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Neural signals for locomotion are influenced both by the neural network architecture

and sensory inputs coordinating and adapting the gait to the environment. Adaptation

relies on the ability to change amplitude, frequency, and phase of the signals within the

sensorimotor loop in response to external stimuli. However, in order to experiment with

closed-loop control, we first need a better understanding of the dynamics of the system

and how adaptation works. Based on insights from biology, we developed a spiking

neural network capable of continuously changing amplitude, frequency, and phase

online. The resulting network is deployed on a hexapod robot in order to observe the

walking behavior. The morphology and parameters of the network results in a tripod gait,

demonstrating that a design without afferent feedback is sufficient to maintain a stable

gait. This is comparable to results from biology showing that deafferented samples exhibit

a tripod-like gait and adds to the evidence for a meaningful role of network topology in

locomotion. Further, this work enables research into the role of sensory feedback and

high-level control signals in the adaptation of gait types. A better understanding of the

neural control of locomotion relates back to biology where it can provide evidence for

theories that are currently not testable on live insects.

Keywords: CPG (central pattern generator), spiking neural network (SNN), hexapod robot, biological neuron,

neuromorphic engineering

1. INTRODUCTION

In nature, oscillating networks called central pattern generators (CPGs) are known to drive
repetitive behaviors like locomotion and breathing in the absence of sensory feedback (Marder
and Bucher, 2001). However, in order to adapt locomotive behaviors such as walking patterns,
environmental interaction is required to inform the frequency, amplitude, and phase of leg
movements (Bidaye et al., 2017). Tripod-like gaits have been observed in deafferented samples but
it is still unknown how large a role network topology plays as compared to sensory feedback when
it comes to these adaptations (Mantziaris et al., 2017). Recent research on the locust, indicates a
balance between neurological network topology and sensory feedback (Reches et al., 2019). This
balance differs depending on the insect, with stick insects on the feedback-driven end of the
spectrum as compared to the more network-driven cockroach and the locust somewhere in the
middle (Reches et al., 2019). Yeldesbay and Daun (2020) study deafferented samples from the stick
insect to develop a theory of which neural architectures are most likely to be found in these insects,
specifically focusing on the levator-depressor muscle pair. Similar to the deafferented experiments,
this study investigates biologically-plausible oscillators without sensory feedback to examine the
effects of network topology on walking behaviors.
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Neural networks can replicate natural locomotion patterns
and adaptations on robots. Most of the current research explores
artificial neural networks (ANNs) based on non-spiking neurons
but there is a growing body of research into spiking neural
networks (SNNs) (Bing et al., 2018). Non-spiking neural
networks represent activation as a number to mimic the spike
rate of a neuron population whereas spiking neurons represent
activation as temporal events, communicating through action
potentials called spikes. Importantly, spiking neuron models are
able to incorporate time (Walter et al., 2016) because biological
studies indicate that neurons communicate through frequency
of spikes as well as precise spike timing (Bohte, 2004). Spiking
neuron models have also been shown to use fewer neurons
for modeling some computations (Maass, 1997). Furthermore,
spiking neurons are able to produce bursting behavior which
may be important for biological fidelity as a single neural
network can initiate different muscle behaviors by changing
output bursting patterns (Diehl et al., 2013). Additionally,
implementing spiking neurons for deep learning has been
shown to decrease power consumption when performing
classification tasks, though it comes at the cost of additional
delays (Han et al., 2016). Overall, biological plausibility, energy
efficiency, increased speed and computational power, and
spatio-temporal processing capabilities make spiking neurons
desirable for researching biologically-inspired locomotion
networks (Bing et al., 2018).

A review of adaptive inter-limb control networks using
ANNs was completed by Aoi et al. (2017) focusing on
the importance of environmental feedback for coordination.
Other works such as Owaki et al. (2013) and Owaki et al.
(2017) look into decentralized inter-leg coordination driven by
environmental interaction without neural connectivity between
legs. These studies confirm adaptability during walking on a
quadruped and a hexapod robot, respectively. Similarly, Sun
et al. (2018) looks into adaptive self-organized locomotion
showing that decoupled non-spiking CPGs (nCPGs) each
controlling a single leg can use sensory feedback to learn
biologically-plausible quadruped gaits. Self-organizing behavior
and adaptability are also shown by Barikhan et al. (2014)
using decoupled nCPGs and sensory feedback where robots
were able to roll a ball and mimic front leg stepping
behavior of insects. These works explore the importance of
environmental interaction on coordination using non-spiking
neurons. As Aoi et al. (2017) point out, “Legged robots are
becoming a valuable tool for understanding the locomotion
mechanism including interlimb coordination. In the future,[...]
it will be important to enhance biological plausibility and
feasibility by the integration with sophisticated models of neural
and musculoskeletal systems[...].” This study addresses the
need for more biological neural dynamics by using spiking
neurons. We explore the effects of decentralized spiking CPGs
(sCPGs) without feedback as a primitive control network to
gain understanding in a simplistic manner before introducing
sensory inputs.

There is a significant body of research into learning using non-
spiking neurons which investigates closed-loop feedback control
and online adaptation of legged robot locomotion. Thor and

Manoonpong (2019) and Pitchai et al. (2019) use learning to
find efficient parameters within nCPGs. The controllers are able
to adapt amplitude, frequency, and phase of nCPGs within the
network. The manipulation of these characteristics can be used
to change walking speed (Thor andManoonpong, 2019), traverse
obstacles (Goldschmidt et al., 2012), or compensate for loss of
leg functionality (Ren et al., 2015). The mentioned studies use
non-spiking neurons, working with traditional ANNs to execute
adaptive walking patterns. Building upon the ideas and results
from these studies, this work manipulates amplitude, frequency,
and phase of sCPGs.

