is the integration of

motoric, proprioceptive, and tactile information. To this end,
the NICO API is designed to synchronize motor commands and
different sensory streams.

3.2.2. Motor Learning Evaluation
Several approaches for grasp learning have been evaluated on
NICO: Hafez et al. (2017, 2019) successfully evaluated curiosity-
driven reinforcement learning both on a simulated and on a
physical NICO. For the physical experiments, full training of the
deep RL approach was conducted without human supervision
for over 50 h during which NICO performed arm movements
and grasp actions. This uptime attests to the robustness of
NICO’s hardware. Cruz et al. (2016, 2018a,b) used a virtual model
of NICO to develop and evaluate interactive reinforcement
learning by allowing NICO to receive parent-like advice during
a simulated cleaning task. Vocal commands and hand gestures
were supplied during training and could be shown to enhance
the training efficiency. These studies show the effectiveness
of intuitive supervision by non-expert users during domestic
tasks that are enabled by an interactive humanoid. Kerzel and
Wermter (2017a,b) developed an end-to-end learning approach
for object grasping based on a semi-autonomous self-learning
cycle, which is described in more detail in section 4.1. Eppe
et al. (2017) extended the approach with a modular, attention-
based vision approach to grasp a diverse set of small objects
in a cluttered scene. Kerzel et al. (2019a) further refined
the approach by unifying the visuomotor architecture with a
pyramidal convolutional network for identifying, localizing, and
grasping a goal object in a complex scene.

3.2.3. Datasets
A series of mono and crossmodal datasets from the above-
described active sensing studies that have been recorded with
NICO have been published for further use by the scientific
community. Kerzel et al. (2019b) provide a haptic dataset
of tactile and proprioceptive information during active haptic
exploration of objects. Heinrich et al. (2019) provide a vision
dataset of 60 object-hand interactions. Heinrich et al. (2018,
2020) recorded the EMIL dataset on embodied multi-modal
interaction for language learning. The dataset focuses on
low-level crossmodal perception during the environmental
interactions from a body-rational perspective. The robot
explored a set of toy objects through different actions like
shoving, pulling, lifting, and scooting the object across the table.
For each action, continuous recording from the robots’ cameras,
microphones, and proprioception, as well as from an external
RGB and depth camera, is provided. Additionally, each sample
is annotated with multiple natural language descriptions of
the action.

3.2.4. Human-Robot Interaction Evaluation
A wide range of HRI research questions has been addressed
using the NICO platform. Initial studies focused on the reception
of NICO and its emotional display. Churamani et al. (2017b)
evaluated the seven abstracted facial expressions of NICO.
Twenty participants (seven female, 13 male, aged between 19
and 49 years, English at a conversational level or better) from
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eleven different countries from Europe, Asia, South America, and
the Middle East took part in the study. The participants could
identify a subset of five expressions (neutral, happiness, sadness,
surprise, and anger) with an accuracy of ≥75%. Furthermore,
the effect of emotion-display on the subjective user rating
was evaluated: users completed the Godspeed questionnaire
(Bartneck et al., 2009) before and after having seen NICO’s facial
emotion display; the results showed a significant increase in
ratings for the anthropomorphism, animacy, and likeability of
the robot.

Churamani et al. (2018) also proposed an alternative to the
fixed facial expressions by applying a reinforcement learning
approach, taking advantage of NICO’s freely programmable LED
display. To learn to express social cues, recognition of emotions
is used. A deep hybrid neural model for crossmodal processing
recognized the emotion of a human interaction partner by
analyzing facial expressions. The recognized emotion modulates
an internal emotion model, which then drives the learning of
situation-appropriate facial expressions. The system is aimed to
enable NICO to express empathy toward its interaction partner.
Churamani et al. (2017b) extended the emotion recognition
capabilities of NICO by using a hybrid, deep neural network
model based on self-organization to learn the general and person-
specific ability to mirror back facial emotions. Siqueira et al.
(2018) further extended the emotion recognition capabilities by
applying a crossmodal approach. They developed an emotion-
driven dialogue system that allows NICO to combine evaluations
of emotional valence from vision and language during human-
robot interaction. The system enables NICO tomodel an affective
association between an external auditory stimulus and the user’s
emotional reaction to gain an understanding of the user’s
preferences. It adjusts its dialogue behavior depending on learned
affective information. The system also disambiguates incoherent
perceptions of emotions via dialogue.

The use of emotion recognition and expression is aimed at
the overall goal of creating natural and engaging interactions.
This idea was further explored by personalizing the interaction
with individual interaction partners and also by evaluating
different “personalities” or interaction strategies for NICO.
Griffiths et al. (2018) investigated the effect of different roles
of a social robot as a motivational exercise aid. Using an
online questionnaire based on videos and images of NICO, they
evaluated the preferred role in which people would want to
be assisted by a social exercise robot: companion or coach. Ng
et al. (2017) and Churamani et al. (2017a) realized a natural
language dialogue system for NICO that engages the users
in a personalized conversation where the robot tracks and
remembers the user’s face as well as information given during
the conversation, such as name and personal preferences. The
effects of the personalized interaction capabilities with regards
to social acceptance, perceived intelligence, and likeability were
evaluated in an object learning scenario where a human user
taught the robot about different objects. The authors found
that a personalized system is rated as more intelligent and
likable but receives less social acceptance. Beik-Mohammadi et al.
(2019) evaluated the influence of two different robot personalities
(socially engaged vs. competitive) on user acceptance in the
context of a dice game. To show social engagement, NICO

makes jokes and engages itself in small talk via a natural
language dialogue system; it also uses physical gestures. A
neural network analyses the facial expression of the human
interaction partner. Physical interaction between participant
and robot (handover of dice, congratulatory fist bump) was
used to enhance the engagement of the interaction. Results
gained from questionnaires indicate that social engagement
evokes stronger emotions and achieves higher ratings regarding
likability and animacy.

