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When there is an interaction between a robot and a person, gaze control is very important

for face-to-face communication. However, when a robot interacts with several people,

neurorobotics plays an important role to determine the person to look at and those to

pay attention to among the others. There are several factors which can influence the

decision: who is speaking, who he/she is speaking to, where people are looking, if the

user wants to attract attention, etc. This article presents a novel method to decide who

to pay attention to when a robot interacts with several people. The proposed method

is based on a competitive network that receives different stimuli (look, speak, pose,

hoard conversation, habituation, etc.) that compete with each other to decide who to

pay attention to. The dynamic nature of this neural network allows a smooth transition in

the focus of attention to a significant change in stimuli. A conversation is created between

different participants, replicating human behavior in the robot. The method deals with the

problem of several interlocutors appearing and disappearing from the visual field of the

robot. A robotic head has been designed and built and a virtual agent projected on the

robot’s face display has been integrated with the gaze control. Different experiments have

been carried out with that robotic head integrated into a ROS architecture model. The

work presents the analysis of the method, how the system has been integrated with the

robotic head and the experiments and results obtained.

Keywords: gaze control, gaze engagement, HRI, humanoid robot, robotic head, ROS, competitive network,

computer vision

1. INTRODUCTION

The gaze control of a robotic head represents an important field of research in robotics, since it
promotes higher evaluations of a robot’s comprehension and naturalness (Kousidis and Schlangen,
2015) in human-robot interaction. This gaze engagement represents a key factor in interaction
because humans feel more comfortable if robots behave like a person. Some robots look and track
people, but are not able to change between several interlocutors during a conversation. If someone
disappears from the field of view, the robot listens to a sound and turns its head, looking for
someone to follow. This behavior is not natural in a conversation of several people.

The method proposed in this article responds to the problem of several individuals interacting
with a robotic head. It replicates human behavior using a competitive neural network which
receives stimuli from each person who interacts with the robot. Different factors are taken into
account: look, who speaks, pose, hoard conversation, habituation, etc. These factors produce
stimuli which create a dynamic conversation, independently of whether several people appear and
disappear from the visual field. Different considerations have been taken into account:
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(i) There may be several people in front of the robot.
(ii) One or several people could speak at the same time.
(iii) People could enter and exit the visual field of the robot.
(iv) People could appear and disappear from the scene due to

occlusions or false detections.
(v) People may be looking at the robot or elsewhere.
(vi) People must be distinguishable from each other to facilitate

their monitoring.
(vii) People could request the robot’s attention in several ways

(entering their visual field, talking, moving in front of
the robot).

(viii) The robot should give more attention to new stimuli (e.g.,
a person starts talking, while another one has been talking
for a certain time).

(ix) People can be in different image planes (closer or farther
from the robot).

(x) The transition of the change between two
people should be smooth and weighted, avoiding
jerky movements.

The proposed method is based on a competitive network that
accurately combines a set of identification techniques, facial
monitoring, and behavioral rules to achieve the most natural
interaction. The system deals with the presence of different
stimuli and allows a stable determination of the focus of attention
that must be followed with the robot’s eyes. At the same time, the
system has principles of adaptation and stability. The robot must
be able to respond quickly to new stimuli, but at the same time the
response must be smooth and stable, avoiding erratic behaviors.

The robot’s gaze control not only falls on the movement of
the head. A projected virtual face, hereinafter referred to as the
agent, has been created to move the eyes and show expressions
based on such factors as the presence of people. As an example,
if there is no one in front of the robot, the agent will show a
sad expression and begin an exploratory movement. In Ishi et al.
(2010), an experiment with two different robots showed a more
natural behavior of one of them just because the ability to move
the lips.

The present paper is structured as follows: section 2
explores the state-of-art of the technologies considered in this
paper. Section 3 shows how the method works, exploring the
different steps: face recognition, people pose, speaking detection,
competitive network, etc. Section 4 explains how this method has
been integrated with a robotic head developed for this purpose.
In section 5, the different experiments and results obtained
with the robotic head are reported. An overall discussion on
the obtained results is stated. Finally, section 6 notes the
advantages and limitations of the presented system and suggests
future developments.

2. OVERVIEW OF RELATED WORK

Gaze control has been an important field of research over
the last few years since it contributes to the improvement
of communication with people. As stated by Kousidis and
Schlangen (2015), when a robot is a listener in a multi-party
conversation and tracks the conversation with its gaze, it

promotes higher evaluations of that robot’s comprehension and
naturalness than a robot performing random gazing between
speakers. Moreover, Garau et al. (2001) proposed that virtual
agents which use turn taking gaze during conversations are
evaluated as more natural and pleasant than agents that use
random gaze or none gaze control in their communication.
What is more, their conversation is rated as more engaging.
Boucher et al. (2012) studied the gaze effects of Human-human
interaction in a cooperation experiment and implemented a
heuristic capability to generate such gaze cues by a humanoid
robot. However, that work was mainly focused on the interaction
with just one user. In addition, as studied by Andrist et al. (2015),
the gaze behavior more effectively motivates users to repeatedly
engage in therapeutic tasks.

Neurorobotics plays an important role in Human–Robot
Interaction (HRI), a discipline that allows improving robots
which can communicate and respond to ongoing human
communications and behavior (Kiesler and Hinds, 2004). It
also plays an essential role in assistive and rehabilitation
robotics (Beckerle et al., 2017). Admoni and Scassellati (2017)
have recently presented a survey of the state of the art in
social eye gaze for HRI. The authors distinguish between
three different approaches to the problem: Human-focused,
centered on understanding the characteristics of human behavior
during interactions with robots; Design-focused, which studies
how the design of a robot impacts on interactions with
humans; and Technology-focused, with the aim of researching
how to build computational tools to guide the robot’s gaze
in human interaction. According to the authors, the main
challenges of conversation are managing attention and turn-
taking between partners, selecting the correct gaze for the
conversational content, and adopting the right conversational
roles. In addition, Thrun (2004) indicated that the shape of
the robot, specifically humanoid features, influences people’s
behavior toward the machine and their expectations about
its capabilities.