A thorough treatment of sCPG controllers can be found
in Gutierrez-Galan et al. (2020) though more focused on
engineering solutions than biological. Most notably, Gutierrez-
Galan et al. (2020) and Rostro-Gonzalez et al. (2015) have
implemented sCPGs capable of online switching between three
discrete gaits. These correspond to the three main gaits observed
during insect walking—wave gait (Hughes, 1952), tetrapod
coordination, and tripod coordination (Graham, 1972) reflecting
slow, medium, and fast walking speeds, respectively.

Although some studies using SNNs for robot locomotion have
been inspired by CPGs, they mainly focus on the engineering
task of getting the robot to walk and less on studying the CPG.
As such, Gutierrez-Galan et al. (2020) determine the gait by
the network topology, using the spiking neurons to produce
a regular frequency which drives the selection of the gait.
Rostro-Gonzalez et al. (2015) implement an architecture where a
single neuron controls each motor and connections are changed
discretely between these neurons to produce the desired behavior.
In this way, these studies are able to successfully produce a
signal with a steady frequency to produce distinct walking
gaits but stray from the known biology. ANNs using non-
spiking neurons such as Walknet (Schilling et al., 2013) adopt
the switching principle as well. Walknet uses a decentralized
structure to control 18 degrees of freedom of a hexapod robot.
The controller selects the best fit for the current conditions
in order to adapt walking patterns using synaptic weights
previously tuned offline. These works switch between gaits
using pre-defined network parameters to achieve each pattern.
However, biological studies indicate that insects change gaits
continuously (Dürr et al., 2018). Therefore, this study expands
upon the previous work by implementing a controller capable
of online changes as a first step toward a controller that can
continuously switch between gaits once feedback is added.
Instead of producing a spike train with a regular frequency, this
study uses the intrinsic properties of spiking neurons to produce
regular bursting which is filtered to create an analog output for
the motors.

The aim of this paper is to explore how the network
structure can generate coordinated walking behavior. The
primary contribution of this research is the implementation
of a distributed network of online-adjustable coupled sCPGs
which results in a coordinated walking behavior. This research
takes the first step toward a real-time adaptable spiking motor
control network. Inspired by the biological approach of studying
deafferented neural networks, we explore the limitations of an
sCPG network when lacking sensory feedback.
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2. METHODS

Biological central pattern generators (bCPGs) are used in
nature to generate repetitive behaviors including locomotion.
There are two main methods which have been observed
for creating rhythmic output. Some networks are driven by
“pacemaker neurons” while others create oscillatory output
through recurrent connections between non-intrinsically
rhythmic neurons (commonly called half-center oscillators).
The pacemaker driven networks can be composed of one or
several neurons driving oscillation. They are typically pre-motor
interneurons which drive the motor neurons. Themotor neurons
are able to shape the behavior of the bCPG even if they do not
contribute directly to the rhythmic output. Neuromodulators
also contribute to the updating of bCPGs, changing synaptic
strength as well as intrinsic cell properties to affect frequency and
phase (Marder and Bucher, 2001).

Figure 1A shows the generic structure of the sCPGs used
in this study with mutually inhibitory neuron populations
sending oscillatory output to a motor neuron population. The
sCPGs implemented in this study are designed as pacemaker
networks, taking advantage of neuron parameters that allow
regular bursting. As the neurons are intrinsically firing, excitation
is created through a static current bias together with gaussian
white noise.

Each pacemaker network consists of two neuron populations
mutually inhibiting each other. This configuration mimics
the biological setup of two coupled neuron populations for
controlling an antagonistic muscle pair (Bidaye et al., 2017).

Initial testing of the network began with just one neuron per
population, inspired by the sea slug Dendronotus iris. It has
one of the smallest networks found in nature consisting of two
half-center oscillators, a total of four neurons, generating anti-
phasic motor outputs for swimming (Sakurai and Katz, 2016).
Once the output is confirmed, the population sizes are increased
until spiking stabilized from all motor neuron populations.
Based on this testing, each neuron population consists of five
neurons. Results per population size can be found in the
Supplementary Material.

2.1. Neuron Model
The adaptive exponential integrate and fire (AdEx) neuron
model is selected for the network because it is able to model
different neuron firing patterns, including bursting behaviors,
while reducing computational complexity (Brette and Gerstner,
2005). The Izhikevich neuron model is also able to produce
bursting behaviors (Izhikevich, 2003) and we expect the network
behavior could be reproduced using Izhikevich neurons.

Equations (1) and (2) define the dynamics of the adaptive
exponential integrate and fire neuron model.

C
dV

dt
= −gL(V − EL)+ gL(1T)e

V−VT
1T − w+ Ie (1)

when V > VT then V → Vr

τw
dw

dt
= a(V − EL)− w (2)

when V > VT then w → w+ b

where C is membrane capacitance, V is membrane voltage, EL
is resting potential, gL is leakage conductance, Ie is bias current,
a is sub-threshold adaptation conductance, b is spike-triggered
adaptation, 1T is slope/sharpness factor, τw is adaptation time
constant,VT is spike threshold, andw is spike adaptation current.

In Equation (1), the first term is the leakage while the second
term is the exponential non-linearity defining sharpness. At the
reset threshold, ’V’ is reset to a fixed variable (Vr) whereas ‘w’ is
reset by a fixed amount (b) allowing it to accumulate during the
spike train and enabling bursting behaviors (Naud et al., 2008).

The values to be used are extracted from the “regular bursting”
parameters as defined by Naud et al. (2008). However, three
parameters are manually tuned through trial and error: VT ,
Ie, and tref . The paper does not define a refractory period so
a biologically-plausible refractory period of 2 ms is selected
(Roeder, 1998). Once this is established, Ie can be determined by
using the original (Naud et al., 2008) parameters and increasing
the bias current incrementally. Finally, the range of VT is tested
by stepping through a range and finding the minimum and
maximum values. During these trials, the resulting parameters
are considered usable when they result in stable oscillatory
behavior within a desirable frequency range.