In summary, these studies utilize NICO’s ability for
crossmodal sensing, motion, and social interaction to extend
existing neurocognitive models, e.g., for emotion recognition,
which were previously trained on prerecorded datasets (e.g.,
Barros et al., 2018), to live interactions. This allows the evaluation
of the model’s ability to adapt to individual users and, more
importantly, it allows the effect of different HRI strategies on
subjective user rating under realistic conditions to be studied.
In the following section, we will further extend this research by
evaluating how these more engaging interactions can benefit the
learning of neurocognitive visuomotor models.

4. METHODOLOGY

In the presented HRI experiment, non-expert users perform a
training procedure for a visuomotor task with the developmental
humanoid robot NICO. Two conditions are compared: in the
robot-guided condition, the robot takes an active role as a learner
and guides the user through the process using an Embodied
Dialogue System; in the human-guided condition a human
experimenter gives all instructions to the participant and controls
the robot. We evaluate both the effect on the subjective user
rating of the robot and the effect on the learning process. The
visuomotor learning task is based on an end-to-end approach
for visuomotor learning by Kerzel andWermter (2017b) and will
be described in detail in section 4.1. To enable the bio-inspired
development of grasping abilities from interaction with a physical
environment, the robot repeatedly places and re-grasps an object
on a table. This semi-autonomous learning cycle requires human
assistance for initialization and also in the case of a failed re-
grasping attempt. The learning task for the HRI study was
chosen for two reasons: first, it is a state-of-the-art approach for
visuomotor learning from neurocognitive robotics, and second,
the approach can run in the robot-guided condition without
intervention from the experimenter. Together, these properties
create a realistic robotic learning scenario.

4.1. Neural Architecture and Self-Learning
Cycle for End-to-End Grasp Learning
To circumvent the long and possibly damaging trial-and-error-
learning periods required for reinforcement learning, Kerzel and
Wermter (2017b) presented an approach for transforming the
learning task into supervised learning with a neural architecture.
A neural architecture can link a visual input image of an
object in the robot’s field of view to a joint configuration to
reach for the object. This regression can be performed by a
convolutional neural network (CNN). Figure 4 (top) shows the
neural architecture. Given an input RGB image of 80 × 60
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pixels, the two convolutional and two dense layers of the network
predict a joint configuration for grasping. The two convolutional
layers consist of 16 filters, each with a size of 3 × 3 and a
ReLu activation function; the dense layers have 900 neurons each
and, like the output layer with six neurons, one for each joint
in NICO’s arm, use a sigmoid activation function. The output
is a joint position for reaching for the object, normalized to
the interval [0, 1]. The architectural parameters were initially
informed by successful approaches for learning visuomotor skills
(e.g., Mnih et al., 2015), and empirically optimized (see Kerzel
and Wermter, 2017a for details).

The neural architecture can associate an image of an object
on the table with a joint configuration to reach for the object.
For the supervised training of the network, annotated samples
are needed that link said images to joint configurations. As it
would be too time-consuming to manually create these samples,
e.g., by guiding NICO’s hand toward the object, the learning task
was transformed: instead of grasping, NICO performs the far
easier task of placing the object. Starting in an initial pose with
the object in its hand, NICO places it at a random position on
the table. It stores its current joint configuration, releases the
object, removes the hand, and records an image. The resulting
image-configuration pair will later be used to train the neural
architecture. To complete the learning-cycle, NICO uses the
stored joint configuration to re-grasp the object. Once the object
is in its hand, NICO starts from the beginning and places the
object at another random location on the table. Figure 5 (bottom)
shows this semi-autonomous learning cycle.

Kerzel and Wermter (2017b) evaluated the architecture with
training sets of different sizes (10, 25, 50, 100, 200, and 400
samples). All experiments were conducted for 2,000 epochs with
stochastic gradient descent with Nesterov momentum (learning
rate = 0.01, momentum = 0.9). The batch size was 40, except
for the experiments with fewer samples, where a batch size
of 10 for the 10-sample condition and a batch size of 20
for the 25-sample condition were used. Mean squared error
was used as loss. Each condition was repeated ten times with
Glorot uniform initialization and evaluated with 50 random test
samples. Figure 6 shows results for different training set sizes.
A grasp success rate of 85.7% was achieved with 400 samples
of a single object. In a related study, Eppe et al. (2017) report
an average accuracy of 76.4% using a total of 535 samples of six
different objects. The later model was used for the demonstration
phase during the HRI experiment. The success rates represent
complete and successful physical grasp actions. A large portion
of the non-successful grasps results from objects slipping from
the robot’s hand during the closure of the fingers or lifting of
the hand.

However, two challenges arise: First, NICO needs to learn
to place objects on the table. For this, initial motor training
needs to be performed, during which NICO’s hand is moved
randomly over the table surface by a human assistant for a few
seconds. Second, a human assistant is also required to place the
training object into the robot’s hand at the beginning of the
learning process or when a re-grasping attempt fails. Using its
proprioception, NICO can detect such a failure. It then stops the
learning cycle, deletes the last collected sample, and moves back
into its initial pose, waiting for a human assistant to place the

object into its hand so that it can resume. The learning-cycle is
semi-autonomous, as it can run for extended periods unattended.
In the study by Kerzel and Wermter (2017b), errors occurred
in about one out of thirty attempts; however, the number of
consecutive error-free cycles fluctuated between 2 and 106. To
allow human assistants to focus on other tasks while NICO is
learning, the setup was further modified to not just halt the
learning-cycle upon detection of failure but to also alert the
experimenter, utilizing NICO’s inbuilt communication abilities
and the Embodied Dialogue System.