Regarding gaze control, an outstanding work was published
by Zaraki et al. (2014), where the authors created a system to
guide a robot’s gaze at multiple humans who were interacting
with the robot. The attention mechanism used features which
had been proven to guide human attention. The authors relied
on the use of a Kinect sensor to track people and obtain sound
direction. This system considers the maximum of the sum of
different elements: social features, proxemics values, orientation,
and a memory component. However, the stimuli considered
were limited and the maximum value could change abruptly
and could also lead to erratic changes in the focus of attention.
Our proposal does not need a 3D sensor and is able to work
with common RGB cameras, while a competitive neural network
provides soft transitions between different focuses of attention.
Another remarkable work was published by Alonso-Martín et al.
(2012), who used 8 different microphones in a social robot,
named Maggie, to determine which direction to look. Once the
orientation of the robot with respect to the user was obtained,
an infrared laser returned the distance with respect to him/her
to make the robot move forward/backward. That work was
able to guide the robot in the direction of a speaker, but did
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not consider face stimuli or a competitive behavior. A robot
equipped with two laser range-finders was also used by Schulz
et al. (2003) to probabilistically track the position of people with
a mobile robot, although it did not have a cognitive behavior.
Saldien et al. (2014) presented a robot focus on Robot Assisted
Therapy (RAT) which was able to perceive different stimuli
(visual, auditory, and tactile) and track a certain colored object,
a face or a directional voice. However, that work did not solve the
problem of who to pay attention. Vega et al. (2013) proposed a
dynamic visual memory to store the 3D processed information
from a moving camera on board the robot. The attention system
chose where to look, according to the principles of reobserving
objects in the visual memory and the need to explore new areas.
The visual memory was a collection of relevant task-oriented
objects and 3D segments. However, that work wasmainly focused
on creating a visual memory about objects and reobserving
them according to the basis of keeping the memory updated.
More recently, Viciana-Abad et al. (2014) have demonstrated the
benefits of fusing sensory information with Bayes inference. The
authors localize a person with a robotic head by simultaneously
processing visual and audio data. The authors mainly focus on
tracking a particular person instead of a conversation between
multiple participants.

Visual information represents an important aspect of HRI,
increasing the robot’s awareness. The robots must trade off
features which affect the utility of the visual information
(Gergle et al., 2013), such as the robot’s field of view (FOV),
alignment of perspective, degree of spatial resolution, frame rate
or synchronization with a voice stream. The Visual Focus of
Attention (VFOA) represents who or what people are looking
at. Massé (2018) presents a VFOA model based on a Bayesian
network to infer the relation between head poses and object
locations. That work exploits the concept of correlation between
eye gaze and head movements instead of using face landmarks.
The author uses a convolutional neural network to predict object
locations and a reinforcement learning method for robotic gaze
control. The robot autonomously learns a strategy for moving
its head using audio and visual observations. The author mainly
focuses on the relation between head poses and objects and
not the conversations between different participants. In Ghi̧tă
et al. (2018), the authors track people in a robot assistive
care scenario by using an Oriented FAST and Rotated BRIEF
detector (ORB) and comparing characteristics between frames.
According to their study, NAOqi functions, which are SO/API
for Pepper, NAO and Romeo robots, are improved, covering
more range, situations of occlusions and more orientations of a
person/face. Shiomi et al. (2004) develop a face to face tracking
of people, generating hypotheses about people position by using
peripheral vision. Even though a face may not be present in
the foveal vision of the robot when it is gazing at another
object, the robot keeps plausible hypotheses about the location
of the human faces. However, in Csapo et al. (2012), the authors
point out some problems with Nao platform about non-verbal
human-robot interaction, where some capabilities of detecting
faces or tracking people interfere with other modules that send
commands to the same motor, producing senseless movements
due to conflicting signals.

Regarding the identification of people, the feature-based
systems play an important role in both human and robotics
perception (Potapova et al., 2017). Different techniques have
been developed for face detection and recognition during the
last years. As stated by Zafeiriou et al. (2015), robust feature
extraction methodologies have been used for face detection, such
as Scale Invariant Feature Transform (SIFT) features (Lowe et al.,
1999; Geng and Jiang, 2009; Lenc and Král, 2015), Histograms of
oriented Gradients (HoGs) (Dalal and Triggs, 2005), Local Binary
Patterns (LBPs) (Ahonen et al., 2006), or Haar cascade classifiers
(Viola and Jones, 2004). Among the most advanced techniques,
Haar classifiers, HoG detector or Deep Learning based solutions
are widely used, as they are implemented in OpenCV or DLIB
libraries. Haar classifiers detect faces at different scales but do
not work with non-frontal faces and occlusions and return a
large number of false predictions. The HoG feature descriptor is
fast but does not detect small faces (less than 80 × 80 pixels).
It can work with some minor occlusions or non-frontal faces,
but returns a bounding box that often excludes part of the
forehead/chin. The DLIB library (King, 2009) implements a CNN
face detector using a Maximum-Margin Object Detector (King,
2015), which works for different face orientations and occlusions.
However, it does not return a precise bounding box real-time.
OpenCV offers a DNN Face Detector, based on a Single-Shot-
Multibox detector (Liu et al., 2016), which is very accurate, works
with different face orientations, scales and occlusions, and runs in
real-time on CPU. Another important aspect of face recognition
is the extraction of the face’s features. They are mainly obtained
using anActive AppearanceModel (Cootes et al., 2001;Milborrow
and Nicolls, 2008) or DLIB-68 model (Kazemi and Sullivan,
2014), which makes a face alignment with an ensemble of
regression trees before obtaining the corresponding landmarks.
Finally, the face recognition is mainly based on Deep Residual
Learning algorithms, which are very accurate. DLIB implements
a ResNet network with 29 convolution layers and uses a pre-
trained model which takes the 68 face landmarks obtained from
an image (Kazemi and Sullivan, 2014).

As in the case of facial recognition, human body recognition
relies on the use ofHaar filters (Viola et al., 2001), HoG (Dalal and
Triggs, 2005), or Deep Convolution Neural Networks (DCNN),
such as the Faster RCNN Inception V2 COCO Model (Ren
et al., 2015). All of them are available in OpenCV, working
simultaneously with TensorFlow. Systems based on DCNN offer
better results, detecting more people with a lower number of
false positives.

Lip activity detection has also been studied in different works.
Bendris et al. (2010) proposed a method to detect lip motion
by measuring the degree of disorder of pixel directions around
the lip using the optical flow technique (Saenko et al., 2005).
A rectangle around the lips was enlarged to be aligned with
a previous one by taking the region that minimized the mean
squared difference (MSD). Siatras et al. (2008) considered the
increased average value and standard deviation of the number of
pixels with the lowest intensities of the mouth region to detect
visual speech. They created a statistical algorithm that used two
detectors based on noise to characterize visual speech and silence
in video sequences.
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FIGURE 1 | Steps in the gaze control process.