Table 1 outlines the values used for the adaptive exponential
integrate and fire neuronmodel vs. the values from theNaud et al.
(2008) paper. The shape of the sCPG is constructed using the
regular bursting behavior of the neurons. However, the current
is increased to promote repetitive spiking (Naud et al., 2008)
and gaussian white noise is added to mimic noise in the nervous
system (Faisal et al., 2008). The mean and standard deviation of
the noise is manually found through testing as investigation into
these values is outside the scope of this work.

The second ordinary differential equation allows for the
possibility of natural periodic behavior stemming from the
complex dynamics of a two-dimensional system. For this
research, the voltage dependent conductance-based model of
neuron dynamics (Equation 1) is used together with an alpha
synaptic function (Equation 3). A current-based model was also
tested but the same oscillations could not be achieved so it was
not implemented.

gsyn(t) = gsynα
2te−αt (3)

This function describes the change in conductance after a
spike, allowing current to flow along the synapse. It includes
a term for synaptic rise time (α) and the strength of
the synapse (g), both terms influence how often a neuron
spikes (Van Vreeswijk et al., 1994).

The neuron and synapse models have been chosen to allow
for intrinsically bursting, online-adaptable periodic output. This
creates an output reminiscent of a sinusoidal once a low pass filter
is applied. The AdEx neuron model consists of two differential
equations creating a two dimensional system. Two-dimensional
systems have closed orbits allowing for periodic behavior to
emerge, making them well-suited for driving oscillations.

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2020 | Volume 14 | Article 41

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Strohmer et al. Flexible Spiking CPGs

FIGURE 1 | (A) Representation of the spiking CPG implementation, 1 and 2 represent the two neuron populations within the sCPG. The motor neuron population is

excited by the “first” population within each sCPG. The motor neuron population post-processes the output before relaying it to the joint. (B) Representation of the

coupling between two legs as well as intra-leg coupling. TC represents the thoraxcoxa joint and CF represents the coxa-femur joint. Each of these consists of a

mutually inhibitory pair of neuron populations but is represented by a single circle for figure simplicity. The motor neuron populations are driven by excitatory

connections from one of the neuron populations, as seen in (A). The FT, femur-tibia, joint is held fixed. (C) Representation of the coupling between the six legs both

intra- and inter-segment. Each leg representation consists of two coupled sCPGs as shown in (B). FL, front left; ML, middle left; BL, back left; FR, front right; MR,

middle right; BR, back right. The segments are named for clarity. (D) Illustration of a single leg of the MORF (Thor, 2019), identifying the location of the movable joints.

(E) Picture of the hexapod robot used in this study. (F) Spike events vs. rate-coding output of a single population consisting of 5 neurons. Spike events are added

based on a sliding time window of 5 ms. (G) Zoomed in selection of plot F to visualize individual spike events. The number of spikes inside the time window are

counted, the resulting value is indicated using a black dot. This shows how spike events translate into an analog output. The simulation data allows the rate-coding

algorithm to look forward in time but live experiments would use past data.

2.2. Network Topology
The implemented sCPG network architecture is biologically-
inspired by the stick insect, using one sCPG for each of the joints.
The three main leg joints identified in stick insects are the thorax-
coxa (TC), coxa-trochanter (coxa-femur) (CF), and femur-tibia
(FT) (see Figure 1D for location of these joints on the robot
leg). These are responsible for horizontal, vertical, and extension

movements respectively (Bidaye et al., 2017). The individual
sCPGs are coupled to the other joints within the leg and between
the legs in order to create a distributed network of oscillators.

Figure 1B is a high-level overview of the coupling between
two legs as well as within a single leg. Two joints per leg
are implemented and coupled to their contralateral counterpart
to form the inter-leg connection. In order to meaningfully
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incorporate the FT joint, the load sensory feedback must be
provided as inhibitory feedback to the “flexor” neuron of the
bCPG. This allows the “extensor” neuron to hold the stance phase
longer so that the insect does not enter swing phase when there is
a substantial load on the leg (Fukuoka et al., 2015). The FT joint
is held fixed in this study due to the lack of sensory feedback.

The joint coupling is weak, varying in a range from −0.5 to
−1.0 nS while the sCPG, inter-leg, and inter-segment coupling is
a stronger coupling of −10 nS. Inter-segment coupling is shown
in Figure 1C, it also consists of a mutual inhibitory connection
between each joint and its neighboring ipsilateral counterpart.
The complete network diagram with all neuron populations and
connections can be found in the Supplementary Material.

The coupling of legs and joints to their immediate neighbors
is based on observations in nature where sensory feedback to a
single leg affects those closest to it (Mantziaris et al., 2017). The
design of the coupled network allows for frequency, amplitude,

TABLE 1 | Parameter comparison for adaptive exponential integrate and fire

neurons Equations (1) and (2).

Parameter name Symbol Naud et al. (2008) Actual value

Neuron model parameters

Capacitance C 200 pA 200 pA

Leakage conductance gL 10 ns 10 ns

Resting potential EL −58 mV −58 mV

Spike threshold VT −50 mV Varied

Slope factor 1T 2 mV 2 mV

Adaptation time constant τw 120 ms 120 ms

Sub-threshold adaptation conductance a 2 ns 2 ns

Spike-triggered adaptation b 100 pA 100 pA

Reset voltage Vr −46 mV −46 mV

Bias current Ie 210 pA 500 pA

Refractory period tref 0 ms 2 ms

and phase to be updated while running, relying on inter-leg and
inter-segment coupling to coordinate leg movements.

2.3. Manipulation of Network
Characteristics
The scaling parameter, VT , is used to update the inter-burst
interval frequency of the oscillators. VT offsets the membrane
potential as it defines the minimum of the V-nullcline (Naud
et al., 2008) thereby affecting frequency.