4.2. Embodied Dialogue System
The Embodied Dialogue System (Kerzel et al., 2017b) is designed
as a control center connecting the six main components
needed to accomplish visuomotor grasping tasks, namely
Motion, Vision, Emotion, Computation, Knowledge, andNatural
Language Generation (NLG). Motion controls the sensorimotor
functions of the robot, while Vision uses the cameras in NICO’s
head to capture the stereo images necessary for the computation
of joint values. The data for the task is stored and made
available in the Knowledge component, while the Computation
component handles the loading of the trainedmodel to the neural
network and the computation of the joint values for grasping.
Communication with the user happens mainly through the
Emotion component, which displays stylized facial expressions
with embedded LED lights, and theNatural Language Generation
(NLG), which outputs the situationally appropriate response
or request through text-to-speech synthesis. The Embodied
Dialogue System is implemented as an agenda-driven system,
with the agenda being the training of object grasping skills
or the testing and demonstration of the acquired ability. The
Dialogue System implements the joint-task agenda approach
(Piwek, 2017) in which tasks are accomplished via human-
robot collaboration. NICO performs visuomotor actions and
communicates its progress and the possible need for help, while
the user hands the learning object to the robot and provides
assistance when requested.

The Embodied Dialogue System is realized in a structured
dialogue model (Schlangen, 2005) with atomic and finite
states. Figure 6 shows the underlying state machine: states
represent actions of the robot that are carried out with
different combinations of components. The Embodied Dialogue
System decides which action to perform next based on internal
knowledge, external commands, or perception with visual or
tactile sensors. If, for example, the learning to grasp task is
selected, the system will initialize the learning process and ask
for assistance from the user, it will execute the grasp-learning
cycle until it reaches the desired number of successful samples
or until NICO fails at a grasp attempt in which case assistance is
required again. The NLG function is executed concurrently with
other functions to report progress without interfering with the
action currently being executed.

4.3. Experimental Design
4.3.1. Participants
The recruitment of participants occurred through various
sources (internet advertising, flyers, academic offices) to attract
participants with no or little prior experience with humanoid
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FIGURE 4 | (Top) The neural architecture for grasp learning, adapted from Kerzel and Wermter (2017b), maps a visual input to a six-DoF joint configuration to reach

for the object in NICO’s field of view. (Bottom) NICO’s self-learning cycle: (A) an object is put into NICO’s hand. (B) NICO places the object at a random position on the

table and records its joint configuration. (C) NICO releases the object, removes the hand, and records an image. (D) Using the recorded joint configuration, NICO

re-grasps the object and repeats the self-learning cycle.

FIGURE 5 | Results of the visuomotor learning from Kerzel and Wermter (2017b), based on the number of training samples, averaged over ten trials. With 400 training

samples, 85.5% of all grasp trials are successful.

robots, to avoid a so-called “convenience” sample (Baxter
et al., 2016). The only requirement was a basic knowledge of
conversational English. As an incentive, all participants were able
to participate in a draw for gift certificates. Of the 24 participants
(12 female and 12 male), an overwhelming majority (83.3%)
reported no or little experience with humanoid robots prior to
the experiment. Even though the participants were distributed
randomly between the two conditions, the gender ratio remained

equal in both. The overall average age of the participants was 27,
with a range of 17–60. The majority (62.5%) identified as atheist
or of no religion, 33.3% was Christian, and 4.16% as ‘other.’
In terms of English proficiency, 45.83% self-assessed themselves
as advanced, 41.6% as intermediate, and 12.5% as beginner. The
study was approved by the Ethics Commission of the University
of Hamburg. Written informed consent was acquired from every
participant before the start of the experiment.
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FIGURE 6 | Diagram of the Embodied Dialogue System: depending on the task, NICO guides the user through the grasp training until a fixed amount of samples is

successfully collected or demonstrates its grasp abilities to the participant.

4.3.2. Experimental Setup and Process
In the experimental setup, NICO is seated at a table with
appropriate dimensions for a child-sized robot, as depicted in
Figure 7. This experimental setup was initially introduced by
Kerzel and Wermter (2017b) and subsequently adapted for
various studies related to visuomotor learning and crossmodal
object interaction (e.g., Eppe et al., 2017; Kerzel et al., 2017b,
2019b; Heinrich et al., 2018, 2020). Therefore, the experimental
setup recreates a realistic neurorobotic learning scenario. The
human participant is sitting face-to-face with the robot. The
participant and the robot are enclosed by a semi-circular screen.
A ceiling-mounted camera captures the interaction between
participant and robot. The experimenter is positioned at an extra
table to the side, where the interaction phase is started, observed
and, depending on the experimental condition, narrated from.
A separate adult-sized table was provided for filling out the
questionnaires and the consent form.

