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While interacting with the world our senses and nervous system are constantly

challenged to identify the origin and coherence of sensory input signals of various

intensities. This problem becomes apparent when stimuli from different modalities need

to be combined, e.g., to find out whether an auditory stimulus and a visual stimulus

belong to the same object. To cope with this problem, humans and most other animal

species are equipped with complex neural circuits to enable fast and reliable combination

of signals from various sensory organs. This multisensory integration starts in the brain

stem to facilitate unconscious reflexes and continues on ascending pathways to cortical

areas for further processing. To investigate the underlying mechanisms in detail, we

developed a canonical neural network model for multisensory integration that resembles

neurophysiological findings. For example, the model comprises multisensory integration

neurons that receive excitatory and inhibitory inputs from unimodal auditory and visual

neurons, respectively, as well as feedback from cortex. Such feedback projections

facilitate multisensory response enhancement and lead to the commonly observed

inverse effectiveness of neural activity in multisensory neurons. Two versions of the

model are implemented, a rate-based neural network model for qualitative analysis and

a variant that employs spiking neurons for deployment on a neuromorphic processing.

This dual approach allows to create an evaluation environment with the ability to test

model performances with real world inputs. As a platform for deployment we chose

IBM’s neurosynaptic chip TrueNorth. Behavioral studies in humans indicate that temporal

and spatial offsets as well as reliability of stimuli are critical parameters for integrating

signals from different modalities. The model reproduces such behavior in experiments

with different sets of stimuli. In particular, model performance for stimuli with varying

spatial offset is tested. In addition, we demonstrate that due to the emergent properties

of network dynamics model performance is close to optimal Bayesian inference for

integration of multimodal sensory signals. Furthermore, the implementation of the model

on a neuromorphic processing chip enables a complete neuromorphic processing

cascade from sensory perception to multisensory integration and the evaluation of model

performance for real world inputs.

Keywords: multisensory integration, spiking neural network, neural network, neuromorphic processing, Bayesian

inference, audio-visual integration, computational modeling
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1. INTRODUCTION

While interacting with the world our senses are exposed to a
rich and constant flow of information. Making sense of this vast
of information is one of the most important task of our brain
and crucial for survival. It does this by combing complementary
information about the same event from different senses into a
single percept. This integration process leads to an enhancement
of the combined signal, thus supports the detection of events or
objects of interest, improves disambiguation and allows for faster
and more accurate processing than could be derived by a mere
linear combination of unimodal information streams (Stein and
Stanford, 2008).

Humans and other mammals are equipped with complex
neural circuits to ensure fast, reliable and optimal combination
of signals from various sensory organs (Marrocco and Li,
1977; Edwards et al., 1979; Cadusseau and Roger, 1985). This

multisensory integration (MSI) process can be found already in
the superior colliculus (SC) of the brain stem where auditory,

visual and vestibular signals are combined to facilitate fast
reflexive eye movements (Stein et al., 1983). This integration

process is refined on ascending cortical pathways for higher level
processing and decision making.

The SC is a melting pot of information from various sensory
modalities and neurons in the SC are the first multimodal
processing units in ascending sensory pathways (Meredith
and Stein, 1983; Wallace and Stein, 1997) with spatially
aligned receptive fields to these modalities (Meredith and
Stein, 1996). The superficial layers of the SC receive mainly
retinotopic inputs from the visual system and respond only
to visual signals (Wallace et al., 1998). However, neurons in
deeper layers of the SC gradually receive ascending inputs
from other modalities and exhibit receptive fields for these
modalities. In addition, their responses are multi-modal, i.e.,
receiving input from two different modalities leads to response
characteristics that are different than responses to uni-modal
signals (Stein and Stanford, 2008). Inputs to neurons in
deep layers come from a diverse set of sensory systems and
range from auditory signals from the inferior colliculus to
proprioceptive signals from the vestibular system. To create
a common frame of references for these different signals
and, thus, spatially align them the retinotopic visual input is
used as a guidance signal. This has been demonstrated in
neurophysiological studies as well as modeling investigations
(Rees, 1996; Wallace et al., 2004; Oess et al., 2020a).

Despite of all the ascending sensory signals in the SC,
neurophysiological studies in cats indicate that there are several
descending projections from the association areas (AES) of the
cortex. Unimodal cortical projections from anterior ectosylvian
visual area (AEv) and the auditory field of the anterior ectosylvian
region (FAEs) are observed (Meredith and Clemo, 1989; Wallace
et al., 1993; Wallace and Stein, 1994). These projections seem to
play an essential role for the integration ability of SC neurons.
Studies demonstrate that when these projections are deactivated,
the neurons in the SC loose all their multisensory response
characteristics (Alvarado et al., 2007a). These characteristics of
SC neurons are complex and are the result of not just descending

cortical projections but also neural circuitry and dynamics in the
SC as we will describe later.

One of such a response characteristic is the so called
multisensory enhancement which describes an enhanced activity
for multisensory input signals that is higher than the linear
combination of all unisensory inputs (Stein and Stanford, 2008).
Such multisensory enhancement changes with the intensities
of the input signals and creates the commonly observed
and described inverse effectiveness for multi-modal signals
of MSI neurons (Perrault et al., 2003; Stein and Stanford,
2008). That is, low intensity multimodal stimuli in spatial
and temporal register lead to an enhanced response of MSI
neurons which is greater than the summed responses for
separately presented unimodal stimuli (super-additivity). In
contrast, for high intensity multimodal stimuli, responses tend
to be smaller than the sum of unimodal responses (sub-
additivity). As a consequence, the probability of detecting
low intensity events registered by two or more senses
is increased.

Another important response characteristic of MSI neurons
is the suppression for bimodal signals outside the receptive
field of the neuron (Meredith and Stein, 1996). That is, the
otherwise strong activity of SC neurons is suppressed by input
signals of another modality with spatial or temporal offsets
(spatial and temporal principle of multisensory integration). This
suppression leads to a sub-additive combination of the two
stimuli and thus can be seen as a means to prevent fusion of input
stimuli that do not belong to the same event.

All these response characteristics can only be observed for
active descending cortical feedback from association areas toMSI
neurons in the SC (Jiang et al., 2001, 2007; Jiang and Stein,
2003; Alvarado et al., 2007a, 2009). When cortical projections
or corresponding cortical areas are deactivated, multimodal
response characteristics vanish (Rowland et al., 2014; Yu et al.,
2016). Thereby, AES cortical feedback projections mediate
multisensory integration abilities in SC neurons.

The aim of such a complicated integration process is to
infer a percept that is more reliable and robust than unimodal
perceptions. In fact, studies pointed out that humans integrate
signals from different modalities in a statistically optimal fashion
(Ernst and Banks, 2002), so called Bayes optimal. That is,
they weight each signal based on its reliability before linearly
combining them. Thereby, increasing the certainty of the
combined signal. In addition, it has been suggested that in order
to integrate signals in such an optimal way, neural populations
need to be able to encode and integrate sensory signals Bayes
optimally (Deneve et al., 2001; Ma et al., 2006). Hence, one
of the challenges in computational modeling of multisensory
integration is to demonstrate that a model integrates its input
signals in a Bayes optimal or at least near-optimal way and to
explain how the variety of response characteristics can emerge
from population dynamics.

