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Due to the complex visual environment and incomplete display of parking slots on

around-view images, vision-based parking slot detection is a major challenge. Previous

studies in this field mostly use the existing models to solve the problem, the steps of

which are cumbersome. In this paper, we propose a parking slot detection method that

uses directional entrance line regression and classification based on a deep convolutional

neural network (DCNN) to make it robust and simple. For parking slots with different

shapes and observed from different angles, we represent the parking slot as a directional

entrance line. Subsequently, we design a DCNN detector to simultaneously obtain

the type, position, length, and direction of the entrance line. After that, the complete

parking slot can be easily inferred using the detection results and prior geometric

information. To verify our method, we conduct experiments on the public ps2.0 dataset

and self-annotated parking slot dataset with 2,135 images. The results show that

our method not only outperforms state-of-the-art competitors with a precision rate of

99.68% and a recall rate of 99.41% on the ps2.0 dataset but also performs a satisfying

generalization on the self-annotated dataset. Moreover, it achieves a real-time detection

speed of 13 ms per frame on Titan Xp. By converting the parking slot into a directional

entrance line, the specially designed DCNN detector can quickly and effectively detect

various types of parking slots.

Keywords: autonomous driving, parking slot detection, around-view image, DCNN, directional entrance line

1. INTRODUCTION

With the rapid development of artificial intelligence, research on autonomous driving and driver
assistance systems has drawn more and more attention from the academy and industry (Chen
et al., 2020; Yurtsever et al., 2020). As a part of this, automatic parking slot detection can not only
speed up the parking process and reduce traffic congestion (Paidi et al., 2018) but also assist with
vehicle positioning in parking lots (Houben et al., 2019). Moreover, more and more vehicles are
equipped with around-view monitor (AVM) systems to help drivers observe the surrounding road
conditions. Therefore, it is of great practical meaning to detect parking slots on around-view images
via existing cameras on the vehicle. However, due to illumination changes, shadows, and occlusion,
it is still a big challenge to detect parking slots based on vision.

Xu et al. (2000) were the first to study vision-based parking slot detection. They detected parking
slots based on the fact that the color of the parking slot markings in the image is uniform and
is different from the background. However, this method is easily affected, as the values of the
digital image will change greatly in different lighting scenarios. To further improve the accuracy
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of parking slot detection, a series of line-based methods have
been proposed (Hamada et al., 2015; Lee and Seo, 2016; Lee
et al., 2016). A line-based method first detects parking slot
markings on the image, then clusters and fits the straight lines,
and finally generates the parking space based on the geometric
information of the parking slot. However, a line-based method
cannot distinguish different types of parking slots, including
parallel parking slots, vertical parking slots, and slanted parking
slots. Different from the line-based method, Suhr and Jung
(2013) proposed a marking point-based method to detect various
parking slots. They first used the Harris corner detector to
detect corners in the panoramic image and combined these
corners into different types of junction candidates. They then
matched paired junction candidates and generated parking slot
candidates. Finally, a parking slot was selected based on its
geometric characteristics. To improve the detection accuracy of
marking points, Zhang et al. (2018) utilized a sliding window and
AdaBoost classifier techniques to detect marking points of the
parking slot. Li and Zhao (2018) combined line detection and
marking point detection of the parking slot to further improve
detection performance. However, these methods are based on
low-level visual features and are not robust under complex
environmental conditions.

In the last few years, DCNNs have made huge breakthroughs
in different image processing tasks (Chen et al., 2019). Some
methods of parking slot detection on around-view images based
on DCNN have been proposed. Zhang et al. (2018) designed
two DCNN models to detect parking slots, namely DeepPS.
One DCNN model is based on YoloV2 (Redmon and Farhadi,
2016) for detecting marking points on around-view images.
The other DCNN model is based on AlexNet (Krizhevsky
et al., 2012) to match paired marking points. DeepPS has
achieved good results under different environmental conditions,
including indoors, outdoors, shadow, and various ground
surfaces. However, DeepPS requires two DCNN models, which
makes it time-consuming to infer an image. To detect parking
slots with only one DCNN model, Zinelli et al. (2019) proposed
an end-to-end DCNN model based on a faster region-based

FIGURE 1 | Overview of the parking slot detection method on an around-view image using a DCNN detector. It contains three modules: around-view image synthesis,

directional entrance line detector, and parking slot inference.