Figure 8 shows the experimental process. To measure the
effect of the Embodied Dialogue System on the effectiveness

of the training process and the user’s perception of the
agent, independent measures were used. The participants were
randomly assigned to either a human-guided condition (HG), in
which the human experimenter guides them through the grasp-
learning task, or a robot-guided condition (RG), in which NICO
itself narrates the process and asks for help if needed. Before the
experiment, a short introduction to the process and to NICO
itself was given to the participants. The camera above the table
was shown to them, and the purposes of both audio and video
recording were explained. The participants had the opportunity
to ask questions before written consent for their participation in
the experiment was obtained.

Before the interaction, the participants were seated opposite
an unmoving NICO and were asked to evaluate their immediate
impression of NICO by filling out the first questionnaire, based
on the refined version of the Uncanny Valley indices by Ho and
MacDorman (2017), measuring perceived humanness, eeriness,
separated into eerie and spine-tingling, and attractiveness.
Since perceived humanness measures a similar concept to
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FIGURE 7 | Experimental setup. Photo (A) and schematic depiction (B) of the experimental setup. The participant is seated face-to-face with NICO, while the

experimenter is standing at a separate table and, depending on the experimental condition, guides the participant through the experiment and visibly operates the

robot (human-guided condition) or remains silent (robot-guided condition). A ceiling-mounted camera records the interaction.

the anthropomorphism and animacy indices of the Godspeed
questionnaires (Ho andMacDorman, 2010), this serves as a basis
for the comparison of the change of the participants’ impressions
of the robot after the interaction.

The interaction was divided into two phases: A training phase
and a demonstration phase. The training phase was limited
to 10 min to allow a comparison of the number of collected
samples in both conditions. To start the training process, the
participant placed the object into NICO’s hand. For an increase
in interactivity, an intentional grasping error was included in the
training. The error occurred randomly every two to five grasping
attempts. (For comparison, without the intentional error, failed
grasp attempts occurred on average only after more than 30 trials
in the study by Kerzel and Wermter (2017b).

In the human-guided condition, the human experimenter
instructed the participant when and how to initiate the training
and narrated the process. NICO remained silent in this condition
and only displayed facial expressions dependent on the success
or failure of the grasping attempt. The human experimenter
informed the participant if the robot was in need of assistance.
In the robot-guided condition, NICO took over the role of
the instructor, combining the display of emotions with verbal
expressions of happiness or distress, and requesting the assistance
of the participant if needed. The script for the training phase can
be viewed in Table 1.

The demonstration phase consisted of the participant placing
the object on the table in front of NICO three times, and the
robot trying to pick it up. If the attempt was successful, the robot
handed the object back to its interaction partner and, depending
on the condition, voiced its happiness in addition to displaying
an appropriate facial expression. The participants were given no
instruction on where to place the object exactly. This allowed
the participants to witness the effects of the prior training phase,
even though a previously trained neural network was used. For
the sake of transparency, the participants were informed about
this fact beforehand. Equivalent to phase one, depending on the
condition, either the human expert or the humanoid itself guided
the participants through the process (see Table 2).

After the interaction, the participants were asked to return
to the interview table to fill in the second questionnaire, based
on the Godspeed questionnaires by Bartneck et al. (2009) and
the Mind Perception questionnaire by Gray et al. (2007), with
some additional questions collecting demographic information
about the participants. The Godspeed questionnaires measure
anthropomorphism, animacy, likeability, perceived intelligence,
and perceived safety. While they are known to be very dependent
on the environment of the experiment and the experimental
design (Weiss and Bartneck, 2015), more so than on the
robot itself, they remain a popular evaluation tool and were
included here for comparison’s sake. TheMind Perception survey
questions measure the amount of mind participants attribute
to the evaluation subject, in two dimensions: Experience and
Agency. While Experience is about how much the subject feels
or senses, Agency describes the robot’s capacity to act, plan,
and exert self-control. As before, the participants were asked
to evaluate NICO based on their personal impressions alone.
The interview that followed was conducted in a semi-structured
manner, with the questions based on the USUS evaluation
framework of Weiss and Bartneck (2015), with a combination of
obligatory and additional questions for the categories Usability,
Social Acceptance, and User Experience. The interview was
audio-recorded, about which the participants had been informed
before the start of the experiment.

5. RESULTS

5.1. Subjective Effect of an Active Role in
Learning on the Participants
5.1.1. Humanoid Evaluation
Initial evaluation. The Uncanny Valley indices were used to
evaluate the participants’ first impression of a silent, motionless
NICO. The mean scores are M = 2.32(SD = 0.66) for
humanness,M = 3.01(SD = 0.56) for eeriness,M = 3.13(SD =

0.53) for spine-tingling, and M = 3.79(SD = 0.72) for
attractiveness. A visualization of the results can be viewed in
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TABLE 1 | Script for a training cycle in the first phase of the interaction.

Visible robotic action Human-guided dialogue Robot-guided dialogue

NICO moves into the starting position;

NICO displays a neutral facial expression

NICO is ready to train. It’s training time!.

NICO opens its right hand Please put the object in NICO’s right hand. Please put the training object

in my right hand.

NICO places the object at a random

position on the table

NICO is choosing a location for the object. Let’s put the object here.

NICO moves the hand away (and records

a picture)

NICO is remembering the location of the

object.

I am remembering the location

of the object.

NICO attempts to grasp the object again NICO will now try to grasp the object. I will try to grasp the object.

(SUCCESS)

NICO displays a happy facial expression;

repeat from beginning

NICO is choosing a new location for the

object.

Let’s put the object here.

(FAILURE)

NICO displays a sad facial expression NICO failed to grasp the object. Oh, no! I failed to grasp the

object.

NICO moves back into starting position NICO deleted the last recorded file. I deleted the last recorded file. I

am done training.