We introduce a neural network model of multisensory
integration of audio-visual signals that exhibits such near-
optimal Bayesian behavior, incorporates cortical feedback and
demonstrates typical multi-sensory response characteristics. The
contribution of this work is several-fold: First, we introduce
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a neural network model of conductance-based neurons in
the superior colliculus that incorporates neurophysiological
plausible cortical feedback connections. We investigate how
this feedback alters the responses of multisensory neurons
and enables them to integrate signals from multiple sensory
streams. In addition, we examine what enables this process
to integrate multimodal signals in a Bayesian optimal fashion
and demonstrate that the introduced model does near-
optimal Bayesian inference. This finding links the algorithmic
mechanisms and representations to functionality. In a second
part, we incorporate a spike-based output encoding of the
model and deploy it on IBM TrueNorth neurosynaptic system
(Cassidy et al., 2014), a neuromorphic processing chip with
connections to neuromorphic sensory systems. Evaluations with
this neuromorphic model demonstrate the performance for real
world input data. This is a novel approach of testing a biological
inspired architecture since it enables a complete neuromorphic
processing cascade from sensory perception to multisensory
integration and the evaluation of model performance for real
world inputs.

2. MATERIALS AND METHODS

In this section we introduce the architecture of the neural
network model which interactions and components are based on

physiological findings. The first part describes a rate-based model
implementation with first-order ordinary differential equations
defining the change of a neuron’s voltage based activation. In
a second part we introduce a spiking neural network model
implementation and describe how it is realized on the TrueNorth
neurosynaptic chip.

The overall architecture of the model is inspired by the SC
of mammals (Figure 1). That is, SC neuron populations (r)
receive two modality specific excitatory inputs from a visual
(Sv) and auditory (Sa) input population, respectively. Divisive

inhibition of model neurons simulated by pool neurons (ppool)
and feedforward inhibition of the sensory inputs ensure a
normalized level of activity. This is realized via a coincidence
detection mechanism of the feedforward inhibitory neurons
(psen). Thereby, these neurons provide inhibitory input to
SC neurons only when bimodal sensory inputs are present
but remains inactive for unimodal sensory inputs. Modulatory
input from the cortex (green box CTX in Figure 1) facilitates
multisensory integration abilities of the neurons by feedback top-
down signals. We simulate this by a population of modulatory
interneurons qm. Interactions in the cortex (gray box in Figure 1)
are modeled such that they produce such signals only when both
modalities (Cv and Ca) receive inputs. This is achieved via a
feedforward cross-inhibition in the feedback path of the cortical
projections (gray box in Figure 1) between auditory and visual

FIGURE 1 | Model Architecture. Overall architecture of the multisensory integration model. Blue lines indicate excitatory connections, green lines indicate modulatory

connections, and red lines indicate inhibitory connections. Green box is modulatory cortical signal that is describe in more detail in gray box. Filled circles represent

model neurons, hollow circles indicate inputs to the model. Letters indicate the name of neurons and inputs.
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sensory areas (here qS1a , qS1v , qS2a , and qS2v ). We will explain this in
more detail in the next subsection.

2.1. Rate-Based Model
The rate-based model comprises several populations of neurons
with dynamical interactions that together facilitate multisensory
integration characteristics of SC neurons. Each of these
populations comprises an array of N = 20 neurons, each one
selective to a specific spatial location i in azimuthal direction
(the center of the receptive field of the neuron). Such a count
of neurons in a population is sufficient to achieve a satisfying
resolution of the input space, which is arbitrarily chosen to
be between 0 and 20 for the rate-based model. The number
of neurons is not crucial and the model works well with
larger neuron populations (>40) as well as smaller (<10) The
membrane potential (as described in Equation 2) is governed
by conductance-based integration of the neuron’s excitatory and
inhibitory inputs. Synapses are not modeled individually, but
only represented in weight kernels which collect activities from
pools of neurons. The inputs to such a neuron are described
by Sai and Svi , for auditory and visual inputs, respectively. They
represent the activity of tonotopical visual neurons in superficial
layers of the SC and auditory neurons in the external nucleus of
the inferior colliculus (ICx) (Oliver and Huerta, 1992) that have
presumably spatially ordered connections to the SC (Hyde and
Knudsen, 2000, 2002; Knudsen, 2002). All inputs are assumed to
be spatially aligned so that for a combined event of audio and
visual signals at location i, SC neuron at location i receives the
most activity from inputs Sai and Svi . In addition, cortical activity
of the AEv and FAEs is described with Ca

i and Cv
i and have the

same activity characteristics as Sai and Svi , respectively.
Inputs are assumed to be of Gaussian shape with uncertainty

σz and intensity Iz (where z is sa sensory auditory input, sv
sensory visual input, ca cortical auditory signal or cv cortical
visual signal). Thus, auditory and visual inputs at location i can
be described by

yi(xt) = exp(
−(i− xt)

2

2 · σ 2
z

) · Iz , (1)

where xt is the location of a stimulus at time t.
The core of the model is a population of multisensory SC

neurons that integrates excitatory, inhibitory and modulatory
inputs. The change of membrane potential ri of an SC neuron
selective to location i is described by

τd ṙi = −αdri+ (βd− ri) ·EXi · (1+λ ·MODi)−κr · ri · INHi, (2)

where parameter τd defines membrane time constant, αd is a
passive membrane leakage rate, βd describes a saturation level
of excitatory inputs and κr defines the strength of divisive
inhibition. Parameter values are given in Table 1. The parameter
λ defines the influence of the modulatory input, thus the
multisensory enhancement strength of the model neuron. The
firing rate of an SC neuron is calculated by a sigmoidal activation
function h of its membrane potential ri

h(ri) =
2

(1+ exp(−(ri · 3.4)2))
− 1. (3)

TABLE 1 | Model parameters.

General parameters

N (# neurons) 20

τd 1.0 αd 1.0

βd 1.0

σm 3.0 σ 1.0

SC neuron

κr 0.25 λ 0.4

l 3.6

Modulatory neuron

κm 1 γm 5.0

βm 2.0

S2 cortical neuron

κS2 1.0 γS2 5.0

Excitatory inputs at location i are summarized in the term EXi,
modulatory inputs from cortical projections are described by
the term MODi and inhibitory inputs are summarized in the
term INHi. We will describe each of these terms separately
in the following.