As the frequency increases, the amount of spikes per burst
decreases. Therefore, the coupling weight between joints must be
increased to compensate for the reduction in spiking. A desirable
coupling weight is found through testing of the network. In the
equation, frequency is represented by VT which has a linear
relationship to frequency, as shown in Figure 2B.

wcoupling = (VT_min − VT)0.1− 1 (4)

VT_min is the minimum threshold value discovered to give
meaningful results from the implemented network topology.
Equation (4) is derived through testing, results showing
frequency adaptation and the affect on joint coupling can be
found in section 3.

The amplitude (magnitude) of muscle activation during
stepping is usually updated in response to sensory feedback
(Schmitz et al., 2015). Biological research suggests that rhythmic
motor patterns are likely affected by short-term plasticity
(McDonnell and Graham, 2017). This is mimicked artificially
here by changing the synaptic weight. Due to the open-loop
nature of the network, the change in amplitude is prompted by
updating the excitatory weights to the motor neuron populations
by a set value. Once sensory feedback and synaptic learning are
incorporated into the network, this will replace the manually
selected weight values.

The phase shift between sCPGs relies on the ability to know
the frequency of the individual sCPGs. Furthermore, they must

FIGURE 2 | (A) Rate-coded sCPG output from each neuron, left and right, when using only two neurons in total. VT = −56 mV. Rate-coding mimics the role of a

muscle which acts as a low pass filter (Hooper et al., 2007). (B) Observed frequency at each voltage threshold value using 1 mV steps.
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run at the same frequency or at a whole number multiple relative
to each other in order to create a meaningful phase-lock. A whole
number ratio relating the period of each leg’s stepping cycle has
also been observed when studying walking in stick insects (Foth
and Bässler, 1985). The inter-leg and inter-segment phase shift
is a consequence of the coupling between oscillators. However,
the interjoint phase shift of 90◦ between the body-coxa and coxa-
femur joints is chosen based on the requirements of the physical
robot used for validation (Thor, 2019). The delay to create a
90◦ phase shift between the TC and CF joints in a single leg
is calculated using the output frequency of the sCPG as shown
in Equation (5).

delay =
1

2(frequency− 1)
1000 (5)

Using the delay calculation, when outputting a frequency of
3Hz, a delay of 250ms will be applied. Note, this is theoretically
a 90◦phase shift for 2Hz (period = 500ms H⇒ half
period = 250ms), manual adjustment of the equation is found
through testing.

2.4. Experimentation
Simulation with NEST (Jordan et al., 2019) on a PC and
validation on a physical robot are used to confirm the sCPG
network design. The sCPG output plots use rate coding to plot
spikes in time bins of finite amounts. The filter is implemented
as a sliding time window. This is comparable to the muscles in
biology which act as low pass filters, filtering variations in spike
timing (Hooper et al., 2007). Figures 1F,G show how spike events
are added in order to provide an analog output for the motors.
The original code used to create the plots in section 3 is available
on GitLab (Strohmer, 2020). Initially, a simple two neuron sCPG
is simulated in order to confirm spiking and coupling behaviors
using the neuron parameters defined in Table 1 before moving
onto the full network simulation.

Manual testing revealed that the voltage threshold must be
constrained within a defined range from −56 to −51 mV when
using a current bias of 500 pA. A linear relationship between
frequency and spike threshold is observed when using the
defined parameters.

Real-time adaptation of amplitude is normally governed by
sensory feedback. For testing, the excitatory synapse to each

FIGURE 3 | (A,B) Rate-coded output of the left legs (A) and right legs (B) updating VT every 1 s (10,000 time steps). VT = −56 to −51 mV. Front and back legs on

the same side spike together indicating a tripod gait. (C,D) Amplitude of the rate-coded output is updated by increasing the excitatory synaptic weight exponentially,

multiplying the weight by 3 for each increase in VT occurring every 1 s. This shows the amplitude can be managed while the system is running.
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motor neuron population is increased exponentially by a factor
of three to show that amplitude can be updated while running.
The excitatory synaptic weight starts at 2 nS, ending at 486 nS
after the six iterations defined by the voltage threshold range. The
weight range is determined through trial and error.

The delay between joints must be adapted when the frequency
changes in order to keep the phase. The delay is calculated
by Equation (5), ranging from 71 to 250 ms based on
attainable frequencies. It is updated each time the voltage
threshold changes. The delay is placed on the excitatory synaptic
connection from the coxa-femur joint to the corresponding
motor neurons.

A validation test is performed on the Modular Robot
Framework (MORF) (Thor, 2019) shown in Figure 1E. It is
both a simulated robot in V-REP (Rohmer, 2013) and a physical
hexapod robot with 18 degrees freedom. Each leg has three
movable joints corresponding to the TC, CF, and FT joints as
seen in Figure 1D. The MORF is fitted with an Intel NUC
which runs as a ROS node to send and receive data wirelessly
from a PC. The values produced in the NEST simulation by
the sCPG network are exported to comma delimited files, one

per joint. This data is used to send position values to the
relevant joint on the robot at a rate of 60 Hz as required
(Thor, 2019). A python script translates the original sCPG
output values to radians and enforces an upper and lower
bound to ensure the motors operate within their designed
range of motion. The python script is available on GitLab
(Strohmer, 2020), it handles reading and writing to the robot
through a robot operating system (ROS) interface. The network
is first simulated with VT = −56mV and again when
updating the threshold from VT = −55 to −54mV . The
joint positions for all 12 joints to be controlled are recorded
for each NEST simulation. These values are tested on the
simulated MORF in V-REP before confirming locomotion on the
physical robot.

Torque measurements are recorded from the Dynamixel
motors during robot locomotion in order to plot the swing and
stance phase of each leg. The torque feedback is actually a current
measurement converted to torque using the “torque to current
value ratio” defined by Dynamixel (ROBOTIS, 2018). The load of
the robot is mostly divided between the CF and FT joint during
walking as can be intuited from Figure 1D. Therefore, the torque

FIGURE 4 | Coupling comparison showing the stability added by fully coupling sCPGs to each other. (A,B) Leg coordination when only “first” neuron populations are

coupled to their corresponding counterpart in the neighboring sCPG. (C,D) Leg coordination when both neuron populations of each sCPG are coupled to their

corresponding counterpart in the neighboring sCPG. These simulations indicate that connectivity between sCPGs informs network stability.
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values plotted are the sum of the absolute values of these two
joints. As torque is the rotational force measurement, negative
and positive only indicate a direction so plotting the absolute
values is valid.