TABLE 2 | Script for the grasping attempt in the second phase of the interaction.

Visible robotic action Human-guided dialogue Robot-guided dialogue

NICO moves into the starting position;

NICO displays a neutral facial expression

NICO is now ready to look, please put the

object in front of NICO on the table.

Ready to look! Please put the

grasp-learning object onto the

table.

No visible action (NICO records a picture) NICO is now looking at the object. I am looking at the object.

No visible action NICO is building the network and loading it

from file.

Let me think about this very

carefully. Building network.

Loading network from file.

No visible action The network is loaded and is now

connecting to NICO.

Network loaded, connecting to

myself.

NICO reaches for the object NICO is now ready to grasp. Output joint values. Ready to

grasp.

(SUCCESS)

NICO grasps the object, lifts it up and

presents it to the participant; NICO

displays a happy facial expression

NICO managed to grasp the object. Here

you go, this is for you.

I grasped the object. Here you

go, this is for you.

(FAILURE)

NICO does not grasp the object; NICO

displays a sad facial expression and

moves back into the starting position

Since NICO failed to grasp the object, we

will try again.

Oh, no! I failed to grasp the

object. I will try again.

Figure 9. These results establish a baseline against which we
can make comparisons after the robot interaction in the two
experimental conditions.

Evaluation of the two experimental conditions. As Figure 10
shows, the mean scores of the Godspeed questionnaires
are slightly higher in the robot-guided condition for
anthropomorphism, animacy, and perceived safety. In the
human-guided condition, NICO ranked higher on likeability and
perceived intelligence. The mean scores and standard deviations
can be viewed in Table 3. To test the statistical significance of the
different scores in both conditions, a two-sided Mann-Whitney
test was performed. The evaluation of the differences between
the two groups produced no significant results (p > 0.05).

As for the results of the evaluation of the Mind Perception
survey, NICO scored higher in regards to both Experience (M =

2.65, SD = 0.63) and Agency (M = 3.12, SD = 0.54) in the
human-guided condition (Figure 10). The scores in the robot-
guided condition wereM = 2.34 (SD = 0.83) for Experience and
M = 2.84 (SD = 0.93) for Agency. However, a two-sided Mann-
Whitney test showed no statistical significance to the difference
between the conditions (p > 0.05).

Evaluation after the interaction compared to the baseline. To
evaluate a possible change in perceived humanness during the
interaction in relation to the established baseline, a Wilcoxon
signed-rank test was performed, under the assumption that
humanness measures the same concept as anthropomorphism,
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FIGURE 8 | The experimental process. After an introduction, participants were asked to fill in a first questionnaire (Uncanny Valley Indices) based on their initial

impression of NICO. Participants were then randomly assigned to the robot-guided or human-guided condition. In both conditions, participants performed a training

phase with NICO, followed by a demonstration by NICO. After the demonstration, participants filled in two more questionnaires (Goodspeed and Mind Perception) and

took part in a structured interview using the USUS framework.

FIGURE 9 | Initial evaluation to establish the participants’ first impression of a

silent, motionless NICO as a baseline for later comparison. Mean scores and

standard error for the Uncanny Valley indices.

animacy, and likeability. As suggested by Ho and MacDorman
(2010) in their analysis of the Godspeed questionnaires, a high
correlation between anthropomorphism and animacy (rs = 0.71,
p < 0.01) and a medium correlation between animacy and
likeability (rs = 0.46, p = 0.03) was found. The small correlation
between anthropomorphism and likeability (rs = 0.35, p = 0.09)
was not statistically significant.

The comparison of pre-interaction humanness and post-
interaction anthropomorphism did not yield a significant result,
with p = 0.11 (Z = 93.5). The p-value of the test within the
human-guided condition is p = 0.7203 (Z = 34.5), and p = 0.11
(Z = 18.5) within the robot-guided condition. The comparison
between humanness and animacy produced a significant result
overall, with p < 0.01 (Z = 55.5), as well as within the robot-
guided condition, with p < 0.05 (Z = 14). The test within the
human-guided condition shows no significant difference (p =

0.17,Z = 21.5). The comparison between humanness and
likeability produced a significant result overall, with p < 0.01
(Z = 4), as well as within the robot-guided condition, with p <

0.01 (Z = 2), and the human-guided condition, with p < 0.01
(Z = 0).

5.1.2. Interaction Evaluation
The evaluation by interview reinforces and clarifies some of the
conclusions of the statistical analysis; it also uncovers additional
information by giving the participants the space to talk about
their experience. The interview questions were based on the
indicators of the USUS evaluation framework by Weiss and
Bartneck (2015), and the interview was conducted in a semi-
structured way. On average, the interviews took between 7 and
8 min per participant.

The effectiveness of the training process was perceived more
favorably in the robot-guided condition, with a majority of
participants believing in the accomplishment of a goal (60%)
and experiencing a high level of satisfaction regarding NICO’s
progress (79.9%). In the human-guided condition, only 33.3% of
the people reported a feeling of accomplishment, and only 16.6%
were satisfied with the achieved performance.

All of the participants in the robot-guided condition rated
the communication as satisfactory for them, and a majority
(66.6%) felt that they would be confident enough to interact with
NICO again in the future without the presence of an expert.
The most commonly mentioned reason for their confidence was
the fact that NICO had previously told them what to do. The
remaining 33.4% who were unsure about future interactions
mentioned insecurity regarding the expected extent of their help
toward NICO. In the human-guided condition, the split was
approximately even, with 58.3% of participants admitting the
need for further help by a human assistant in a future interaction
withNICO and 41.7% being confident in the simplicity of the task
and in NICO’s ability to conduct the training process without any
mistakes. The majority of participants (60%) in the robot-guided
condition reported a lack of anxiety due to the dialogue system
and NICO’s instruction. The remaining 40% expressed anxiety
with regard to their own failings, but with the underlying theme
being a concern for NICO and its learning process.