The excitatory input to SC neurons directly arises from visual
and auditory neurons in the outer layers of the SC and ICx,
respectively with spatially aligned receptive fields

EXi(t) = Sai (t)+ Svi (t). (4)

The modulatory input to SC neurons originates in the cortex and
is defined by

MODi(t) =
∑

j

3m
ij · g(qmj (t)), (5)

where 3m
ij defines the interaction kernel of modulatory cortical

projections to SC neurons and g(qMj (t)) defines the activity of

model neuron qmj (t) at location j and time t. We define this

neuron later in this section.
The inhibitory input to SC neurons comprises a signal from

feedforward inhibitory neurons of sensory inputs and a self-
inhibition neuron that is fed by a pool of integration neurons.
It is defined by

INHi =
∑

j

3ij · g(p
pool
j )+

∑

j

3ij · gsen(psenj ) (6)

where g(p
pool
j ) is the activity of a modeled self-inhibitory neuron

p
pool
j and g(psenj ) the activity of an inhibitory neuron psenj of

feedforward inputs.
The feedforward inhibition of sensory inputs ensures similar

intensity levels for unimodal and multimodal inputs by a
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coincidence integration of both inputs. That is, the feedforward
inhibition inhibits SC neurons for simultaneously active bimodal
inputs but not for unimodal inputs. Each SC neuron has
a feedforward inhibitory neuron driven by spatially aligned
auditory and visual inputs. The activation of the membrane
potential for such a neuron is defined by

τsenṗ
sen
i = −αsenp

sen
i + (βd − pseni ) · Sai · Svi (7)

Due to the multiplication of the neuron inputs, the feedforward
inhibition neuron is active only if there are spatially aligned
inputs of both modalities. Thus, the neuron behaves like a
coincidence detector of its inputs.

A population of interneurons is modeled to realize pool
normalization of SC neurons. A pool neuron is driven by
neighboring SC neurons and feeds back on those SC neurons via
inhibitory connections. The membrane potential of pool neurons
is described by

τdṗ
pool
i = −αdp

pool
i + (βd − p

pool
i ) ·

∑

j

3ij · h(rj(t)). (8)

Together with the feedforward inhibition, the pool inhibition
of model SC neurons serves as a normalization mechanism
to ensure a normalized energy level over different input
intensity levels.

Modulatory inputs that facilitate multisensory response
characteristics have their origin in the cortex, namely in the
association areas AEv and FAEs.

The membrane potential of such neurons is modeled by

τdq̇
m
i = −αdq

m
i + (βm − qmi ) · (Ca

i + Cv
i )− (γm + κm · qmi )

·
∑

j

3ij ·
(

g(q
S2v
j )+ g(q

S2a
j )

)

, (9)

where parameter γm defines the subtractive influence of the

inhibitory inputs q
S2a
j and q

S2v
j originating from a cross-modal

inhibition circuit. This circuit (upper right part of gray box in
Figure 1) ensures that only when both cortical inputs are present
a modulatory signal is generated and fed back to SC neurons.
If only one modality input is present the circuit is activated
and generates strong inhibitory inputs for the qm population
resulting in a suppressed response of it. The circuit comprises
four populations of neurons qS2a , qS2v , qS1a , and qS1v with
connections as shown in Figure 1 and membrane state equations
for the auditory modality

τdq̇
S2a
i = −αd · qS2ai + (βd − q

S2a
i )

· Ca
i − (γS2 + q

S2a
i ) ·

∑

j

3ij · g(qS1vj ),

τdq̇
S1a
i = −αd · qS1ai + (βd − q

S1a
i ) · Ca

i ,

(10)

and visual modality

τdq̇
S2v
i = −αd · qS2vi + (βd − q

S2v
i )

· Cv
i − (γS2 + q

S2v
i ) ·

∑

j

3ij · g(qS1aj ),

τdq̇
S1v
i = −αd · qS1vi + (βd − q

S1v
i ) · Cv

i ,

(11)

Together these neurons synthesize the feedforward cross-modal
inhibition circuit of cortical modulatory feedback.

The interaction kernel 3 between neuron populations is
Gaussian and defined by :

3ij =
1

σ ·
√
2π

· exp
(

−0.5 ·
(

i− j

σ

)2
)

(12)

with σ = σm = 3 for 3m (the modulatory connection) and
σ = 1 for 3 for all other connections.

The activation function g() for all neurons in the model except
for neuron ri to generate a firing rate from itsmembrane potential
is a linear rectified function with saturation level of 1

g(x) =











0, if x < 0,

1, if x > 1,

x · k, else,

(13)

with k = 2 for psen input and k = 1 otherwise.

2.2. Spike-Based Model
We also implemented the proposed MSI model on the IBM
TrueNorth Neurosynaptic System. TrueNorth is a highly
efficient, spiking, neuromorphic hardware (Merolla et al., 2014)
that provides a million neurons and 256 million synapses
organized into 4096 cores (Cassidy et al., 2014). This platform
has been demonstrated in numerous real-time applications
ranging from speech recognition (Tsai et al., 2017) over
probabilistic inference (Ahmed et al., 2016) to motion detection
(Haessig et al., 2018).

When transferring any rate-based model to a spike-based
architecture one must choose a representation of real valued
rates. Common options range from the spike-rate of single
or groups of neurons, population codes, order of spike times
(Trappenberg, 2010; Kasabov, 2019) to the (inverse) time
between spikes (Haessig et al., 2018). The proposed rate-based
model needs to evaluate several products of variables (e.g., in
Equation 2), so we choose spike-rate as representation of real
valued activation. Here, multiplication is realized simply by a
logical AND operation, each of which can be done by a single
hardware neuron on the TrueNorth.

The implementation follows our approach in Löhr et al.
(2020): Any model equation is split into elementary operations,
each of which can be handled by a hardware neuron. Such
operations range from sums and products to non-linear
functions. Neuronal activation is encoded directly as spike-
rate, such that only values in [0,1] can be represented. Any
exceeding value will be clipped, thus we must ensure that
operational regimes of all dynamics lie in this range. Neurons
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with larger activation range are scaled down accordingly, and
the weights of all their post-synaptic neurons are increased,
respectively. Eventually, any differential equation in Equations (2,
7–11) is represented by a sub-graph of hardware neurons
where the root neuron’s activation follows said equation.
The composition of these sub-graphs, forming the proposed
model, is shown in Figure 2. The elementary functions to be
performed by hardware neurons can be grouped into unary,
binary and complex operations. Unary operations involve a
constant and a variable, such as sum (⊕) and difference (⊖)
or multiplication (⊙) by a factor. Binary operations involve
two variables and examples are the weighted sum and product
(+, •). Complex operations subsume all remaining neurons:
Convolution over channels is done by weighted sum neurons
(∗), sharing afferent axons on the same core. Root neurons

evaluating ODEs (•) and, finally, the sigmoidal (σ ) activation
function of Equation (3). The decomposition of equations into
these elementary operations is shown in Table 2. For instructions
on how to compute the TrueNorth neuron parameters of

the above operations, please refer to the detailed Table 1 in
Löhr et al. (2020).

As TrueNorth cores have a capacity of 256 neurons each, the
proposed architecture must be split over several cores if more
than six feature channels are to be used. At the same time, any
hardware neuron’s axon can only be routed to a single core.
If its response is required on different cores, splitter neurons
must be inserted which duplicate the neuron’s response to
provide additional axons. To keep the diagram simple in Figure 2
these splitters are connected to the neurons they duplicate via
dashed arrows. However, they actually share the exact same input
connections and internal parameters as their originals and thus
produce a perfect copy of their spike patterns.