convolutional neural network (Faster R-CNN) (Ren et al.,
2015) for parking slot detection. Since parking slots have
different shapes at different viewing angles, this DCNN model
directly outputs the four vertex coordinates of the parking
slot instead of the bounding box aligned with the image. Li
et al. (2020) utilized a YoloV3-based detector (Redmon and
Farhadi, 2018) to detect parking slot heads and marking points
simultaneously and then inferred the complete parking slot
using the prior geometric information. However, these methods
are based on the existing models, and they cannot meet the
real-time requirement. To improve the speed of parking slot
detection, Huang et al. (2019) proposed a directional regression
method to detect parking slots, called DMPR-PS. DMPR-PS
first utilizes a novel DCNN model to regress the coordinates,
direction, and shape of the marking point. The geometric
relationship of the parking slot is then used to match paired
marking points. Although DMPR-PS improves the detection
speed, it can only detect parallel parking slots or vertical
parking slots.

Therefore, in order to overcome the limitations of these
previous methods, we convert the problem of parking slot
detection into a problem of directional entrance line regression
and classification so that various kinds of parking slots can
be detected quickly and robustly. Inspired by one-stage object
detection methods (Liu et al., 2015; Redmon and Farhadi, 2018),
we design a novel DCNN detector that can directly obtain the
type, position, length, and direction of the entrance line. Based on
these detection results, we can easily infer the complete parking
slot using geometric information. To evaluate the performance
of the proposed method, we perform several experiments on
the ps2.0 dataset and a self-annotated parking slot dataset. The
results show that the proposed method can efficiently detect
various types of parking slots, including parallel parking slots,
vertical parking slots, and slanted parking slots. The remainder
of the paper is organized into three parts. Section 2 describes
the method of parking slot detection based on DCNN. Section
3 presents the experimental results of our method. Section 4
presents the conclusion and discussion of this paper.
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FIGURE 2 | Three typical kinds of parking slots are represented. The parking slot head is marked with the green rectangle, the two visible vertices are marked with

orange dots, and the entrance line is marked with the directional red line. (A) A vertical parking slot; (B) parallel parking; (C,D) a slanted parking slot with an acute

angle and obtuse angle, respectively.

FIGURE 3 | Directional entrance line representation. The entrance line is

marked with a red dotted line, the two visible marking points are marked with

orange dots, and the midpoint of the entrance line is marked with a red dot.

2. METHODOLOGY

In this section, we describe our method in detail. Figure 1

shows the overall structure of the parking slot detection
method on an around-view image using a DCNN detector.
Firstly, the four distortion images from the fisheye cameras
are calibrated to generate an around-view image. Since the
technology for AVM is very mature, we will not discuss it
here and will directly use our previous research (Feng et al.,
2019). Then, the around-view image is resized to the specified
size as the input of the directional entrance line detector.
The directional entrance line detector consists of a feature
extractor and a detection head, whose details will be described
in the following subsections. Finally, the complete parking
slot is inferred according to the detection results and prior
geometric information.

FIGURE 4 | Various parking slot heads, including right-angled head,

acute-angled head, and obtuse-angled head.

2.1. Structural Analysis of Parking Slots in
the Around-View Image
Due to the limited view of AVM, most around-view images only
include the parking slot heads. As shown in Figure 2, there are
three typical kinds of parking slots, which can be represented
by their directional entrance lines. We stipulate that the four
vertices of the parking slot are arranged counterclockwise, and
the indexes of the two visible marking points closest to the vehicle
are 1 and 2. Under these circumstances, the direction of the
entrance line is from visible vertex p1 to visible vertex p2.

As shown in Figure 3, we use {x, y, θ , l, c} to represent the
directional entrance line, where (x, y) are the coordinates of the
midpoint of the entrance line, θ is the direction angle of the
entrance line, and l is the length of the entrance line, which can
be calculated by the coordinates of paired marking points of the
entrance line by Equation (1). c represents head type, classified
into a right-angled head, acute-angled head, or obtuse-angled
head. As shown in Figure 4, there are different types of parking
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slot heads. In this way, we can convert the problem of parking slot
detection into a problem of directional entrance line regression
and classification.

p(x, y) =
p1(x, y)+ p2(x, y)

2(w, h)

θ = arctan(
p2(y)− p1(y)

p2(x)− p1(x)
)

l =

√

(p1x − p2x)2 +
√

(p1y − p2y)2

λ

(1)

where p1(x, y) and p2(x, y) are two visible marking points of
the entrance line (w, h), is the width and height of the input
image, and λ is a normalization constant. Empirically, we chose
λ = 410.