Neural networks have played a major role in the interaction
of robots with people. An outstanding work was presented
by Bicho et al. (2010), who presented a control architecture for
human-robot collaboration which was formalized by a coupled
system of dynamic neural fields representing a distributed
network of neural populations that encode in their activation
patterns goals, actions, and shared task knowledge. This approach
was valid for inferring the response to user stimuli but was
only valid for the collaboration with one user. In our paper,
a competitive network is used to create a dynamic behavior
in the interaction between several participants. A competitive
network consists of a layer that is able to react to different stimuli
and decide a winner. This network has a progressive behavior
which does not switch sharply between consecutive winners. A
habituation layer avoids a participant from being the winner for
a long period of time when a new, different stimulus arrives.
For example, imagine that two people are talking and one of
them is monopolizing the conversation. The robot would gaze
at the person who monopolizes the conversation but, if the other
person says something, a more natural behavior is to gaze at the
new interlocutor.

3. ANALYSIS OF THE SYSTEM

The method proposed in this section analyzes how the gaze
control of a robotic head works. Figure 1 shows the different
steps needed to obtain the orientation angles of the robotic head.

There is a specific frame rate that determines how many
images are received per second. Whenever a frame is received,
there is a process of people detection and face landmarks are
obtained using the DLIB 68 model (Kazemi and Sullivan, 2014).
There is a temporal table which memorizes the people who
have interacted with the robot. If a person is new, a 128D
vector is obtained by techniques related to facial recognition,
as explained later. This vector allows a concrete person to
be identified. Once a person has been identified, the method
uses correlation tracking (Danelljan et al., 2014) to follow
the person during consecutive frames. If a person disappears
from the scene for a while, the method is able to keep
their 128D vector in its memory to make a subsequent re-
identification. Different stimuli, such as visual speaking detection
and pose estimation, are evaluated for each person, and they
represent the entry of a competitive network composed of three
different layers:

• Short Time Memory layer (STM), which extends the duration
of the concrete stimuli. As an example, if a person says a short
sentence, the systemmight not properly consider the stimulus.
This layer extends the duration of the stimuli to have more
value in the entry of the habituation layer.

• Habituation layer, which penalizes persistent stimuli against
new stimuli, e.g., it prevents someone from hoarding the
conversation. When a person is speaking continuously, if
someone says something, it makes it easier to pay attention to
the new interlocutor.
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• Competitive layer, which is the final step of the network. The
input to the competitive network includes stimuli for each
person in the memory, and decides who is the winner. This
layer is responsible for following a dynamic behavior, without
abrupt jumps.

Kalman filters are used to process the position of people over
time. These filters have been previously used on robotic heads,
such as Milighetti et al. (2011), who predicts the next state of the
moving target. In our work, 2D face positions obtained during
tracking are transformed into concrete angles of the robotic head
(ψc and θc). These angles are integrated in different Kalman
filters, one for each person in memory, giving the position of the
person independently of being in the robot’s FOV. After a winner
is provided by the competitive network, the new orientation of
the robotic head is that returned by its Kalman filter. Then, the
Kalman filters are updated with the last positions obtained.

The rest of this section is composed of different subsections:
section 3.1 explains the different stimuli considered and how they
are calculated. Section 3.2 presents how the competitive network
works. Section 3.3 shows how the face coordinates of a person
obtained from an image are transformed into the angles of the
robot. Finally, section 3.4 presents how the Kalman filter is used.

3.1. Entry Stimuli of Competitive Network
Each person, k, produces a set of stimuli, x. This set of stimuli are
introduced into the competitive network and defined Ikx. Several
stimuli that consider how people react in a conversation have
been used. The stimuli that can be present or absent are coded as
binary values and are balanced in importance by a weight, wkx:

• Ik1 is the stimulus associated to a person k who is situated in
the robot’s field of view (FOV). People situated in front of the
robot are candidates to be interacting with the robot.wk1 is the
corresponding weight associated to that stimulus.

• Ik2 is the stimulus associated to a person k who is considered
to be speaking. Lip movement detection is performed, based
on mouth landmarks. Moreover, in order for a person to be
considered as a speaker, incoming audio has to be detected in
its direction.

• Ik3 is the stimulus associated to a person k who is gazing
directly at the robot. The pose is an important stimulus which
indicates that a person is visually interacting with the robot.
This stimulus represents the mutual gaze, a kind of shared
looking which is related to the increase of the engagement in
the interaction (Sidner et al., 2004).

• Ik4 is the stimulus associated to a person kwho is continuously
moving. In a conversation with several people, an individual
tends to look at another restless person. This stimulus requires
the individual to be situated in the FOV of the robot. If
the sum of differences of a person’s position between several
frames is over a concrete threshold, the person is considered
to be restless.

• Ik5 is the stimulus associated to a person k who is not situated
in the robot’s FOV, but for whom audio has been detected.
When a person is interacting with a group of people and
someone is speaking at their left/right side, this individual
tends to turn the head in that direction looking for the person.

• Ik6 is the stimulus associated to a person k who is not situated
in the robot’s FOV, but who is the VFOA of another group of
people. When two or more people in the FOV are gazing in the
same direction, a stimulus is given to people in that direction.
In this situation, this stimulus considers the Visual Focus of
Attention (VFOA).

• Ik7 is the stimulus associated to a person k who is situated at
a certain distance, following a proxemic approach as in other
works (Alonso-Martín et al., 2012; Zaraki et al., 2014). This
stimulus is multiplied by an adjustment factor which depends
on the distance between the person and the robot.

Next, the calculus of each stimulus is explained.

3.1.1. Stimulus Ik1: Person in the FOV of the Robot
The robot detects faces in frames and persons are, first of all,
recognized and labeled. When the robot turns its head, if a new
face appears on the FOV, the robot can discern whether this
person was previously recognized. When a face is in the FOV
during a period of time, re-identification is not required since the
face is followed by tracking.

There are different techniques for face recognition, but those
based on Deep Residual Learning are very accurate. The library
DLIB implements a ResNet network with 29 convolution layers.
This model is similar to the ResNet-34 network (He et al., 2016)
with a few layers removed and the number of filters per layer
reduced by half. This library uses a pre-trained model and takes
the 68 face landmarks obtained from an image (Kazemi and
Sullivan, 2014), aligns the face and maps it to a 128 dimensional
vector space where images of the same person are close in
terms of distance. Once the 128D vector has been obtained, the
similarity of two faces is calculated, checking if their Euclidean
distance is small enough. Using a threshold of 0.6, the DLIB
model obtains an accuracy of 99.38% on the standard LFW face
recognition benchmark (Huang et al., 2008). This procedure
requires the use of GPU, due to the fact that obtaining the 128D
vector from a face takes more than 0.4 s with CPU. With an intel
i9-9900K and a GPU GeForce RTX 2080 Ti, the 128D vector is
obtained in less than 0.05 s.