Thus we divided the spike-based model into six functional
blocks of similar neuron count, each assigned to a respective core.
To reduce the amount of splitter neurons, no sub-graph of a root
neuron was split over different cores. Likewise, neurons realizing
a convolution were placed onto a common core, so they can share
presynaptic axons. The final hardware implementation of the

FIGURE 2 | Arrangement of the Model Architecture on the TrueNorth neurosynpatic chip. Restrictions of the hardware require careful placement of neurons onto

cores: The eight differential equations (ODEs) in Equations (2, 7–11) must be split into elementary operations, because they cannot be evaluated by a single neuron

each. Also, when any neuron is required to deliver spikes to different cores, a splitter neuron must be inserted to duplicate their axon. Therefore, each feature channel

consists of 60 hardware neurons instead of eight rate-based ones. The chosen layout realizes up to 21 feature channels of the proposed MSI model using six of the

4096 cores of TrueNorth. Stacked frames indicate channels. Neuron:•, root neurons evaluating ODEs; *, convolution over channels; +/•, weighted sum/product of

two variables; ⊕/ ⊖ /⊙, adding to/subtracting from/multiplying by a constant; D, splitter neurons; σ , sigmoidal transfer function. Rectified linear transfer functions are

implemented using ⊙ and clipping.
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TABLE 2 | Elementary operations realized by hardware neurons.

Operation Usage

⊕ (const+ var) Inhib. terms (γm + κm · qmi ), (γS2 + q
S2a
i ), (γS2 + q

S2v
i ) in Equations (9–11)

Feedback term (1+ λ ·MODi ) in Equation (2)

⊖ (const− var) Conductance terms (βd − ri ), (βm − qmi ) in Equations (2, 9)

and (βd − pseni ), (βd − p
pool
i ) in Equations (7, 8)

and (βd − q
S1a
i ), (βd − q

S2a
i ), (βd − q

S1v
i ), (βd − q

S2v
i ) in Equations (10, 11)

⊙ (const • var) Transfer func. gsen() used in Equation (6) and scaling of Sai · S
v
i in Equation (7)

+ (var+ var) Components EXi and INHi of neuron r in Equations (4, 6)

Excit. (Ca
i + Cv

i ) and inhib. (g(qS2vj )+ g(qS2aj )) inputs of qm in Equation (9)

• (var • var) Excitatory input Sai · S
v
i of p

sen in Equation (7)

Products with conduct. terms (. . . ) · EXi , (. . . ) · (Ca
i + Cv

i ) in Equations (2, 9)

and (. . . ) · (Sai + Svi ), (. . . ) ·
∑

j . . . in Equations (7, 8)

and (. . . ) · Ca
i , (. . . ) · Cv

i in Equations (10, 11)

Products with inhib. terms (. . . ) · INHi , (. . . ) · (
∑

j . . . ) in Equations (2, 9)

and (. . . ) ·
∑

j . . . in Equations (10, 11)

Product with feedback term EXi · (1+ λ ·MODi ) in Equation (2)

*convolution Weighted sums
∑

j 3ij . . . in Equations (5, 6, 8–11)•root neurons ODE terms ṙi = −αdri + (. . . )− (. . . ), q̇i
m = −αdq

m
i + (. . . )− (. . . )

and ṗi
sen = −αsenp

sen
i + (. . . ), ṗi

pool = −αdp
pool
i + (. . . )

and q̇i
S1a = −αdq

S1a
i + (. . . ), q̇i

S2a = −αdq
S2a
i + (. . . )− (. . . )

and q̇i
S1v = −αdq

S1v
i + (. . . ), q̇i

S2v = −αdq
S2v
i + (. . . )− (. . . )

σ sigmoid h(ri ) in Equation (3)

proposed MSI model consists of 60 neurons per feature channel.
Restricted to six of the 4096 cores this scheme allows to synthesize
the MSI model with up to 21 feature channels. If more cores are
used, the amount of feature channels can readily be increased to
256; a limitation due to the convolution operation. Convolutions
over larger numbers of axons would need to be split over multiple
cores, however, this would require additional splitter neurons as
some input axons would be needed on different cores.

3. RESULTS

Simulation results of the rate-based and spike-based model
implementations for multisensory integration demonstrate
characteristic multisensory integration properties and indicate
near-optimal Bayesian inference of bimodal inputs.

In a first section, functional properties of the rate-based model
and the multisensory integration are examined. Multisensory
neurons are defined by their typical response behavior for
bimodal and unimodal inputs (as described in section 1). Hence,
in a first experiment we demonstrate the rate-base model’s
response behavior to multi- and unimodal inputs and investigate
how inputs with spatial offsets are integrated. In particular, we
test the response behavior for different stimulus intensities.

It has been shown that humans integrate signals from various
modalities in an optimal fashion (Ernst and Banks, 2002). Where
this integration exactly takes place is still under investigation.
Model results demonstrate that already sub-cortical regions
like the SC could integrate signals in a near optimal way
when provided with a cortical control signal. Therefore, after

presenting the characteristic response properties of multisensory
integration neurons, we test the model’s ability to integrate
bimodal signals in a Bayes optimal fashion.

Having demonstrated that the rate-based model integrates
multisensory signals near-optimally, in the second section
we investigate the spike-based model implemented on IBM’s
neurosynaptic chip TrueNorth. In a first experiment, we
reproduce the multisensory integration response characteristics
to validate the correct functioning of the spike-based model. In a
last experiment, we present real world data to the model recorded
with neuromorphic hardware and evaluate its ability to integrate
these signals.

3.1. Rate-Based Model Simulations
All experiments in this section are conducted with the rate-
based model of multisensory integration. Simulation results
in the following are computed from responses of model SC
neurons after presenting the stimuli for 4,000 time steps. This
duration is sufficient for each neuron in the neuron population
to dynamically converge to its equilibrium membrane potential
of numerical integration of the state equations. We chose Euler’s
method with a step size of δt = 0.001 for numerical integration.
Model parameters for following simulations are chosen to fit a
variety of neurophysiological experiments (Meredith and Stein,
1996; Stein and Stanford, 2008). In particular, we focused on
the response characteristics of multisensory neurons, e.g., inverse
effectiveness, spatial principle, and sampled the parameter space
manually to achieve qualitatively similar results.
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In all, we test 6 distinct stimulus conditions (see Figure 3): To
demonstrate the importance of cortical feedback formultisensory
integration, in the first condition (solid black line in following
figures) all cortical inputs are absent (Ca = 0, Cv = 0), whereas
both sensory inputs (Sa, Sv) are active according to Equation
1. The second condition (solid orange line) is the multisensory
response for simultaneously active cortical and sensory inputs.
In the third and fourth conditions (solid pink and purple
line, respectively), both sensory inputs are present but only a
single unimodal cortical input is given to demonstrate that both
cortical unimodal signals are needed to facilitate multisensory
integration. In the fifth and sixth conditions (solid blue and
red lines, respectively), only unimodal sensory and unimodal

cortical inputs (either visual or audio) are present as a control
to show that the typical response characteristics emerge only for
bimodal inputs which is in line with neurophysiological findings
(Meredith and Stein, 1983; Meredith et al., 1992; Stein and
Stanford, 2008).