The experiments performed on the MORF are offline as the
position values sent to the motors are pre-recorded data obtained
from the NEST simulations. However, the NEST simulations
are considered to be online manipulations as they calculate
updated network parameters and change neural characteristics
while running. This is achieved by dividing the simulation into
smaller time intervals of one second each and updating necessary
information between each interval. All rate-coded plots are based
on NEST simulation output data. The torque measurements
are recorded during MORF walking and the gait diagram
is based on data recorded during V-REP simulation of the
MORF walking.

3. RESULTS AND DISCUSSION

The output of a two neuron sCPG shown in Figure 2A

confirms spiking and anti-phasic outputs due to mutual
inhibitory coupling.

This result indicates that the neuron parameters producing
regular bursting can be used to create an sCPG in the style
of a pacemaker network. When expanding the network to six
legs consisting of two joints each, using a single neuron per
population is no longer viable. It does not allow for all spikes to
reach the motor neurons controlling the CF joints of the middle
or back legs. Further simulations (see Supplementary Material)
reveal that a minimum of five neurons per population yield a
more reliable result.

Figures 3A,B shows the frequency updating over time, VT

is incremented by 1mV every 1 second resulting in an increase
in frequency as well as a reduction in the amount of spikes
per time bin. Figure 2B shows the observed frequency for each
whole value of VT . The smallest voltage threshold shows a
frequency of 3 Hz, this increases to 8 Hz for the largest tested
value. The frequencies are also observable by counting the peaks
in Figures 3A,B.

The results show that the inter-leg coupling holds the phase
during the frequency adaptation so that after the initial transients,
the front and back legs on the same side move in-phase.
This indicates that a stable tripod gait is maintained with the
implemented network coupling.

FIGURE 5 | (A,B) sCPG output of front left (A) and front right (B) joints with a 90◦ phase shift. (C,D) sCPG output of front left (C) and front right (D) joints with a 90◦

phase shift adapting to frequency. VT is incremented by 1 mV every 1 s (10,000 time steps). Delay is updated based on VT using Equation (5).
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Figures 3C,D show the adjustment of amplitude while the
frequency is increasing. This is in contrast to Figures 3A,Bwhere
the number of spikes decreases significantly. The 1 s threshold
updates are clearly visible in Figures 3A,B whereas they are
evened out over the last 3 s in Figures 3C,D.

Even though the starting thresholds produce larger
amplitudes, they are still smaller than the initial amplitudes
shown in the frequency adaptation plot (Figures 3A,B)
indicating that updating the excitatory synaptic weight does
change the number of output spikes as expected. Even though
the initial transients are more apparent in Figures 3C,D, after
settling, the tripod gait returns due to the mutually inhibitory
connections between legs.

Coupling corresponding neurons in sCPGs added stability
to inter-leg and inter-segment phase differences. The legs are
able to move in a stable, coordinated pattern as can be seen in
Figures 4C,D. The single joint coupling shows that the front and
back legs do not always move in-phase (Figures 4A,B). However,

once coupling between corresponding neuron populations in
each sCPG is introduced, the front and back legs move in-
phase creating a steady tripod gait. The front left leg does not
have the same amplitude because of the sequential nature of the
simulation where the front sCPG joint outputs are calculated
first combined with the use of the minimal neuron population
size of 5. Once the neuron populations are increased to 6, the
amplitudes for the front legs are comparable to the other legs.
The joint output for each leg when using six neurons is shown in
the Supplementary Material.

Figures 5A,B show the 90◦ phase shift between the TC and
CF joints in each of the front legs. When using a delay of 166 ms
for 3 Hz, the expected delay required, the outputs of the joints
are in-phase. Increasing the delay to 250 ms for 3 Hz produces
the desired 90◦ phase shift. Figures 5C,D confirm the phase is
able to adapt to a change in frequency and keep a specified delay.
However, for the highest frequency, the phase takes an initial
adjustment period where the joints are in-phase before moving

FIGURE 6 | (A) Sum of the absolute values of torque measurements from the CF and FT joints for each leg on the left side of the MORF while walking at a single

frequency. The front and back legs move together while the middle leg is out of phase compared to both. This shows the tripod gait holds when testing on a physical

robot. (B) Sum of the absolute values of torque measurements from the CF and FT joints for the middle legs of the MORF while walking at a single frequency. The left

and right legs move out of phase, confirming a tripod gait. (C) Sum of the absolute values of torque measurements from the CF and FT joints for each leg on the left

side of the MORF while switching to a new frequency. After an initial transient, the legs are able to re-adjust and return to a tripod gait. (D) Sum of the absolute values

of torque measurements from the CF and FT joints for the middle legs of the MORF while switching to a new frequency. The left and right legs move out of phase

though the stance phase is visibly shorter for the left leg after the frequency transition. (E) Stills taken from the video of the MORF walking.
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FIGURE 7 | Gait diagram based on force sensor feedback collected during simulation in V-REP. The force measurement from the CF and FT joints are rectified and

added together. If this absolute force measurement is above a specific threshold based on the extracted data, it is determined as foot contact with the ground.

Therefore, the colored points indicate stance phase and confirm a tripod gait.

toward a 90◦phase shift again. This indicates the delay and joint
coupling weights are not optimized.