When a person is identified, a tracker is used to follow the
person in the FOV. It increases the speed of the system, as
tracking is faster than face recognition. The DLIB library allows
a correlation tracker based on Danelljan et al. (2014) to be used.
This method considers the approach of Bolme et al. (2010) and
makes use of learning discriminative correlation filters based on
a scale pyramid representation. The authors use separate filters
for tracking, in real-time, objects that change in both translation
and scaling.

3.1.2. Stimulus Ik2: Person Speaking in the FOV of the

Robot
As stated in the overview of related work, there are different
works which have studied lip activity to discern whether a
person is speaking or not. Speaking detection is important in a
conversation because, when a person is looking at the robot but is
in silence, it is likely that another person who is speaking receives
the robot’s attention.
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FIGURE 2 | Visual speaking detection. (A) Points used for lip activity detection. (B) Points to normalize distance.

Instead of implementing a complete analysis of images as in
Bendris et al. (2010) or Siatras et al. (2008), and due to the fact
that DLIB 68 returns characteristic points of the mouth (points
49–68), the movement between lips is calculated in consecutive
frames using these points. The sum of distances between a group
of points (62 and 68, 63 and 67, 64 and 66, 49 and 55, 51 and 59,
52 and 58, 53 and 57) (see Figure 2A) is divided by the distance
between the middle point of the eyes, points 37 and 46, and the
end of the chin, point 9 (see Figure 2B). This division is done to
normalize the distance, regardless of whether the person is close
or far away.

Let dk be the result of the calculus of the separation of lips in
frame k, as shown in Equation (1).
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dk is added during a few consecutive frames, say 5 frames. If the

result is over a threshold τS, that is
5
∑

k=1

dk ≥ τS, the person is

visually considered to be speaking.
After the visual speaking confirmation, it is necessary to

evaluate if there is audio in the direction of that person. A person
can move his/her lips, i.e., breathing, but in silence. An Audio
Activity Detection (AAD), combined with a Direction of Arrival
system (DOA) (Griffin et al., 2012), is used to detect the zone
where audio is originated (left, central, right). When the person
is visually speaking in the robot’s FOV and audio is detected in

the direction of the robot’s gaze (80◦), that person is considered
to be speaking.

3.1.3. Stimulus Ik3: Person Gazing Directly at the

Robot
The determination of people pose is an important stimulus
because, when a person is looking at the robot, there is a greater
interaction between both participants: person and robot.

Instead of developing a complete analysis of image, such as
Ba and Odobez (2008), where the authors study how to link
head position with the visual focus of attention, modeling the
pose observations with a Gaussian Mixture Model (GMM) or a
HiddenMarkovModel (HMM), the use of known face landmarks
is exploited. A Perspective-n-Points algorithm (PnP) associates
2D points of the DLIB 68 model (Kazemi and Sullivan, 2014)
with 3D points in a respective model. Using a standard 3Dmodel
of a head, with some characteristic points such as nose tip, chin,
left eye left corner, right eye right corner, mouth left corner or
mouth right corner, it is possible to calculate the respective pose
between the DLIB points and the 3D model. PnP is implemented
in different ways, but the solution DLT + Levenberg-Marquardt
Optimization has been chosen. A Direct Linear Transformation
(DLT) algorithm allows L, the projection matrix of the camera,
to be calculated. In the formula LXi = ui, 2D coordinates ui are
related to a 3D point Xi. To obtain L, the six different points
selected (nose tip, chin, etc.) and the 3D position of these points
in the model are introduced in the algorithm. The Levenberg-
Marquardt Optimization finds a pose that minimizes the re-
projection error, which is the sum of the squared distances
between the observed image points and the projection.

When the pose has been determined, and considering the nose
tip as the origin of coordinates, a 3D vector from the origin
is projected onto the 2D image: say x1(0, 0, 0)− x2(0, 0, 500)
projected as u1(x1, y1)− u2(x2, y2). The module of this vector,
∣

∣

−−−→u1, u2
∣

∣, which is represented in blue in Figure 3, is divided by
the distance between the middle point of the eyes, points 37 and
46, and the end of the chin, point 9 (red vector). This division
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FIGURE 3 | Pose module and distance between eyes and chin. (A) Pose of a person. (B) Pose vector and DLIB landmarks.

normalizes the module, making it independent of the distance
to the face. If the result is below a given threshold, τM < 5, the
person is considered to be looking at the robot and their stimulus
is increased in the entrance of the competitive network.

3.1.4. Stimulus Ik4: Person Continuously Moving
In a conversation with several people, a person tends to look at
another restless one. The angles associated to a person,ψc and θc,
are stored during 25 consecutive frames, as this number of frames
has produced the most accurate results. The difference between
each pair of consecutives angles is calculated and accumulated.
These differences are computed using the Euclidean distance. If
the accumulated distance is over a concrete threshold, τM , the
person is considered to be a restless person.

3.1.5. Stimulus Ik5: Person Not in the Robot’s FOV but

With Audio
In a conversation with several people, a person has to turn the
head left/right when other persons are speaking in that direction.
As explained before, the proposed method uses Kalman filters to
keep the last estimated position of each person in memory. The
DOA system (Griffin et al., 2012) indicates the direction of audio:
left, central, right. When nobody is speaking in the robot’s FOV,
all people situated to the left/right side of the robot, according to
the person’s angles and robot pose, receive stimulus if audio has
been detected in their zone.

In addition, there are two fictional persons who are situated
in the left/right zone of the robot, respectively. When a new
participant begins speaking, who has not been previously
detected by the robot, the corresponding fictional person receives
stimulus whenever audio is detected in their zone and nobody is
speaking in the robot’s FOV. This is used to integrate that person
in the competition and be able to get the robot’s attention.

The DOA system is also used when the robot has not
previously detected any person. When a sound arrives from a

concrete direction, the robot will begin an exploratory movement
in that zone to search for people.

3.1.6. Stimulus Ik6: Person in the VFOA of Other

People
As assumed by other authors (Massé, 2018), it is important to
consider the Visual Focus of Attention (VFOA). It represents
who or what people are looking at. If two persons situated in
the robot’s FOV are looking at someone who is situated to the
left/right of the robot (see Figure 4A), there is probably a reason
and the robot should consider looking in that direction.

To calculate this stimulus, if two or more people in the robot’s
FOV are not looking at the robot and there is a difference between
their pose vector below a given threshold, say 30◦, the stimulus is
increased for the people who are situated in the direction of the
gaze of these persons.