3.1.1. Inverse Effectiveness
An essential property of responses of SC neurons to multimodal
inputs is the inverse effectiveness of stimulus intensity. That
is, weak multimodal inputs create strong multisensory
enhancement, whereas strong multimodal inputs only produce
weak or no multisensory enhancement. To examine whether
our model exhibits this response property we present spatially

FIGURE 3 | Multisensory enhancement of MSI neurons. (A) Displays neuron activity over input intensities. Black and orange lines indicate presence of both input

modalities for sensory and cortical inputs (bimodal response). Orange lines indicates that cortical feedback is active whereas black lines shows responses when the

feedback is turned off. Pink and purple lines indicate both sensory inputs present with cortical visual and audio input off, respectively. Blue and red lines show

unimodal inputs that is only visual and auditory sensory and cortical inputs, respectively. Black dashed line is the sum of the unimodal inputs (red and blue lines). (B)

Displays the additivity index over input intensities. It is calculated by the bimodal response divided by the sum of the two unimodal response strengths. Orange and

black lines are the same conditions as in (A). Plot (C) shows the additivity index over input intensities for several λ parameter values (fading orange lines) and cortical

feedback projections off (black). (D) Displays the additivity index for the different values of λ. Right panel (E) displays a summary of responses taken from model

neuron i = 8 of the spatial principle experiment (Figures 4, 7). The x-axis shows response enhancement of model neuron’s responses. Positive values represent

cross-modal enhancement whereas negative values indicate cross-modal suppression. The y-axis depicts the response additivity of the model neuron. Positive and

negative values represent super- and sub-additivity, respectively. Orange dots indicate active cortical feedback projections. Black dots denote cortical feedback

deactivated. Each dot corresponds to a certain input intensity, spatial offset value and randomly chosen value of σsa and σsv of input uncertainty in range [0.5, 5].
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aligned auditory and visual inputs at location i to the model and
measure the response of a representative neuron with receptive
field centered at location i. Input intensities (Iz in Equation 1)
are varied and a total of 11 intensities equally spaced in range
[0, 1] are tested. The responses of the neuron as a function
over intensities are depicted in Figure 3A. For input intensities
lower than 0.55 the multisensory response is stronger than
the sum of the responses to unimodal inputs. In contrast, for
input intensities higher than 0.55 the neuron response is weaker
than the sum. This property only emerges for conditions where
both cortical inputs are present. If one or both of them are not
present, the response of the model neuron is constantly below
the sum of responses to unimodal sensory stimulation (purple
and pink line). Thus, no multisensory enhancement takes place.
The neuron parameter λ in Equation (2) controls the effect of the
cortical projections and thus directly influences the multisensory
enhancement of the neuron (see Figures 3C,D). This effect
can be quantified by the additivity index which is defined as
the ratio of the bimodal response to the sum of responses for
unimodal inputs ( M

V+A , where M is the multisensory response
for active cortial projections, V unimodal visual response and
A unimodal auditory response). An additivity index of 1 means
the response for bimodal inputs is exactly as strong as the
sum of both unimodal responses (see Meredith and Clemo,
1989 for details). Index values above 1 indicate super-additivity
whereas index values below 1 indicate sub-additivity. The
model neuron exhibits super-additivity for low input intensities
and sub-additivity for high input intensities (see Figure 3B).
Thereby, it exhibits inverse effectiveness response characteristics
of multisensory neurons.

3.1.2. Spatial Principle
The spatial principle of multisensory integration is commonly
described by the inhibition of a stimulus in one modality by

a stimulus of the other modality outside the receptive field of
the neuron. Such a spatially separated stimulus combination
not just leads to a reduction in the multisensory enhancement
of the neuron but even to a suppression of its response. This
suppression is usually ascribed to the Mexican hat shape of
the receptive field. Our network model shows similar properties
that emerge merely from the network dynamics (see Figure 4).
The suppression of responses for spatially separated bimodal
stimuli is facilitated by the feedforward inhibition of inputs in
the network. In particular, the coupling of the absence of a
spatial convolution kernel for excitatory inputs to SC neurons
and the presence of such a spatial convolution for feedforward
inhibitory inputs lead to a reduced activity of SC neurons outside
the receptive field. The inhibition imposed by the spatially
offset unimodal input still effects neighboring neurons whereas
the direct excitatory does not. For bimodal stimuli with no
spatial offset the network response is equal to the one shown in
the previous experiment. However, for increasing spatial offset
values (measured in σ of input Gaussian) the multisensory
enhancement effect decreases (decreasing additivity index). For a
stimulus with 3σ offset, the multisensory response is suppressed
and lower than the unimodal response. This can also be seen in
the additivity index curve that is below 1 at this offset. For offset
values larger 3σ the suppression vanishes and the multisensory
response is equal to the unimodal response, thus having an
additivity index of 1.

3.1.3. Interactions Among Within-Modality Inputs
Neurophysiological studies have shown that multisensory
neurons exhibit multisensory enhancement and inverse
effectiveness only for bimodal inputs but not for multiple
unimodal inputs (Alvarado et al., 2007b). In addition, the
authors demonstrated in another study that the cortical
projections only modulate multisensory but not unisensory

FIGURE 4 | Spatial principle of MSI neurons. Upper row (A) displays the audio (red) and visual (blue) inputs to the model over spatial locations with increasing offset

values. Middle row (B) shows the responses of rate-based model neuron i = 8 over input intensities for corresponding audio and visual inputs as given in the first row.

Color code of lines is the same as in Figure 3. Bottom row (C) depicts the additivity index of the same model neuron i = 8 over input intensities.
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integration (Alvarado et al., 2007a). Thus, in a third experiment
we investigate model responses for two unimodal (auditory)
inputs. In this simulation, we assume model input Sv to represent
a second auditory stimulus (Audio Input B) and the visual
cortical input Cv to be 0. We simulate two auditory inputs with
activated auditory cortical projections but without visual cortical
activity. Model responses for a combination of within-modal
stimuli are higher than for a single unimodal input but show
almost no super-additivity, expect for low intensity inputs
(Figure 5). When one of the stimulus is moved outside the
receptive field of the neuron, the combined response activity
becomes lower than the response for a single unimodal input.
This can be ascribed to a within-modal suppression (Alvarado
et al., 2007b).

3.1.4. Cortical Modulatory Projections
Cortical projections from association areas FAEs and AEv to the
SC seem to have a crucial role in the multisensory integration
behavior of MSI neurons and their response properties. For
example, it has been shown that when these connections are
removed or the corresponding cortical areas are deactivated,
multisensory response properties in the SC vanish (Jiang et al.,
2001; Alvarado et al., 2007a, 2009). We model these connections
with modulatory input to the SC neuron that originates from
a cross-modal inhibition circuit located in the cortex. That
circuit ensures that only when a cross-modal stimulus is present
the SC neuron receives modulatory inputs. Without such an

input multisensory enhancement of SC neurons vanishes (see
Figure 3B black line) and their response is very similar to
responses for unisensory inputs. To investigate the role of cortical
inputs in more detail we calculate the response enhancement
(M − max(V ,A))/(M + max(V ,A)) that defines cross-modal
enhancement and suppression for positive and negative values,
respectively, and the response additivity (M − (V + A))/(M +
(V + A)) · 100 that indicates super-additivity and sub-additivity
for positive and negative values, respectively (see Avillac et al.,
2007 for details). Only if the cortical inputs are active, multi-
modal enhancement and super-additivity can be observed (see
Figure 3E).