2.2. The Directional Entrance Line Detector
In order to make the parking slot detection efficient and effective,
we specially designed a DCNN detector for directional entrance
line detection. The detector mainly consists of two parts: a feature
extractor and a detection head.

2.2.1. Feature Extractor
The overall structure of the feature extractor is based on
the current object detection frameworks as well as common
knowledge in this area. Considering that the task of directional
entrance line detection is simpler than other tasks of target
detection, we design a feature extractor with 30 convolutional
layers, mainly including 3 × 3 convolution layers and 1 × 1
convolution layers. As shown in Figure 5, the input is a 512
× 512 around-view image, and the output is a 16 × 16 ×

1,024 feature map. Every convolutional layer takes advantage of
batch normalization and uses Leaky Rectified Linear Units (Leaky
ReLU) for activation to achieve the same accuracy with fewer

training steps. The shortcut connections (Res) are added for a
deep network structure.

2.2.2. Detection Head
The detection head is responsible for processing the feature map
from the feature extractor to generate detection results. First, the
feature map is passed through a 1 × 1 convolution with nine
channels to output a 16 × 16 × 9 tensor; 16 × 16 represents
the divided number of grids on an around-view image. Each grid
has a nine-dimensional vector that includes the confidence of
the entrance line co, the offset distance of the midpoint of the
entrance line from the upper left vertex of the grid in the x-
direction and y-direction (tx, ty), the length of the entrance line
l, the cosine value cosθ of the direction angle of the entrance
line, the sine value sinθ of the direction angle of the entrance
line, and the class c of the parking slot head. Then, since the
direction of the entrance line is within (−π ,π), we use the Tanh
function to activate for those two trigonometric values of the
direction angle of the entrance line and use the Sigmod function
to activate the rest. Finally, considering that two parking slots
cannot overlap, we use the distance between the two midpoints
of the entrance line as a judgment condition to remove duplicate
parking slots.

2.3. Training Procedure
In the training procedure, the input is an around-view image and
a label with directional entrance lines. The definition of the loss
function during training is as follows.

L = Lreg(e, e
∗)+ Lcls(c, c

∗) (2)

where e and e∗ are the predicted value and true value
of the directional entrance line, and c and c∗ are the
predicted class and true class of the parking slot head,
which is encoded with One-Hot. The regression loss of the

FIGURE 5 | Overall structure of the feature extractor. The kernels are shown in the figures, described as height × width × depth, stride.
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directional entrance line is the sum of squared errors, defined
as follows.

Lreg(p, p
∗) =

N
∑

i = 1

{(coi − co∗i )
2 + λ(coi = 1)[(cxi − cx∗i )

2

+(cyi − cy∗i )
2 + (li − l∗i )

2 + (cosθi − cosθ∗i )
2

+(sinθi − sinθ∗i )
2 +

2
∑

i = 1

(pi − p∗i )
2]}

(3)

where N is the total number of all prediction results. λ(coi = 1)
indicates that when the object falls into the grid i, it is 1, and
otherwise, it is 0. pi and p∗i are the predicted value and true value
of the two visible vertices calculated from the directional entrance
line. pi can be calculated as follows.

p1(x, y) = p(x, y)− l

[

cosθ
sinθ

]

p2(x, y) = p(x, y)+ l

[

cosθ
sinθ

] (4)

The classification loss of the head of the parking slot is the sum of
binary cross-entropy loss, defined as follows.

Lcls(c, c
∗) =

N
∑

i = 1

−λ(coi = 1)(

3
∑

j = 1

c∗ijlogcij − (1− c∗ij)log(1− cij))

(5)

2.4. Parking Slot Inference
As shown in Figure 6, we use four vertices to represent a
complete parking slot. The two visible vertices can be calculated
by Equation (4) using detection results. The two invisible vertices
can be calculated via Equation (6) using the angle, depth, and
two visible vertices of the parking slot. The angle and depth
of the parking slot can be determined according to its type. If

the parking slot head is classified as a right-angle head and the
distance between the two visible vertices is less than lthre, then it
is a vertical parking slot. If the parking slot head is classified as a
right-angle head and the distance between the two visible vertices
is greater than lthre, it is a parallel parking slot. Empirically,
we chose lthre = 200. If the parking slot head is classified as
an acute-angled head or an obtuse-angled head, it is a slanted
parking slot.