Figure 6 confirms a tripod gait is maintainedwhen the robot is
walking. The front and back legs move in-phase while the middle
leg moves out of phase. Likewise, left and right legs within the
same segment move out of phase. There are transients visible
at the end of the stance phase. The front and back legs seem to
compensate for each other during the end of the stance phase
where the front leg increases in torque as the back leg decreases
before both go to zero during their mutual swing phase. This
increase in torque is also visible in the original MORF torque
plots (Thor, 2019) indicating that this could be due to the robot’s
morphology. If the leg slips at the end of the stance phase and
then catches, this would show as a decrease in torque followed by
a spike as depicted in Figure 6.

The torque value when updating the voltage threshold half-
way through from VT = −55mV to −54mV shows a tripod
gait is maintained after a frequency transition during walking.
The transient in the middle of Figures 6C,D pinpoints when
the frequency is changing. After the initial transient, the robot
settles back into a steady tripod gait. However, the stance phase
is shorter for the left middle leg, this is most likely an artifact
of the frequency shift and mutual inhibition promoting anti-
phasic behavior. The lack of sensory feedback limits the ability
to re-adapt to an equal duty cycle for the left and right legs.
Instead, the weight of the connections and delay between sCPGs
will determine how the joints settle into anti-phasic behavior,
eventually defining the length of the swing vs. stance phase for
each. This result indicates that the selected weights and delays
are not optimal but the network is functional.

The gait diagram (Figure 7) confirms the tripod gait. The
overlap of stance phase can be seen. This is due to the slow
walking frequency which creates transition phases where all legs
are in contact with the ground. The stance phase is occasionally

interrupted, this is could be an effect of improper parameter
tuning of the FT joint’s position.

The remainder of the torque plots for the single
and transitioning frequency can be seen in the
Supplementary Material. A link to the video of the MORF
walking can also be found in the Supplementary Material.

The frequency, phase, and amplitude are confirmed to
be interdependent. Changing the frequency of a single joint
affects the phase difference in relation to other joints. This is
addressed by using the same frequency for all joints at any
given time, allowing the mutually inhibitory connections to
force anti-phasic behavior in neighboring legs and seems to
be a robust solution. However, the 90◦ phase shift between
the intra-leg joints created through a delay to the motor
population is more susceptible to frequency changes since it
is a calculated parameter rather than a natural product of the
network topology. The amplitude is also directly influenced
by frequency as less spikes occur per time bin as frequency
increases. Increasing the number of neurons in the motor
population or increasing connectivity from the sCPG population
to adapt to this reduction are potential solutions. However,
these inter-dependencies require deeper investigation to
construct biologically-plausible network topologies with desired
output characteristics.

4. CONCLUSION

This paper introduces a decentralized spiking CPG network
inspired by insect neurobiology. The amplitude, frequency,
and phase can be manipulated while the network is
running indicating that these characteristics can be updated
online to further explore the role of sensory feedback
in shaping locomotion. A tripod gait is achieved based
on a biologically-inspired open-loop network topology
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indicating that topology does play a part in walking
coordination. This research lays the groundwork for further
investigation into online adaptable spiking networks and
the role of network topology compared to environmental
feedback.

Future work should incorporate sensory feedback into the
distributed sCPG network. Once this is implemented, the
network can begin reacting to its environment. Learning
algorithms should be explored to optimize synaptic strength
to the motor neurons as well as the coupling weights between
the sCPGs. The addition of the third leg joint using load
sensory feedback to mechanically couple this joint to the
existing network should be investigated. This will allow for
a more biologically accurate representation of walking where
the leg is extended and flexed during the swing and stance
phase (Bidaye et al., 2017). Additionally, sensory feedback could
help to adjust phase quicker during frequency adaptations
and may also provide stability through mechanical coupling
of joints.

The creation of a network capable of online, reactive
adaptation to the environment allows for biological hypotheses
to be explored in a controlled environment with detailed
feedback from sensors and actuators. This could provide more
information on the interaction of forces during locomotion
since there are limits when working with live insects and
deafferented samples. Online adaptation also lends itself to
online learning, providing the opportunity to examine stepping
patterns, both rhythmic and non-rhythmic. This leads to more
robust locomotion and exploration behaviors, allowing robots to
navigate rougher terrains.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: https://gitlab.com/esrl/scpg-network-
simulation.

AUTHOR CONTRIBUTIONS

BS and LL conceived of the presented idea. BS reviewed biology
and synthesized the findings to a complete, working sCPGmodel.
BS formulated the theory and performed the computations. The
manuscript was written by BS with support from LL and PM.
LL supervised the project and provided the funding. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was funded by the SDU Biorobotics group at the
University of Southern Denmark.

ACKNOWLEDGMENTS

We would like to thank Mathias Thor for use of the MORF and
his help interfacing with the robot.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2020.00041/full#supplementary-material

REFERENCES

Aoi, S., Manoonpong, P., Ambe, Y., Matsuno, F., and Wörgötter, F. (2017).

Adaptive control strategies for interlimb coordination in legged robots: a

review. Front. Neurorobot. 11:39. doi: 10.3389/fnbot.2017.00039

Barikhan, S. S., Wörgötter, F., and Manoonpong, P. (2014). “Multiple decoupled

CPGs with local sensory feedback for adaptive locomotion behaviors of bio-

inspired walking robots,” in International Conference on Simulation of Adaptive

Behavior (Castellón: Springer), 65–75. doi: 10.1007/978-3-319-08864-8_7

Bidaye, S. S., Bockemühl, T., and Büschges, A. (2017). Six-legged walking in

insects: how CPGs, peripheral feedback, and descending signals generate

coordinated and adaptive motor rhythms. J. Neurophysiol. 119, 459–475.

doi: 10.1152/jn.00658.2017

Bing, Z., Meschede, C., Röhrbein, F., Huang, K., and Knoll, A. C. (2018). A survey

of robotics control based on learning-inspired spiking neural networks. Front.