3.1.5. Multisensory Inference
Several studies have shown that when multimodal sensory cues
are simultaneously available, humans integrate these cues based
on the reliability of each cue (Ernst and Banks, 2002). Thereby,
human observers perform a weighted linear combination of cues
from different sensory perceptions to maximize the certainty of
the fused signal. The weight associated to a cue is proportional to
the relative reliability of the perception of the corresponding cue.
For example, estimating the size of an object by a combination
visual and haptic sensory perceptions is usually based on the
visual input. However, once visual input is blurred, thus the
reliability of the perception is decreased, humans rely more
on their haptic estimate (Ernst and Banks, 2002). By taking
the reliability of the sensory perception as a weight in the

FIGURE 5 | Within modality responses. Upper row (A) displays the audio A (red) and audio B (light red) inputs to the model over spatial locations with increasing offset

values. Middle row (B) shows the responses of model neuron i = 8 over input intensities for corresponding unimodal inputs as given in the first row. Orange lines

indicates combined response. Red line shows the response for audio input A, light red line for audio input B. Bottom row (C) depicts the additivity index of the same

model neuron i = 8 over input intensities.
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integration process, humans perform optimal Bayesian inference
for multisensory stimuli.

On which level in the processing hierarchy this inference takes
place is not fully understood yet. Some researches argue that it is a
rather high level cognitive process located in and between cortical
areas (Kayser and Shams, 2015; Rohe and Noppeney, 2015).
However, model simulations and neurophysiological recordings
indicate that already on a level of two neural populations,
Bayesian inference can take place (Ma and Pouget, 2008; Beck
et al., 2012; Pouget et al., 2013). In our model we assume
a combination of low level subcortical dynamics that provide
a basis for cue integration together with high level cortical
integration processes that facilitate subcortical near optimal
multisensory integration.

To demonstrate that this network structure allows our model
to perform for near-optimal Bayesian inference we conduct
a multisensory integration simulation experiment of auditory
and visual inputs. For that, we define for each modality a
normal distribution of stimuli location with a specific mean
(auditory stimulus distribution’s mean: µa = [8, 14.5], visual
stimulus distribution’s mean: µv = [5, 8]) and variance (auditory
stimulus distribution’s variance: σa = [0.5, 3.0], visual stimulus
distribution’s mean: σa = [0.5, 3.0]) and draw a sample location
of a visual and auditory stimulus, respectively, from these
distributions (Figure 6A). This location of audio and visual
stimuli is then applied as input to themodel, i.e., defines location i

for a visual and auditory stimulus independently (Figure 6B).We
independently draw a visual and auditory stimulus, respectively,
200 times from two distributions that have different mean and
variance values. For each draw we present the two stimuli to
the model, compute its responses and calculate the maximum of
this response. We use only the maximum of the distribution to
model a maximum-likelihood approach of choosing the stimulus
location which has been previously observed in humans (Ernst
and Banks, 2002). Taking together all maximum values over
draws in a histogram results in a posterior distribution with a
mean and variance value of model responses for a given stimuli
set (see Figures 6C,E). The real posterior (see Figure 6D) of the
combination of the two given distributions can be determined

analytically with meanµCP = µa ·wa+µv ·wv, withwa =
1

σ2a
1

σ2a
+ 1

σ2v

and wv =
1

σ2v
1

σ2a
+ 1

σ2v

, as well as variance σCP = σ 2
v ·σ 2

a

σ 2
v +σ 2

a
.

We show the model’s inference capability by comparing it’s
response with calculated mean and variance of the stimulus
input (see Figures 6G,H). Two conditions are tested, cortical
feedback on and off. For a fair comparison only model responses

that show a single peak (fused responses) are considered.

Model and analytical calculated mean are similar under both

conditions. However, the cortical feedback allows for a more
precise computation of the inferred variance. The variances of

FIGURE 6 | Bayesian inference experiment. Plot (A) displays the stimuli distributions for visual (blue) and audio (red) inputs, respectively, from which stimuli are

sampled. Plot (B) represents an example of a single sample with stimuli for audio and visual inputs to the MSI neuron. Plot (C) depicts the model response for this

single sample. The histogram in plot (D) is calculated analytically from the input distributions in plot (A). The histogram in plot (E) is calculated from the model

response over all samples. The probability of event fusion (single peak in model response) is given over spatial offset values in (F). Dots represent mean values over

several simulations with cortical feedback on (orange dots) and cortical feedback off (black dots). Sigmoid functions are fitted to the dots for better visualization. Active

cortical feedback enables higher probability of event fusion over spatial offsets compared to inactive cortical feedback. Plot (G) compares the means of model

responses vs. the analytically calculated means of the samples drawn as described in left panel. (H) Displays model variance values vs. computed variance values.

Orange dots indicate active cortical feedback whereas black dots indicate cortical feedback off. Dashed line indicates perfect model behavior.
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model responses without cortical feedback has a higher offset and
increases dramatically for large input variances. In contrast, with
cortical feedback this increment is smaller and there is almost
no offset.

The nervous system can combine two events from different
modalities to form a combined single percept of the event. Under
what conditions such a mandatory cue fusion takes place has
been investigated thoroughly (Hillis et al., 2002). One crucial
factor for event fusion is the spatial discrepancy between the
different modalities. If an auditory event origins from the same
or similar location as a visual event, it is likely to be fused
to a single event. However, when the spatial offset between
the two events increases the likelihood of perceiving a single
event decreases (Andersen et al., 2004; Stevenson and Wallace,
2013). We investigate this behavior for our model by calculating
the percentage of samples where a single event (one peak in
response, mandatory fusion) has been detected in contrast to
samples where two events (multiple peaks in response, no fusion)
are present (see Figure 6F). The probability of event fusion is
constantly higher for activate cortical projections than without.

3.2. Spike-Based Model Simulations
Simulation experiments in this section are conducted with
the spike-based model implementation on the TrueNorth
neurosynaptic chip. Since implementation of the model on
this chip is fundamentally more complex than the rate-
based variant, we first demonstrate similar behavior of the
two implementations by presenting the same stimulus set of
increasing input intensities as for the rate-based model in section
3.1.1. Typical response characteristics of MSI model neurons can
be observed for the spiking model implementation (Figure 7).
For low intensity inputs the bimodal response is greater than
the sum of the two unimodal inputs (super-additivity). For
increasing intensities this enhancement is reduced until the
bimodal response is lower than the sum of the two bimodal inputs
(sub-additivity). Thereby, the spike-based model demonstrates
inverse effectiveness of MSI neurons.