3.1.7. Stimulus Ik7: Proxemics of a Person
Proxemics is the study of the human use of space. As stated by
Hall et al. (1968), there are four distinct zones in the interpersonal
relations: (1) intimate space, (2) personal space, (3) social space,
and (4) public space. Following this proxemic approach, as in
other works (Alonso-Martín et al., 2012; Zaraki et al., 2014), the
distance between the robot and a person is estimated. In each
frame, this distance is proportional to the distance between the
middle point of the eyes, points 37 and 46, and the end of the
chin, point 9. A function that approximates this distance has been
obtained, as follows:

dpk = −0.02 ·
∣

∣

∣

−−−−−−−−−−→
Pm(P37, P46), P9

∣

∣

∣
+ 2.04 (2)

where dpk represents the distance between the robot and a person
k in meters. Stimuli increased are those of people situated at the
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FIGURE 4 | VFOA and proxemic. (A) VFOA of two people. (B) Considering region in the proxemic approach.

far phase of the personal space (0.76–1.22m) or at the social space
(1.22–3.70 m), as shown in Figure 4B.

This stimulus, Ik7, is multiplied by an adjustment factor
depending on the distance:

fk =

{

1 if dpk >= 0.76 & dpk <= 2.10
3.70−dpk

1.60 if dpk > 2.10 & dpk <= 3.70
(3)

People situated at the far phase of the personal space (0.76–1.22
m) or at the close phase of the social space (1.22–2.10m), multiply
their stimulus by fk = 1. People situated at the far phase of the
social space (1.22– 3.70 m) multiply their stimulus by a factor, fk,
which depends on the distance and is reduced until dpk = 3.70m.
These equations have been adjusted during experiments.

3.2. Competitive Network
When all stimuli have been obtained, a competitive network
decides which person to gaze at. The competitive network creates
a dynamic behavior between interlocutors. Instead of changing
the gaze between participants abruptly, the network softens the
change and avoids situations such as monopolizing attention.
It has three components: an STM layer, which increases the
duration of short stimuli; a Habituation layer, which penalizes
persistent stimuli against the novel ones through a dynamic gain;
and a Competitive layer, which creates a competition between
participants and decides a winner.

This network has one input and output for every possible
person, as seen in Figure 5. Thus, Iij corresponds to the stimulus
j for the person i andwij to its associated weight. The weights take
values between 0 and 1 and are chosen experimentally according
to the relevance of the stimuli. The selected person is the one with
the highest value in the output, Oi. The network is composed of
three interconnected layers.

One important aspect in this process is the configuration of
the different parameters of such a neural network. The weights
of the different stimuli have to be computed in order to achieve

behavior similar to humans. During an initial training, three
people follow a list of steps previously recorded. At the same time,
another person observes the interaction and annotates the time
instants when a person should be the focus of attention. When
all data have been obtained, stimuli from expected winners and
losers are separated based on the said manual annotation. The
process is modeled as an optimization problem, maximizing the
sum of the distances between the winners and the losers at each
time instant t, as shown in Equation (4). This procedure ensures
that the weights are optimal to make the selected persons winners
and separate them from the losers.

max

m
∑

t=1

(

∑

k∈losers

It,winner − Itk

)

= max

m
∑

t=1















∑

k∈losers















7
∑

x=1

wx · It,winner,x

−

7
∑

x=1

wx · It,k,x





























(4)

3.2.1. Short Time Memory Layer
An STM increases the duration of the stimulus to havemore value
in the entry of the habituation layer. It is based on the model
proposed by Grossberg (1982). The neuron activity is computed
using Equation (5), where xi is the activity of the neuron i and
A1 is the decay rate. The next term is the auto-reinforcement,
which makes neuron activity tend to its saturation value B1. C1

marks the growth rate. Si is the filtered stimulus and wi is the
STM weight for that stimulus.

dxi

dt
= −A1xi + C1(B1 − xi)[Siwi] (5)
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FIGURE 5 | Architecture of the competitive network.

Equation (5) is solved in real time using a trapezoidal integration
defined by the following equations:

xi(kh) = xi((k− 1)h)+
gi(kh)+ gi(k− 1)h

2
(6)

gi(kh) = −A1xi(kh)+ C1xi(kh)

+C1(B1 − xi(kh))[Siwi] (7)

where k represents an increasing value 0..n and h is the period
of time (0.1 in experiments). Figure 6A reflects the behavior of
the STM layer with parameters A1 = 0.2, B1 = 1, and C1 = 0.5.
When a short stimulus arrives, the layer maintains its value
during some time until it completely disappears.

3.2.2. Habituation Layer
The proposed method has habituation capabilities, that is, it loses
interest in permanent stimuli over time. Habituation networks
were proposed by Grossberg (1968). In this layer, stimuli decay
due to habituation allows the network to dynamically adapt
against permanent inputs, such as a person who is hoarding
the conversation. By using a habituation layer, those continuous
stimuli lose preponderance over time, allowing novel stimuli
to acquire more importance. Habituation is carried out by
multiplying the input stimuli with a dynamic gain that is updated
over time. The gain gi computation is calculated based on
Equation (8).

dgi

dt
= E(1− gi)− FS

′

igi (8)

In the same way as with the STM layer, the differential equation
is integrated trough the following numerical discrete equations:

gi(kh) = gi((k− 1)h)+
p(kh)+ p((k− 1)h))h

2
(9)

p(kh) = E[1− gi(kh)]− FS
′

i(kh)gi(kh) (10)

where S
′

i is the filtered stimulus and gi is the habituation gain for
that stimulus. When a stimulus is active, the habituation gain
decreases from the maximum value of 1 to a minimum value
given by E/(E+ FS

′

i), proportional to the stimulus value S
′

i. This
gain is recharged to its initial unity value when the stimulus ends.
Charge and discharge rates are determined by the parameters E
and F. Figure 6B shows the behavior of the Habituation layer
with parameters E = 0.5 and F = 0.02. When there is a long
stimulus in duration, the layer decreases its value to give more
possibilities to other new stimuli from other people.

3.2.3. Competitive Layer
The outputs of the habituation layer are the inputs of the
competitive layer. The competitive model used is on-center
off-surround (Grossberg, 1982) and is based on the model of
Hodgkin (1952), where each neuron is reinforced with its own
activity, but attenuated by the activity of the neurons it is
connected to. This attenuation is known as lateral inhibition
and makes people compete by means of the weight of their
corresponding stimulus. Neuron activity is computed using
Equations (11) and (12), where yi is the activity of neuron i andA2
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FIGURE 6 | STM, habituation, and competitive layer behavior. (A) STM layer behavior when there is a short duration stimulus. A1 = 0.2, B1 = 1, and C1 = 0.5. (B)

Habituation layer behavior when there is a long duration stimulus. E = 0.5, F = 0.02. (C) Behavior of competitive layer with 2 neurons. A2 = 1, B2 = 1, and C2 = 3, D =

1, E = 0.5, and F = 0.02.