Neurorobot. 12:35. doi: 10.3389/fnbot.2018.00035

Bohte, S. M. (2004). The evidence for neural information processing

with precise spike-times: a survey. Natural Comput. 3, 195–206.

doi: 10.1023/B:NACO.0000027755.02868.60

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Diehl, F.,White, R. S., Stein,W., andNusbaum,M. P. (2013).Motor circuit-specific

burst patterns drive different muscle and behavior patterns. J. Neurosci. 33,

12013–12029. doi: 10.1523/JNEUROSCI.1060-13.2013

Dürr, V., Theunissen, L. M., Dallmann, C. J., Hoinville, T., and Schmitz,

J. (2018). Motor flexibility in insects: adaptive coordination of limbs

in locomotion and near-range exploration. Behav. Ecol. Sociobiol. 72:15.

doi: 10.1007/s00265-017-2412-3

Faisal, A. A., Selen, L. P., and Wolpert, D. M. (2008). Noise in the nervous system.

Nat. Rev. Neurosci. 9, 292–303. doi: 10.1038/nrn2258

Foth, E., and Bässler, U. (1985). Leg movements of stick insects walking with five

legs on a treadwheel and with one leg on a motor-driven belt. Biol. Cybern. 51,

313–318. doi: 10.1007/BF00336918

Fukuoka, Y., Habu, Y., and Fukui, T. (2015). A simple rule for quadrupedal gait

generation determined by leg loading feedback: a modeling study. Sci. Rep.

5:8169. doi: 10.1038/srep08169

Goldschmidt, D., Hesse, F., Wörgötter, F., and Manoonpong, P. (2012).

“Biologically inspired reactive climbing behavior of hexapod robots,” in

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,

4632–4637. Algarve: IEEE. doi: 10.1109/IROS.2012.6386135

Graham, D. (1972). A behavioural analysis of the temporal organisation of walking

movements in the 1st instar and adult stick insect (carausius morosus). J.

Compar. Physiol. 81, 23–52. doi: 10.1007/BF00693548

Gutierrez-Galan, D., Dominguez-Morales, J. P., Perez-Pe na, F., Jimenez-

Fernandez, A., and Linares-Barranco, A. (2020). Neuropod: a real-time

neuromorphic spiking CPG applied to robotics. Neurocomputing 381, 10–19.

doi: 10.1016/j.neucom.2019.11.007

Han, B., Sengupta, A., and Roy, K. (2016). “On the energy benefits of

spiking deep neural networks: a case study,” in 2016 International Joint

Conference on Neural Networks (IJCNN), 971–976. Vancouver, BC: IEEE.

doi: 10.1109/IJCNN.2016.7727303

Hooper, S. L., Guschlbauer, C., von Uckermann, G., and Buschges, A. (2007).

Different motor neuron spike patterns produce contractions with very

similar rises in graded slow muscles. J. Neurophysiol. 97, 1428–1444.

doi: 10.1152/jn.01014.2006

Hughes, G. M. (1952). The co-ordination of insect movements: I the walking

movements of insects. J. Exp. Biol. 29, 267–285.

Frontiers in Neurorobotics | www.frontiersin.org 11 June 2020 | Volume 14 | Article 41

https://gitlab.com/esrl/scpg-network-simulation
https://gitlab.com/esrl/scpg-network-simulation
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00041/full#supplementary-material
https://doi.org/10.3389/fnbot.2017.00039
https://doi.org/10.1007/978-3-319-08864-8_7
https://doi.org/10.1152/jn.00658.2017
https://doi.org/10.3389/fnbot.2018.00035
https://doi.org/10.1023/B:NACO.0000027755.02868.60
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1523/JNEUROSCI.1060-13.2013
https://doi.org/10.1007/s00265-017-2412-3
https://doi.org/10.1038/nrn2258
https://doi.org/10.1007/BF00336918
https://doi.org/10.1038/srep08169
https://doi.org/10.1109/IROS.2012.6386135
https://doi.org/10.1007/BF00693548
https://doi.org/10.1016/j.neucom.2019.11.007
https://doi.org/10.1109/IJCNN.2016.7727303
https://doi.org/10.1152/jn.01014.2006
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Strohmer et al. Flexible Spiking CPGs

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jordan, J., Mørk, H., Vennemo, S. B., Terhorst, D., Peyser, A., Ippen, T., et al.

(2019). Nest 2.18.0. Available onine at: https://doi.org/10.5281/zenodo.2605422

(accessed April 02, 2020).

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Mantziaris, C., Bockemühl, T., Holmes, P., Borgmann, A., Daun, S., and

Büschges, A. (2017). Intra-and intersegmental influences among central pattern

generating networks in the walking system of the stick insect. J. Neurophysiol.

118, 2296–2310. doi: 10.1152/jn.00321.2017

Marder, E., and Bucher, D. (2001). Central pattern generators and

the control of rhythmic movements. Curr. Biol. 11, R986–R996.

doi: 10.1016/S0960-9822(01)00581-4

McDonnell, M. D., and Graham, B. P. (2017). Phase changes in neuronal

postsynaptic spiking due to short term plasticity. PLoS Comput. Biol.

13:e1005634. doi: 10.1371/journal.pcbi.1005634

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns

in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99:335.

doi: 10.1007/s00422-008-0264-7

Owaki, D., Goda, M., Miyazawa, S., and Ishiguro, A. (2017). A minimal model

describing hexapedal interlimb coordination: the tegotae-based approach.

Front. Neurorobot. 11:29. doi: 10.3389/fnbot.2017.00029

Owaki, D., Kano, T., Nagasawa, K., Tero, A., and Ishiguro, A. (2013). Simple robot

suggests physical interlimb communication is essential for quadruped walking.