We conduct the following simulation experiment to
demonstrate the model’s ability to cope with real world
event-based sensory input data.

Inputs to the model are generated by a neuromorphic vision
sensor (DVS) (Lichtsteiner et al., 2006) and an artificial neural
implementation of functions of a cochlea. Sounds are recorded
from 19 locations equally spaced in azimuthal range [−90, 90]◦

via two microphones placed inside the right and left ear canal
of human-like shaped ears on a dummy head as depicted in
Figure 8A. The device can turn around its longitudinal axis to
create a relative displacement of the sound source location in the
horizontal plane. The distance to the speaker (standard speaker)
remains constant (1m) during movement (Figure 8B). We
choose the sound of a vacuum cleaner for real world recordings.
The presented sound type is a monaurally recorded sound of
a vacuum cleaner. This sound was presented for azimuthal
head directions of [−90,−70,−50,−30,−10, 10, 30, 50, 70, 90]◦

and 0◦ elevation. It was played back from the speaker and
recorded in stereo with the two in-ear microphones for the
duration of the sound. All recordings were done in a sound

FIGURE 7 | Inverse effectiveness of spiking MSI neuron implementation. (A)

Displays spike-based neuron activity over input intensities. Black and orange

lines indicate presence of both input modalities for sensory and cortical inputs

(bimodal response). Color code as in Figure 3. (B) Displays the activity index

over input intensities. It is calculated by the bimodal response divided by the

sum of the two unimodal response strengths. Orange and black lines are the

same conditions as in (A).

attenuated room. Subsequently, a bank of gammatone-filters
is separately applied to these recordings of the right and left
ear, thus creating spectrograms with 64 frequency channels
resembling the output of the cochlea. Each spectro-temporal
bin in the spectrogram is converted to a spike train and fed to
a spiking neural network model of the lateral superior olivary
(LSO) complex for computation of interaural level differences
(ILD). Output of LSO model neurons is averaged over frequency
bands. The weight channel of the left hemispherical output with
maximum activity is subtracted from the weight channel of the
right hemispherical output with maximum activity. This leads to
a combined response of the left and right hemisphere over the
entire range of perceived ILD values. Subsequently, this signal is
converted to a one-dimensional estimate of spatial activations of
sound sources by a set of 19 radial basis functions (RBFs). These
functions are tuned to a specific response rate of LSO neurons,
thus encoding a unique spatial location in range [−90◦,+90◦] in
10◦ steps from the rate of LSO neurons (see Oess et al., 2020b for
a detailed description of this preprocessing).

Videos are recorded of a stationary tea cup placed at evenly
spaced positions (range [−27,+27]cm in 3cm steps) in front
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FIGURE 8 | Device and setup for real world sound recordings. (A) Shows the 3D printed, anatomical correct replication of a human head and ears. In the ears, ∼2 cm

inside the ear canal, standard microphones are placed for recording. The head is controlled by two servo motors, one for turning around the longitudinal axis

(azimuth), the other for turning around the frontal axis (elevation). All sounds are recorded for 0◦ elevation (head facing the speaker) and different azimuth directions.

(B) Shows the setup for the recordings. The head is centered 1m in front of a standard speaker and can rotate around its longitudinal axis from θ = −90◦ to θ = 90◦

with a minimal step increment of 1◦.

of the camera (distance 177cm). The cup’s positions in all
videos combined span the complete horizontal field of view of
the camera. To ensure that stationary contrasts are detected
the mirror setup of Löhr and Neumann (2018) is used which
adds random tremor to the DVS’s optical axis. A Gaussian
subsampling scheme reduces the visual input of 128× 128 pixels
to 1 × 19 neurons, which relate to azimuthal direction. These
neurons resemble those in superficial layers of superior colliculus
and directly serve as visual sensory inputs to the MSI model.

Visual and auditory real world stimuli with increasing spatial
offsets are presented to the model as sensory inputs. Audio and

visual cortical inputs are simulated as described in Equation
(1) and follow their corresponding sensory counterpart over

spatial offsets. That is, their mean is set to the location of
the maximum sensory response of the real world input. For

small spatial offsets the two stimuli are integrated and a single
peak in the model response is present (Figure 9A). We take
this as an indication that multisensory fusion takes place and
a single event is perceived. For increasing spatial offsets (>12
cm) the model response without feedback shows two separate
peaks. This indicates that no integration takes place anymore
and two separate events are perceived. The offset value for
which this change of perception takes place changes with
active cortical feedback projections (>18 cm). This demonstrates
that cortical feedback facilitates larger offsets for which two
stimuli are fused to a single percept. For an offset of >30 cm
multisensory enhancement vanishes and responses for activated
and deactivated cortical feedback projections are similar.

To test whether this reduction in multisensory enhancement

is due to the spatial offset of sensory inputs or cortical inputs,

the location of the cortical projections is fixed at the location
of the auditory input (−9 cm) over all offset values. Thereby,

only sensory inputs at this location receive modulatory cortical
feedback (Figure 9C). The visual stimulus is shifted away from
the auditory stimulus which leads to the perception of two
different events for offset values larger than 12 cm (cortical
feedback projections inactive) or 18 cm (cortical feedback
projections active). This is similar to responses in Figure 9B.
However, multisensory enhancement is maintained even when
the visual input is shifted further away from this location. For
offset value of 30 cm multisensory enhancement is still present
at the location of the auditory stimulus whereas for the visual
stimulus such an enhancement does not take place, as can be seen
in Figure 9D.

4. DISCUSSION

We introduced two implementations of a neural model
simulating functions of SC neurons for integration of audio-
visual signals. The model incorporates modulatory cortical
feedback connections to facilitate enhancement of multisensory
signals. The rate-based implementation of the model and its
responses were evaluated in various simulation experiments and
we demonstrated the importance of cortical feedback projections
for near-optimal integration of signals. Furthermore, the
spike-based model implementation on neuromorphic hardware
showed its capability of integrating real world spike inputs from
neuromorphic sensors.