In the robot-guided condition, 73.3% of the participants felt
that they played a more active role in the interaction, and 80% felt
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FIGURE 10 | (A) Shows the mean scores and standard error for the categories of the Godspeed questionnaires. The active NICO scored higher in regard to

Perceived Safety, Animacy, and Anthropomorphism. (B) Shows the mean scores and standard error for Experience and Agency in the Mind Perception survey

questions. Blue signifies the robot-guided condition and red signifies the human-guided condition.

TABLE 3 | Mean scores and standard deviations for the Godspeed questionnaires

for both conditions.

Robot-guided Human-guided

Mean SD Mean SD

Anthropomorphism 2.62 1.01 2.55 1.10

Animacy 2.82 1.07 2.78 1.01

Likeability 4.19 0.86 4.23 0.72

Perceived intelligence 3.17 1.01 3.37 0.78

Perceived safety 3.64 0.88 3.61 1.02

more integral to the success of the learning process. Meanwhile,
people in the human-guided condition perceived themselves
more frequently as passive observers or in a subordinate role,
which is mirrored in the fact that they felt less important
to the success of NICO’s training. The Embodied Dialogue
System also influenced how involved the participants felt in
the whole interaction. Since NICO was not equipped with any
additional functionalities that facilitate personal involvement,
like face-tracking, the emotion display and dialogue system
had to fill that role. As mirrored by the participants’ perceived
lack of importance to the training process in the human-
guided condition, only 16.6% felt directly involved. Meanwhile,
in the robot-guided condition, 73.3% felt a sense of personal
involvement and continuous engagement, which was amplified
by NICO addressing them and looking at them directly.

The interaction with NICOwas perceived as enjoyable by both
groups, with NICO’s observable improvement and the feeling
of teaching a child being the two most frequently mentioned
reasons. But when asked about the type of roles NICO could
fill in the future, dangerous, repetitive, or monotonous work
featured more prominently in the answers of the participants
in the human-guided condition. People in the robot-guided
condition placed NICO mostly in elderly care or as a social
companion robot. Additionally, 41.6.% of people in the human-
guided condition cited NICO’s lack of social interaction and

emotional understanding as the main reasons for their refusal to
accept NICO into their social circle. Meanwhile, 66.6% of people
in the robot-guided condition could imagine welcoming NICO
into their family, with the remaining 33.3% mentioning roles like
“family pet” or “colleague at work.”

To summarize: the Embodied Dialogue System had a
noticeable influence on the way people talked about and
described NICO. In the robot-guided condition, user satisfaction
was overall higher because the participants felt more integral
to and engaged in the learning process. This was primarily
attributed to NICO’s vocal expressions, which made the
participants overall confident enough to imagine a possible
unsupervised interaction. In contrast, the people in the human-
guided condition who experienced a higher level of confidence
largely attributed it to the simplicity of the task. This overall
detachment from the process and NICO itself can also be found
in their active refusal to imagine NICO as more than a utility.
This shows that in order to facilitate an environment that allows
non-expert users to confidently supervise and actively assist the
training process, the robot needs to be able to generate and keep
the engagement of the user.

5.2. Objective Effect of an Active Role in
Learning on the Learning Process
To ensure comparability between the two conditions, the first
phase of the interaction was limited to a time frame of 10 min,
during which the participant assisted NICO with the collection
of samples. The number of collected samples during this training
phase was on average higher in the human-guided condition
(M = 9.08, SD = 2.63) than in the robot-guided condition (M =

6.5, SD = 2.53). This difference can, in large part, be attributed to
the time the audio output of the dialogue system required.

However, in only the robot-guided condition, an interesting
pattern could be observed: people were more inclined to engage
themselves in the training process in a positive way, contributing
to a smaller number of errors in the observed cases. By correcting
the orientation and position of the object after NICO had placed
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FIGURE 11 | Participants correcting the object position during the training phase, after NICO put it on the table (A,B) and during a grasping attempt (C,D).

it on the table, they made the subsequent repeated grasping
less error-prone, leading to a larger number of uninterrupted
iterations of the training process. This went as far as them actively
putting the object back into NICO’s hand after a predetermined
failed grasp in the third or fifth iteration.

In order to quantify this effect, the video recordings of
the training phase were analyzed: out of 24 participants, 23
agreed to a video recording and a qualitative analysis of their
interaction behavior. Therefore, 230 min of video were annotated

for physical interactions between participant and NICO or

participant and learning object. We defined any action in
which the participant touches the training object or the robot

as a physical interaction during the learning phase. Physical
interactions were categorized as being either requested or
participant-initiated. Depending on the experimental condition,
the request for interaction could either come from the robot
or from the experimenter. Interactions are requested for two
reasons: first, to start the training process, the human participant
is asked to put the training object into NICO’s hand; second,
if, during the learning process, NICO fails to grasp the object,
which was artificially caused on each third to fifth trial, NICO
moves back into its starting position, and the participant is
asked to place the learning object into NICO’s hand again.
While there were no explicit reasons given for participant-
initiated interactions, the fact remains that these interactions
overwhelmingly occurred in the robot-guided condition, which
can be linked back to the overall higher confidence in NICO’s
capabilities, as discussed in section 5.1.2, and a higher Perceived
Safety score. The examination of the video material shows that
participant-initiated interactions occurred if the robot lost its

TABLE 4 | Requested and participant-initiated physical interactions during the

learning phase, mean and standard deviations.