is the decay rate. The next term is the auto-reinforcement, which
makes neuron activity tend to its saturation value B2. C2 marks

the growth rate and S
′′

i is the filtered stimulus. Finally, the last
term represents lateral inhibition (off-surround).

dyi

dt
= −A2yi + C2(B2 − yi)[S

′′

i + f (yi)]

−yi
∑

i6=j

f (yj) (11)

f (yi) = Dyi
2 (12)

As before, the differential equation is integrated trough the
following numerical discrete equations:

yi(kh) = yi((k− 1)h)+
qi(kh)+ qi(k− 1)h

2
(13)

qi(kh) = = −A2yi(kh)+ C2yi(kh)

+C2(B2 − yi(kh))[S
′′

i wi]

−
∑

i6=j

Dyj((k− 1)h)2 (14)

A parabolic function has been selected for f (yi), so the winner
neuron is reinforced against the rest. The competition schema is
a winner-take-all, as it is desirable that only one person prevails
over the complementary ones. Figure 6C shows the behavior of
the competitive and habituation layers. The competitive layer
has parameters A2 = 1, B2 = 1, C2 = 3, and D = 1, while the
habituation layer has E = 0.5 and F = 0.02.

There are two inputs of stimuli. One input receives a stimulus
of 0.7 that remains in time from t = 1 until t = 8. Another input
receives the same stimulus, 0.7, from t = 5 until t = 8, where
both stimuli disappear. The sequence of winners is: neuron 1
and neuron 2. Neuron 1 is the first winner, as it is the only
stimulus. Because of the habituation layer, neuron 1 reduces its
value and neuron 2 becomes winner, although the input stimuli
are similar.
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FIGURE 7 | Transformation of the coordinates of a face into angles of the robot.

3.3. Angles of the Robot
An important step of the method is the transformation of the
coordinates of a face into angles of the robot. These angles are
situated in a universal coordinate system (UCS) and they remain
in the robot’s memory regardless of whether it turns its head.
Kalman filters also use these angles to estimate the position and
the robot accepts angles to move its head up/down and left/right.

Initially, the robotic head is situated in angles ψO = 0◦ and
θO = 0◦. When it turns its head, ψc and θc represent the center
point of the image. This image is the robot’s FoV. As seen before,
DLIB returns a rectangle for each face detected in an image.
The midpoint of that rectangle is (xk, yk) and corresponds to the
person k.

From (xk, yk), it is necessary to calculate the angles (ψk, θk).
For that purpose, some fixed parameters are necessary. As seen
in Figure 7, ε1 represents the vertical angle of the FoV, while ε2
corresponds to the horizontal one. w and h are the respective
width and height of the image.

Equation (15) show the relation between (xk, yk) and (ψk, θk).

{

ψk =
[

ψc −
ε1
2

]

−
[

xk ·
ε1
w

]

θk =
[

θc −
ε2
2

]

−
[

yk ·
ε2
h

] (15)

Initially ψc = ψO = 0◦ and θc = θO = 0◦. When the robot turns
its head, the target angles are aligned with the center of the image
(xc, yc). Therefore, the robotic head moves to (ψk, θk) and, when
it finishes, ψc takes the value ψk and θc takes the respective θk. At
that moment, (ψc, θc) are the current situation of the robot until
the next movement.

3.4. Kalman Filter
The Kalman filter and the Extended Kalman filter (Rosales and
Sclaroff, 1998) are well-known techniques that allow the position

of a person to be estimated by means of positions known and
previously updated. The Kalman filter considers noise and other
inaccuracies and helps estimate the location. It uses Bayesian
inference and estimates a joint probability distribution over the
variables for each instant of time.

Several Kalman filters run simultaneously, one for each person
previously tracked by the robot. When a new person appears,
the proposed method considers an initial state vector with the
first known positions of the person. This vector is composed of
the corresponding angles of the robot calculated from the center
point of the person’s face, xk = (ψk, θk). The Kalman filters are

created with a posteriori error covariance matrix Pk =

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

(a

measure of the estimated accuracy of the state estimate).
An iteration is produced when the person has been detected

in a new frame and new positions/angles arrive. At that
moment, the Kalman filter is updated with the new angles.
Hk is the observation model which maps the true state space
into the observed space. Specifically, the observation model is

Hk =

∣

∣

∣

∣

0.1 0
0 0.1

∣

∣

∣

∣

, and the covariance of the observation noise is

Rk =

∣

∣

∣

∣

0.25 0
0 0.25

∣

∣

∣

∣

4. ROBOT CONSTRUCTION AND METHOD
IMPLEMENTATION

A complete robotic head has been designed and built, as shown
in Figure 8. The design considers the principle by which people
will collaborate more naturally and easily with humanoid robots
as compared with machine-like robots (Hinds et al., 2004), and
the idea of the anticipated acceptance of a social robot when
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FIGURE 8 | Robotic head developed.

it provides more enjoyable interactions (de Graaf et al., 2019).
This robotic head includes two servomotors for the orientation
(ψ and θ angles) and a wide angle camera located at the top of
the head. An ESP32 module has been programmed to move the
servomotors, which are also connected to a step-down voltage
regulator. The ESP32 module is connected to a computer, which
is responsible for the robot’s gaze control. The function developed
in the ESP receives the target where the head has to be moved as
ψ and θ angles. It moves the servos to that concrete position step
by step and, each step, publishes the current position of the head.

A projector situated at the back projects an agent on a 3D
printed display representing the robot’s face. The agent follows
an approach using the Facial Action Coding System (FACS)
(Ekman, 1997), which is a well-knownmethod for measuring and
describing facial behavior. In FACS, several Action Units (AUs)
are responsible for contracting groups of muscles in face changes.

The computer in charge of processing the gaze control is an
intel i9-9900K, with 32Gb of RAM and a GPUGeForce RTX 2080
Ti. It is connected to different elements: the ESP32 module, a
mini projector with HDMI, and the circular microphone array,
concretely a ReSpeaker Mic Array v2.0. This computer runs
the Robot Operating System (ROS) (Quigley et al., 2009) over
Linux, where the proposed method has been deployed. Several
independent nodes run simultaneously and different messages
are published and subscribed by these nodes. The architecture of
the developed system is shown in Figure 9.

There are several nodes:

• framePublisher, which directly receives frames using OpenCV
and publishes into a compressed image topic. It has a rate
of 20 Hz. The image is transformed into a grayscale image
and the dimensions are adjusted to an optimal value (500
pixels wide).

• audioDetection, which detects audio activity (AAD) and
the direction (DOA). This node publishes a message,

audioDetection, with a rate of 3 Hz, indicating both values.
Other nodes with a different rate, such as stimuliCalculation,
use the last received values, remaining in time until other,
new ones are published. Our experimentation showed that this
technique produced a better behavior in the recognition of a
person speaking.