4.1. Multisensory Integration
Typical multisensory neurons show response enhancement
for multimodal stimuli that arrive in temporal and spatial
coincidence (Meredith and Stein, 1996). Previous studies report
that this property only arise for enabled cortical feedback
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FIGURE 9 | Spatial fusion for spiking MSI neurons. Upper row (A) displays the audio (red) and visual (blue) real world inputs to the model over spatial locations with

increasing offset values. The inputs originate from LSO model and camera recordings. Offset is given in evenly spaced displacement of stimuli in cm. Row (B) shows

multisensory response rates of spike-based model neurons over spatial locations for corresponding audio and visual inputs as given in the first row. Orange lines

indicate cortical feedback. Black lines indicate cortical feedback off. Spatial locations are given in cm. Note that the offsets are not equally distributed in the figure due

to spatial constraints. We choose to display only offsets for responses that are substantially different. Row (C) shows multisensory response rates of spike-based

model neurons as in row (B). However, in contrast to (B), visual and auditory cortical feedback locations are fixed to the location of the auditory sensory stimulus (0

cm). The lower row (D) displays the difference between response rates in (B,C) for active cortical feedback projections.

projections (Stein et al., 1983; Wallace and Stein, 1994; Jiang
et al., 2001; Alvarado et al., 2007b). Our model results
replicate such observations and show that response enhancement
can vary with the gain of the modulatory cortical feedback
projections controlled by λ parameter (Equation 2) in the model
(see Figures 3D,E). Thus, the gain of how neurons integrate
modulatory feedback could explain the observed variety of
multisensory enhancement in responses of SC neurons as has
been observed previously (Kadunce et al., 2001). Without cortical
projections the response to multisensory input remains sub-
additive (see Figure 3B) even for high input intensities. Such
cortical projections are only activated when both modality
specific cortical signals are active. If only one cortical region is
active multisensory response properties vanish. This is in line
with findings in cats, where multisensory integration disappears
for deactivated cortical areas (Meredith and Clemo, 1989;
Alvarado et al., 2009). In our model, this is achieved with a
specially designed cortical cross-modal forward inhibition circuit
in the feedback projections (see Equation 9).

Furthermore, the model follows the previously described
spatial principle of MSI neurons (Meredith and Stein, 1996) (see
section 1 for definition) by suppressing responses for bimodal
stimuli with large spatial offsets. We would like to point out
that this suppression is achieve merely by dynamic interactions
between the pool normalization, the feedforward inhibition and
excitation of sensory neurons, thus implicitly creating a center
surround receptive field of MSI neurons.

4.1.1. Bayesian Inference
Several investigations show that afferent connections from
cortical regions to the SC are necessary for multisensory
integration (Alvarado et al., 2007a, 2008, 2009). However, the
functional purpose of such feedback projections is still unclear.
Our Simulation experiments show that multisensory integration
of two input signals in a near-optimal Bayesian way appears only
when cortical feedback projections are active. The variance of the
integrated signal is substantially similar to the computed, optimal
value for active projections than compared to responses without
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these projections (see Figure 6G). This is especially true for larger
spatial offsets of the two input stimuli (see Figure 6F). Thus, we
hypothesize that one purpose of cortico-collicular feedback is
to facilitate optimal integration of multimodal signals and that
such an optimal integration might already happen on the level
of the SC. Presented model variance values (Figure 6H) exhibit
an offset for higher variance values which we assume to result
from the static size of the receptive field of model neurons and
could be compensated with a dynamically changing receptive
field depending on sensory certainty.

4.2. Neuromorphic Implementation
We demonstrated that the proposed model architecture is
suitable for robotic applications by implementing it on a real-
time neuromorphic processing chip. Preliminary results for
real world spike recordings obtained by neuromorphic sensory
hardware suggest that the model is robust and capable of
integrating real world multisensory signals. It was shown that
the model’s ability to fuse two modalities into a single percept
changes with cortical feedback projections. This supports the
hypothesis that cortex plays a crucial role in determining whether
two stimuli belong to the same event or if they represent two
separate events. This is further investigated in a last experiment
in which the cortical feedback signals are fixed to the location
of the auditory sensory input while the visual sensory input
is spatially shifted. The response enhancement remains at the
auditory location even if the sensory visual input is not present
anymore. This can be interpreted as an increased cortical focus
for this specific location. Thus, cortical projections might be
controlling the mandatory fusion range of multisensory neurons
and in addition serve as a spatial attention signal, as has been
suggested by McDonald et al. (2001), Mozolic et al. (2008), and
Talsma et al. (2010).

In future experiments, we are planning to implement such a
spatial attention mechanism in order to selectively choose which
multisensory signals should be enhanced. We believe that this
could be accomplished by a more sophisticated cortical feedback
signal with spatial properties different than the perceived
sensory inputs.

4.3. Comparison to Other Models for
Multisensory Integration
Several models that account for multisensory integration in the
colliculus of different granularity and focus have been suggested
over the years. Some of them try to explain the various response
properties of MSI neurons (Anastasio and Patton, 2003; Ursino
et al., 2017) whereas others focus more on the biological detailed
architecture (Cuppini et al., 2011, 2017; Casey et al., 2012). In
the following, we will describe two of them and point out their
strengths and weaknesses compared to our presented model.

In Rowland et al. (2007), the authors presented an algebraic
and compartmental model of multisensory integration that
incorporate cortico-collicular projections and try to explain the
existence of AMPA and NMDA receptors in MSI neurons. Their
goal was to reproduce a variety of physiological findings without
paying much attention to the underlying biological anatomy and
structure. Like our model, the authors are able to reproduce

several MSI characteristics like multisensory enhancement,
inverse effectiveness and super- and sub-additivity. In addition
to our presented results, they also demonstrate the MSI neuron
dependence on NMDA receptors and the temporal window of
integration of their model. However, they did not present any
results that indicates a Bayesian optimal integration of the signals.

Another approach is taken by Ohshiro et al. (2011) and
their normalization model in which they show that many of
the MSI response characteristics can be achieved by a pool
normalization of the neuron output. Their model assumes MSI
neurons that integrate signals according to a linear weighted sum
with different input weights across modalities and neurons. In
addition to the replication of MSI characteristics, the authors
performed a virtual experiment of vestibular-visual integration
task with their model and provided data that closely resembles
findings in monkeys. Despite the profound analysis of their
model and resemblance of experimental data, the authors neglect
cortical projections to MSI neurons entirely.

4.4. Limitations of the Model
As we have shown, the two proposed model implementations
using rate-based and spike-based encoding are both able to
replicate several physiological findings, predict the purpose of
cortical modulatory projections and are capable of reliably
processing real world spiking data. One of the drawbacks of the
current implementations is the lack of any learningmechanism in
the process. The model assumes that all connections are already
established and inputs are spatially aligned, even though, studies
show thatmultisensory integration emerges duringmaturation of
the nervous system by a constant exposure to multimodal signals
(Wallace and Stein, 1997). This long term exposure influences
how and to what extent multisensory integration takes place.
This limitation in our model could be tackled by incorporating
a Hebbian correlation learning mechanism between the cortical
feedback projections and MSI neurons as well as the inputs
of the model. The current assumption that the two modalities
are spatially aligned is a strong constraint and simplifies the
model architecture but is not biologically plausible. We are
confident that this can be overcome with a previously proposed
architecture of spatial map alignment of visual and auditory
inputs (Oess et al., 2020a).

4.5. Outlook
The proposed model implementations of MSI neurons set a
solid basis for future investigations. One important question we
are planning to investigate is the role of the cortical feedback.
One plausible hypothesis is that the feedback projections can
be controlled by an attention mechanism to set special focus
on a particular region and thereby enhances signals at that
spatial location. This is an essential mechanism when conflicting
events are present. In addition, the spike-based implementation
of the model on neuromorphic hardware is an important step
toward a real-time capable robotic platform. This platform will
be equipped with audio and visual sensory hardware which
directly communicates with the neuromorphic processing chips
via spike trains, thereby creating a complete neuromorphic
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system from the sensory perception to decision making and
action execution.
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