Physical Interaction Robot-guided Human-guided

Mean SD Mean SD

Requested 2.67 0.98 2. 91 1.30

Participant-initiated 1.08 1.83 0.18 0.40

initial grip on the object before or while placing it on the table,
in which case the participants picked it up and placed it where
they assumed the robot had intended to place the object. The
participants also corrected the position of the object after the
robot released it, with a possible trigger for that interaction
being that the participants observed the object moving during the
release. The majority of participant-initiated interactions were
small corrections to the object’s position during an ongoing grasp
attempt. It can be assumed that the participants predicted the
end position of NICO’s hand based on the observed trajectory
and positioned the learning object accordingly. As shown in
Figure 11, this also happened in physical contact with the robot6.

Table 4 shows the average requested and participant-initiated
interactions per training phase. There is a visible increase in

6Redundant safety features limit the closing force of the robotic hands: the

mechanical design of the robotic hand is based on magnet connectors for the

fingers that give away in case of excess load; furthermore, both software and

firmware limitations for all motors are implemented. Therefore, the physical

interaction between the participants and the robot was safe at all times.
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the number of participant-initiated interactions in the robot-
guided condition (MR = 1.08 compared to MH = 0.18),
even though half of them did not initiate any interactions at
all. The prerequisites that could have enabled this behavior
are discussed in section 5.1.2: participants have little fear of
contact with the robot; they feel more engaged in the learning
situation and more actively care about the learning outcome.
The second observation, namely there being fewer requested
interactions in the robot-guided condition (MR = 2.67 compared
to MH = 2.91), can also be linked back to this. A possible
interpretation of these combined results is that fewer requested
interactions were necessary because the participants anticipated
and prevented situations that would cause an unsuccessful grasp
through participant-initiated interactions. While these results
show no statistical significance for α = 0.05, there is a trend to be
observed here: participants in the robot-guided condition showed
more engagement and proactive behavior, which can have an
effect on the actual neural learning processes of the robot.

6. CONCLUSION

6.1. Discussion of Results on
Human-Robot Interaction
The participants reported a high rate of identification with
active teaching or supporting roles and continued to refer to
NICO as childlike. This indicates that the desired relationship
dynamic of a teacher-learner team was achieved. The fact that
the participants ascribed the reasons for their enjoyment to the
feeling of teaching a child suggests that the collaborative learning
approach further facilitated the student-teacher relationship
dynamic. The results of the Godspeed questionnaires showed
higher scores for anthropomorphism, animacy, and perceived
safety in the robot-guided condition. Although the difference in
ratings between the groups showed no statistical significance, the
results of the interviews were able to confirm them to a degree.
The participants attributed human characteristics to NICO in
both conditions, but an examination of how they imagined
NICO to react to their mistakes showed a tendency toward more
human-like behavioral patterns in the robot-guided condition.
Following the theory that a high anthropomorphism score could
serve as an indicator of social acceptance, as suggested by Weiss
and Bartneck (2015) in their meta-analysis of the Godspeed
questionnaires, a greater disposition toward accepting NICO as
part of their family or social circle could be observed among the
participants in the robot-guided condition. Emotional support
and elderly or health care appeared more frequently as imagined
tasks for the active NICO in a domestic or work environment,
which supports the higher anthropomorphism score.

Under the assumption, made in section 4.3.2, that humanness
and anthropomorphism, animacy, and likeability measure
a similar concept, a significant improvement of perceived
humanness after the interaction with an active NICO could
be observed. The effect was distinctly lower in the human-
guided condition, suggesting that the Embodied Dialogue System
was the influencing factor. Participants in the robot-guided
condition reported a higher level of perceived involvement after

interacting with NICO, although in both groups, the feeling of
reciprocity peaked in the demonstration phase. This shows that
the Embodied Dialogue System could help with keeping user
involvement high throughout an interaction.

The number of collected samples and successful grasping
attempts had no measurable influence on the perceived
intelligence rating. A reason for this could be a missing basis
of comparison for the users, amplified by the fact that the
majority had no previous experience with humanoid robots. This
is reflected in the fact that NICO’s performance did not have
any influence on the participants’ sense of achievement. People
in the robot-guided condition were on average more forgiving of
NICO’s mistakes, reporting an accomplished goal even with a low
number of collected samples. In the human-guided condition,
participants were much more ready to dismiss the learning
process, even though a high number of samples indicated a fast
training phase.

Although people in both conditions were equally afraid of
making mistakes during NICO’s training phase, the higher
perceived safety score in the robot-guided condition indicates that
participants overall felt more secure during this interaction. This
is endorsed by the fact that the participants were more confident
in their capability of interacting with NICO unsupervised, basing
this confidence on NICO’s clear instructions. This confidence
is also mirrored in the fact that in the robot-guided condition,
the participants more actively intervened in the grasp learning
process by, e.g., correcting object positions (Figure 11). These
results support the hypothesis that the Embodied Dialogue
System enables non-expert users to supervise the learning process
with confidence and efficiency.