• peopleTracking, which is responsible for different activities:

(i) Extracting people/faces/face landmarks from a frame
using DLIB libraries.

(ii) Tracking people using face identification and a
correlation tracker.

(iii) Obtaining people pose.
(iv) Keeping in memory a list of existing people, as well

as their position, depending on the angles of the
robotic head. The competitive network has 20 entries
corresponding to possible interlocutors during the last
activity of the robot. If the list is complete and a new
person appears, the person not detected for the longest
time is replaced by the new one.

(v) Based on the list of existing people, publishing a message,
faceLandmarks topic, with face characteristics (68 DLIB
points, coordinates, pose) for the stimuli calculation
and a message, peoplePosition topic, with new known
positions for the Kalman filters.

• stimuliCalculation, which calculates the value of the entries of
the competitive network using the information provided by
the faceLandmarks topic. The stimulus i can take the values
0 or 1 for a person k and is multiplied by a weight wi with the
values represented in Table 1.

All stimuli multiplied by their corresponding weights are
accumulated for each person k, being normalized between 0
and 1, and they are published as a stimuliVector topic, which is
the input of the competitive network.

This node performs another important task: when nobody
is speaking in the robot’s FOV, whenever there is audio in the
left or right zone, the stimulus I5 is increased for a fictional
person. There are two fictional persons who, respectively, have
Kalman filters with angles in the left/right zone of the robotic
head. This task is valid for situations where a new person
appears to the left/right of the robot. As they have not been
previously recognized by the robot, it does not take them into
account. The use of the competition network includes them in
the dynamic behavior process.

• competitiveNetwork, which implements the three previously
explained layers:

(i) Short Time Memory layer (STM), which extends the
duration of concrete stimuli.

(ii) Habituation layer, which penalizes persistent stimuli
against novel ones.

(iii) Competitive layer, which decides the winner.

This node publishes a message with the winner, winner topic,
which is in fact the stimuli vector processed by the network.
The output with the highest value represents the winner.

• Kalmanfilter, which implements a Kalman filter for each
different person. It receives the angles of the robot head for
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FIGURE 9 | ROS architecture.

TABLE 1 | Weights in stimuli calculations (obtained with the optimization problem).

Stimulus i Iki wi

1. Person k detected in the robot’s FOV 1/0 0.06

2. Person k speaking in the robot’s FOV 1/0 0.25

3. Person k gazing directly at the robot 1/0 0.06

4. Person k moving sharply between frames 1/0 0.16

5. Person k not in the robot’s FOV but with audio 1/0 0.25

6. Person k in the VFOA of other people 1/0 0.16

7. Proxemics of person k 1/0 0.06

tracking a person, who is in the robot’s FOV, and updates their
corresponding values.

• robotOrientation, which is in charge of combining information
received from the competitive network and the estimation of
the Kalman filter, peopleEstimation topic, and sends the new
angles to the robotic head. Another task is carried out by
this node: when nobody has been detected during the last
20 s, the robot begins an exploratory movement whenever new
audio is detected. The exploration initially moves the attention
to the zone where the audio has been detected (left, central,
right). During this exploration, the agent modifies the robot’s
expression from neutral to sad.

Based on the winner of the competition layer, the
robotOrientation node obtains the target angles (ψk and θk)
of the winner k, from the Kalman filter. Before sending them

to the ESP32 module, it makes some controls related to the
agent movements:

(i) If the distance between (ψk, θk) and (ψrobot , θrobot), the
current position of the robotic head, is lower than 10◦, the
node does not send the movement to the servos. Instead, a
movement of the agent’s eyes is produced in the direction
of the target. This step avoids servo gittering.

(ii) If that distance is over 10◦, the node sends the movement to
the servos and, at the same time, makes the agent smile and
move the eyes in the direction of the target.

It is also interesting to mention that a blinking eyes movement
has been given to the robot to show realism.

• visualization, which visually displays the results of the process
on the computer screen.

5. EXPERIMENTS AND RESULTS
DISCUSSION

An initial step consisted in determining the optimal parameters
of the system. This step was carried out by means of the
optimization problem previously described, where three people
followed a list of established actions. An external observer
followed the interaction and annotated the time instants when
a person should be the focus of attention. The complete list of
actions had 726 steps and the optimization problem was solved
in 18 iterations and 0.23 s (in an intel i9-9900K) using the SLSQP
algorithm (Kraft and Schnepper, 1989). The obtained results
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FIGURE 10 | Robot interaction with two people. (A) Input stimuli in a conversation. (B) Output stimuli in a conversation. (C) Input stimuli with different actions. (D)

Output stimuli with different actions.

were w1 = 0.06, w2 = 0.25, w3 = 0.06, w4 = 0.16, w5 = 0.25,
w6 = 0.16, and w7 = 0.06. It is important to mention that,
depending on the behavior expected by the observer, some
parameter may take slightly different values. After this step,
several situations involving two/three interlocutors and the
robotic head were considered. 13 interactions (with 31.200
frames) with two or three people were recorded, considering
different stimuli. 8 people participated in the experiments
repeating some of them with similar results. The results of 4 out
of them are shown next.

During the first experiment, two people situated in the
social space interacted with the robot. Figure 10A represents the
summation of input stimuli in the competitive network, while
Figure 10B shows the output. In this experiment, the two persons
looked at the robot and had a conversation. Person 2 began the
conversation (2–7 s), followed by 1 (6–12 s), 2 (12–15 s), and
finally 1 (17–18 s). At the end of the conversation, the habituation

capabilities appeared and person 2 became the winner (22–24
s). The output of the competition redirected the gaze of the
robot dynamically.

During the second experiment with two people, a preset
sequence of people’s behavior was evaluated, as shown in Table 2.
Depending on the stimuli obtained from both participants, the
result of the competition was dynamically modified. This table
shows the interval of time over which the stimulus takes place.
The results of the winning person are shown in Figures 10C,D.

The following experiments were carried out with three people,
as seen in Figure 11. In the case Figure 11A, there are two
individuals in the robot’s FOV. There is a conversation between
three people on the scene and the robotmoves its head depending
on the winner, but, at a specific time, the stimuli produced by
person C (speaking detection, gazing, proxemics, movement,
etc.) and the result of the competitive network makes this person
the winner and the robot turns its head to look at him/her.
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The second case, Figure 11B, is similar to the first situation but
the three individuals are in the robot’s FOV. The robot moves
its head or eyes as soon as a new winner is elicited from the
competitive network. As before, when person C becomes the
winner, the robot turns its head right to center the person. The
third case, Figure 11C, corresponds to a situation where the
robot had previously detected three people. At a certain time,
nobody is in the FOV, but the robot is detecting audio. The

TABLE 2 | Sequence of behavior of two people.