J. R. Soc. Interface 10:20120669. doi: 10.1098/rsif.2012.0669

Pitchai, M., Xiong, X., Thor, M., Billeschou, P., Mailänder, P. L., Leung,

B., et al. (2019). “CPG driven RBF network control with reinforcement

learning for gait optimization of a dung beetle-like robot,” in International

Conference on Artificial Neural Networks (Munich: Springer), 698–710.

doi: 10.1007/978-3-030-30487-4_53

Reches, E., Knebel, D., Rillich, J., Ayali, A., and Barzel, B. (2019). The

metastability of the double-tripod gait in locust locomotion. iScience 12, 53–65.

doi: 10.1016/j.isci.2019.01.002

Ren, G., Chen,W., Dasgupta, S., Kolodziejski, C., Wörgötter, F., andManoonpong,

P. (2015). Multiple chaotic central pattern generators with learning for

legged locomotion and malfunction compensation. Inform. Sci. 294, 666–682.

doi: 10.1016/j.ins.2014.05.001

ROBOTIS (2018). Robotis-Framework. Available online at: https://github.com/

ROBOTIS-GIT/ROBOTIS-Framework/blob/master/robotis_device/devices/

dynamixel/XM430-W350.device (accessed February 28, 2020).

Roeder, K. D. (1998). Nerve Cells and Insect Behavior, Vol. 4. Harvard University

Press.

Rohmer, E., Singh, S. P. N., and Freese, M. (2013). “Coppeliasim (formerly V-REP):

a versatile and scalable robot simulation framework,” in Proceedings of The

International Conference on Intelligent Robots and Systems (IROS), (Tokyo).

Available online at: www.coppeliarobotics.com.

Rostro-Gonzalez, H., Cerna-Garcia, P. A., Trejo-Caballero, G., Garcia-Capulin, C.

H., Ibarra-Manzano, M. A., Avina-Cervantes, J. G., et al. (2015). A CPG system

based on spiking neurons for hexapod robot locomotion.Neurocomputing 170,

47–54. doi: 10.1016/j.neucom.2015.03.090

Sakurai, A., and Katz, P. S. (2016). The central pattern generator

underlying swimming in dendronotus iris: a simple half-center network

oscillator with a twist. J. Neurophysiol. 116, 1728–1742. doi: 10.1152/jn.

00150.2016

Schilling, M., Hoinville, T., Schmitz, J., and Cruse, H. (2013). Walknet, a

bio-inspired controller for hexapod walking. Biol. Cybern. 107, 397–419.

doi: 10.1007/s00422-013-0563-5

Schmitz, J., Gruhn, M., and Büschges, A. (2015). The role of leg touchdown for the

control of locomotor activity in the walking stick insect. J. Neurophysiol. 113,

2309–2320. doi: 10.1152/jn.00956.2014

Strohmer, B. (2020). Decentralized SCPG Network Simulation. Available online

at: https://gitlab.com/esrl/scpg-network-simulation (accessed February

28, 2020).

Sun, T., Shao, D., Dai, Z., and Manoonpong, P. (2018). “Adaptive neural

control for self-organized locomotion and obstacle negotiation of quadruped

robots,” in 2018 27th IEEE International Symposium on Robot and

Human Interactive Communication (RO-MAN), 1081–1086. Nanjing: IEEE.

doi: 10.1109/ROMAN.2018.8525645

Thor, M. (2019). MORF - Modular Robot Framework (Master’s thesis). University

of Southern Denmark, Odense, Denmark.

Thor, M., and Manoonpong, P. (2019). A fast online frequency adaptation

mechanism for CPG-based robot motion control. IEEE Robot. Autom. Lett. 4,

3324–3331. doi: 10.1109/LRA.2019.2926660

Van Vreeswijk, C., Abbott, L., and Ermentrout, G. B. (1994). When inhibition

not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313–321.

doi: 10.1007/BF00961879

Walter, F., Röhrbein, F., and Knoll, A. (2016). Computation by time. Neural

Process. Lett. 44, 103–124. doi: 10.1007/s11063-015-9478-6

Yeldesbay, A., and Daun, S. (2020). Intra-and intersegmental neural

network architectures determining rhythmic motor activity in

insect locomotion. Commun. Nonlin. Sci. Numer. Simul. 82:105078.

doi: 10.1016/j.cnsns.2019.105078

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Strohmer, Manoonpong and Larsen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 12 June 2020 | Volume 14 | Article 41

https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1152/jn.00321.2017
https://doi.org/10.1016/S0960-9822(01)00581-4
https://doi.org/10.1371/journal.pcbi.1005634
https://doi.org/10.1007/s00422-008-0264-7
https://doi.org/10.3389/fnbot.2017.00029
https://doi.org/10.1098/rsif.2012.0669
https://doi.org/10.1007/978-3-030-30487-4_53
https://doi.org/10.1016/j.isci.2019.01.002
https://doi.org/10.1016/j.ins.2014.05.001
https://github.com/ROBOTIS-GIT/ROBOTIS-Framework/blob/master/robotis_device/devices/dynamixel/XM430-W350.device
https://github.com/ROBOTIS-GIT/ROBOTIS-Framework/blob/master/robotis_device/devices/dynamixel/XM430-W350.device
https://github.com/ROBOTIS-GIT/ROBOTIS-Framework/blob/master/robotis_device/devices/dynamixel/XM430-W350.device
www.coppeliarobotics.com
https://doi.org/10.1016/j.neucom.2015.03.090
https://doi.org/10.1152/jn.00150.2016
https://doi.org/10.1007/s00422-013-0563-5
https://doi.org/10.1152/jn.00956.2014
https://gitlab.com/esrl/scpg-network-simulation
https://doi.org/10.1109/ROMAN.2018.8525645
https://doi.org/10.1109/LRA.2019.2926660
https://doi.org/10.1007/BF00961879
https://doi.org/10.1007/s11063-015-9478-6
https://doi.org/10.1016/j.cnsns.2019.105078
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Flexible Spiking CPGs for Online Manipulation During Hexapod Walking
	1. Introduction
	2. Methods
	2.1. Neuron Model
	2.2. Network Topology
	2.3. Manipulation of Network Characteristics
	2.4. Experimentation

	3. Results and Discussion
	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