6.2. Discussion of Results on Robotic
Visuomotor Learning
The presented study shows that the Embodied Dialogue System
can realize a successful visuomotor learning scenario between a
non-expert user and NICO. Though the scenario was carried out
in controlled laboratory conditions, the results indicate that the
robot-guided learning interaction could also take place ad hoc in
a domestic environment, e.g., when the robot encounters a novel
visuomotor task and requires some form of human aid. This
assistance can take different forms like demonstration (Gupta
et al., 2016), advice, and instruction (Cruz et al., 2016) or physical
assistance (Kerzel and Wermter, 2017b).

The positive subjective rating of the participants that was
achieved in the robot-guided condition is an important factor for
the use of humanoid robots as learning companions in everyday
tasks. However, it is equally important to consider the quality
of the learning outcome. Our results show that while using the
Embodied Dialogue System to communicate its internal states
and intentions tookmore time, resulting in less collected samples,
it also led to a number of participants actively collaborating
with NICO in its training and thus improving the learning
process. The participants physically intervened in the learning
process on their own initiative and prevented, e.g., unsuccessful
grasps by correcting the position of the object. This behavior, in
turn, enhances the quality of the collected samples. Moreover,
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in an actual learning scenario in the wild, learning based on
the supervision of a human expert defeats the purpose of a
semi-autonomous learning companion robot.

In summary, though fewer samples were collected in the
robot-guided condition, the participants rated the robot-guided
interaction more positively, indicating that they might be willing
to spend more time teaching the robot, which could compensate
for the slower speed of sample collection in this condition.
Furthermore, participant-initiated interactions improved the
quality of the collected samples. Finally, results from the
interviews conducted indicate that the participants would put
more trust in the abilities that result from NICO’s training and
are more willing to accept NICO as a companion in their home.

6.3. Discussion on Social Humanoid
Robots
The presented study shows how a robot’s ability to socially
interact is a key factor for learning from and with humans.
Considering the challenging nature of many real-world robotic
tasks, the ability and willingness of non-expert users to aid in
the necessary learning process is an important resource. The
presented results are in line with the concept of developmental
robotics (Cangelosi and Schlesinger, 2015): when looking at early
human development, social interaction, especially scaffolding
provided by caretakers, is critical for the development of
cognitive abilities.

The results give evidence to support the proposition that
successful scaffolding of a robotic learner in interaction with
non-expert users is fostered by sensory and motoric similarity,
approachability, and social interaction abilities. We show that
this idea is reflected in the design of NICO (section 3.1) and
by the previous studies carried out on NICO (section 3.2)
evaluating it as a platform for social interaction, human-inspired
active visual, auditory, and haptic perception, and developmental
grasp-learning. The studies show in multiple cases that human
strategies, e.g., active audio exploration (Eppe et al., 2018) and
can be adapted to NICO. In turn, this also implies that non-
expert users can apply their common sense and expertise as
teachers in the NICO scenario. Multiple studies on Human-
Robot Interaction demonstrate that NICO can engage in different
Human-Robot Interaction scenarios and is rated positively by
participants and that features like its facial emotion display
have a positive effect on subjective user ratings (Churamani
et al., 2017b). These properties of NICO are reflected in the
questionnaire and interview responses of the presented study,
and it can be assumed that they contributed to the positive
learning outcome. The presented HRI study brings together,
for the first time, human-robot interaction and visuomotor
learning on NICO and shows that social interaction can be a
key factor for enabling human teachers. The presented learning
setup can be adapted to other platforms as a contribution to
both the robotic machine learning as well as the developmental
robotics community7.

7The NICO API and code examples, including a pre-trained neural grasping

model, can be found at https://github.com/knowledgetechnologyuhh/NICO-

software.

6.4. Future Work
If a state-based Embodied Dialogue System is able to greatly
improve the user experience of non-expert participants while
teaching NICO, it might be possible to further amplify that
behavior by designing a system that focuses on user comfort,
not just to improve the experience of the human interacting
with the robot but also to increase the training success of
the robot learner. A natural learning process, with clearly
communicated intentions, that is accessible to non-expert
humans, will ultimately benefit both user and robot.

Valuable lessons can be drawn from the structured interviews
for improving NICO’s design and social interaction capabilities:
NICO’s three-fingered hands will be upgraded to four-fingered
hands with a movable thumb, giving NICO a more human-
like appearance. More importantly, the design will enable
different types of grasps that can be selected according to object
affordances. This more anthropomorphic design is intended to
contribute to grasp learning with the aid of non-expert human
teachers by enabling a more intuitive understanding of NICO’s
kinematics. To enhance NICO’s overall appearance, NICO will
be upgraded to allow concealed cable routing inside its limbs and
also be fitted with an optional outer shell.

For the interaction scenario, suggestions by the participants
will be implemented and evaluated: A module for face tracking
and gaze shifts will be integrated into the API, as the missing
eye-contact during the training phase was the most commonly
mentioned grievance because it disconnected the user from the
process. Also, a new text-to-speech module will be developed,
as NICO’s voice was also repeatedly remarked upon, either
as being unfitting for a young child or causing confusion
about NICO’s perceived gender. At the moment, the evaluated
Embodied Dialogue System only covers the instructions and
assertions necessary for a smooth training process. A wish for
a more detailed introduction to or narration of the process was
mentioned, which could be a way to keep user involvement
high even during longer phases without eye-contact and create
a more satisfying user experience. In future studies, we will
also more tightly control the participant’s initiative in the
interaction as an evaluation tool. With regard to crossmodal
neurocognitive models, the suggested extensions will support a
tighter integration of semi-autonomous reinforcement learning
andmultiple forms of learning from humans, like advice, physical
aid, learning from demonstration, and human feedback as
reward signal.
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