State Person

speaking

Person

gazing robot

Person

moving

Winner Time

1 2 1 2 1 2

1 2 2–10 s

2 1 10–16 s

3 1 16–23 s

4 2 23–33 s

5 1 33–37 s

6 2 45–48 s

competitive network returns winner A and the robot turns its
head left, according to the values returned by the Kalman filter
associated to that person.

The fourth case, Figure 11D, represents two persons who are
quiet in the robot’s FOV. A new person arrives and begins to
speak to the left. As soon as the robot detects sound in that zone,
the fictional input of the competitive network corresponding to
the left zone receives new stimulus. The competition evolves until
that fictional person becomes the winner and, finally, the robot
turns its head in that direction.

Figures 12A,B show the input and output values of the
competition for the speaking interaction between three people.
These three people were gazing at the robot and situated at the
close phase of the social space (1.22–2.10 m). Person 3 began
the conversation (10–17 s), followed by 1 (17–23 s), 2 (23–32
s), 3 (32–38s), 1 (38–42 s), 2 (42–48 s), 3 (48–53 s), 1 (53–60 s),
and finally, 2 (60–63 s). During the seconds 35-38, person 3 was
hoarding the conversation. However, person 1 began to speak and
became the winner due to the habituation capabilities.

Table 3 shows, as in the case of two people, a preset sequence
of people’s behavior. Figures 12C,D show the corresponding
input and output values for the competition, where several

FIGURE 11 | Different situations interacting with the robotic head. (A) Three people in the FOV. (B) Two people in the FOV. (C) Nobody in the FOV. (D) A new person

appear on scene.
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FIGURE 12 | Interaction between three people. (A) Input stimuli in a conversation. (B) Output stimuli in a conversation. (C) Input stimuli with different actions.

(D) Output stimuli with different actions. (E) Result of the visualization node showing the winner.
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TABLE 3 | Sequence of behavior of three people.

State Detected/Proxemics Gazing at robot Moving Speaking Winner Time

1 2 3 1 2 3 1 2 3 1 2 3

1 2 0–18 s

2 2 18–22 s

3 1 22–28 s

4 2 28–42 s

5 3 42–52 s

6 1 52–62 s

7 2 62–75 s

8 1 75–83 s

9 3 83–94 s

10 2 94–100 s

stimuli were considered, such as gazing at the robot, proxemics,
speaking or moving. Figure 12E shows a moment of the
experiment which is displayed by the visualization node.

The proposed system reflects a successful result of 85.0%
in relation to the behavior of a person in the same situation.
To make this estimation, the result of the interaction has been
supervised by comparing the selection of the focus of attention
proposed by the system (winner nodes) and the one that would
have been determined by a person observing the scene. The
failures found were mainly due to errors in the perception of
stimuli such as external audio noises unrelated to the interaction,
and blurred images due to the effect of the movement of people
and the robot itself. It is difficult to make a comparison of the
results with other authors since there are no common datasets
and each author uses different sensors and stimuli. A research
work close to ours is that of Zaraki et al. (2014), where a precision
between 75.2 and 89.4% is obtained depending on saccadic
and non-saccadic movements. However, the conditions of the
experiments are very different. In that work, a Kinect RGB-D and
a DIK-ABLIS eye tracking system are used. In our experiments,
a common webcam and an inexpensive ReSpeaker Mic array
V2.0 are used. Moreover, in Zaraki et al. (2014) the interaction
between 2 people at a certain distance is analyzed prioritizing
gestural and postural acts, while our experimentation has been
carried out at a short distance with the participation of three
interlocutors (in fact, the number of interlocutors is not limited
in the proposed method) and prioritizing facial and audio stimuli
(where the people are looking, who is speaking, who is moving,
their distance to the robot and even if someone gets out of
the FOV).

Finally, mention that the program is available on the Internet
at the URL:
https://github.com/jaiduqdom/robotGazeControl.git.

6. CONCLUSIONS

This work presents a system to control the gaze of a robot
interacting with multiple people in conversations. Several

computer vision techniques have been used to obtain a set of
stimuli, which are received by a competitive network that decides
a winner and indicates where to look.

Different types of weighted stimuli have been considered,
allowing the robot to focus its attention on one interlocutor.
Thus, the proposed system identifies the interlocutors and
re-identifies them when they leave the robot’s FOV, tracks
them using correlation tracking and Kalman filters, determines
whether the person is speaking by identifying lip movement
in concurrence with a sound source, studies where people are
looking, monitors the person’s movements to see if they wish
to attract attention, and prioritizes close interlocutors over those
further away. Kalman filters keep the angular positions of each
particular person who has previously interacted with in the
robot’s memory, regardless of whether they are in the FOV or not.

The competitive network, by means of an adequate weighting
of weights, allows who the robot should look at in order to
create an interaction to be determined. The characteristics of the
network allow a smooth transition between the focus of attention
through the competition of stimuli. An important characteristic
is the habituation mechanism that tends to prioritize new stimuli
over existing ones and prevents a certain user frommonopolizing
the focus of attention.

Different experiments have been carried out in which two and
three people have interacted with each other and with the robot.
The results show how the competition of the network executed in
real time allows a behavior of the robot similar to a person when
choosing the focus of attention to be obtained.

A robotic head has been designed and built to evaluate the
system, where a virtual agent projected on a 3D printed display
has been used to represent the robot’s face. Depending on the
response of the gaze control system, the agent has shown different
expressions andmovement of the eyes. A ROS-based architecture
has been presented and the different experiments carried out have
been detailed.

The robot’s behavior looks natural and is perceived similar to
that of humans. The method has shown itself to be an important
improvement in robot gaze control, creating a more realistic
HRI system which is more acceptable to interlocutors than other
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robots that turn their heads without a dynamic and human-
oriented method. The response of the competitive network has
succeeded in producing soft transitions between different focuses
of attention.

Finally, it can be noted that: people need to be properly
detected by the face recognizer, which requires they are situated
within a given distance range from the robot (2.2 m in our
experiments); a GPUs is required for real-time processing (i.e.,
face recognition takes 0.4 s with CPU and 0.05 s with GPU in our
experiments); and complexity of the statistical data analysis to
perform inferential tests may differ from one person to another,
due to inherent criteria differences.

The future objectives of the project will be the development of
a conversational system, providing speech and voice recognition
capabilities, and the perception and generation of emotions.
These components, together with the developed gaze control
system, will offer a low-cost, intelligent robot with human-like
behavior. Simultaneously, the method will be available for other
existing robots, since the ROS architecture means it can be
integrated with other types of robots.
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