p3 =

[

cosαi − sinαi

sinαi cosαi

] −−→p1p2
∥

∥

−−→p1p2
∥

∥

di + p2

p4 =

[

cosαi − sinαi

sinαi cosαi

] −−→p1p2
∥

∥

−−→p1p2
∥

∥

di + p1

(6)

where αi is the angle between the entrance line and separating
line of the parking slot, and di is the depth of the parking slot.
In order to obtain the prior geometric information, we perform
statistical analysis on the ps2.0 dataset and a self-annotated
parking slot dataset and use the average value as their true value.
Therefore, we choose αi = 90, di = 250 for the vertical parking
slot, αi = 90, di = 125 for the parallel parking slot, αi = 67, di =
120 for the parking slot with acute-angle head, and αi = 129,
di = 120 for the slanted parking slot with obtuse-angle head.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup
3.1.1. Dataset
In order to evaluate the performance of the proposed method, we
conduct experiments on the following two datasets.

• ps2.0 dataset (Zhang et al., 2018): the ps2.0 dataset is
the largest around-view image dataset with parking slots,
including 12,165 around-view images with 600 × 600 pixels
corresponding to a ground plane of 10 × 10 m. The ps2.0
dataset is divided into a training set that contains 9,287

FIGURE 6 | Inference of three typical parking slots. p1 and p2 are two visible vertices. p3 and p4 are two invisible vertices. d1, d2, and d3 are depth for the vertical

parking slot, the parallel parking slot, and the slanted parking slot, respectively.
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images and a test set that contains 2,338 images. The images
in the ps2.0 dataset include indoor and outdoor scenes and
three typical parking slot types. However, the labels of the
ps2.0 dataset are only about the vertices of parking slots.
Therefore, we need to prepare new labels for the directional
entrance lines. Our DCNN detector is trained and tested on
the ps2.0 dataset.

• Self-annotated parking slot dataset: In order to further
evaluate the practical generalizability of the proposed method,
we collect 2,325 images using a Peugeot 307 passenger car

FIGURE 7 | Precision-recall curves of different methods for directional

entrance line detection.

TABLE 1 | Directional entrance detection performance of different detectors.

Method Position Length Direction Running time

error (pixel) error (pixel) error (degree) (ms)

VGG16-based

detector

1.68 ± 1.08 2.83 ± 2.35 4.82 ± 3.57 17

ResNet50-based

detector

1.54 ± 0.97 2.63 ±2.01 4.05 ± 2.98 18

Ours 1.49 ± 0.90 2.26 ± 1.72 3.74 ± 2.58 12

Bolded values stand for best results.

TABLE 2 | Parking slot detection performance of different methods in the ps2.0

test set.

Method Precision rate Recall rate Running time

(ms)

PSD_L (Zhang et al., 2018) 98.55% 86.64% 40

DeepPS (Zhang et al., 2018) 99.54% 98.89% 17

DMPR-PS (Huang et al.,

2019)

99.42% 99.37% 12

Ours 99.68% 99.41% 13

Bolded values stand for best results.

equipped with an AVM system that we developed earlier (Feng
et al., 2019). The resolution of the image is 600 × 600 pixels,
corresponding to an actual ground plane of 10× 10 m.

3.1.2. Experimental Settings
Without specifications, we implement the proposed method
using Python code and the publicly available Pytorch framework
in a workstation. The configuration of the workstation is as
follows: Intel Core i9-7900X CPU @3.30 GHz, two Nvidia Titan
Xp GPU cards, and 32 GB RAM. In the process of training,
the input image is resized to 512 × 512, the batch size is
16, and the learning rate is 10−4. The Adam optimizer with
[β1,β2, ε] = [0.9, 0.999, 10−8] is utilized to optimize the whole
training process. Data augmentation is performed via adjusting
brightness and contrast and adding Gaussian noise. In particular,
to more accurately predict the direction of the entrance line,
we have performed rotation enhancement every 5◦ on the
entire dataset.

3.2. Performance of the DCNN Detector
As the first step of the proposed method, the detection
performance of the directional entrance line is very important.
In the experiment, we compare three detectors with different
DCNNs as feature extractors, including ours, VGG16 (Simonyan
and Zisserman, 2014), and ResNet50 (He et al., 2015) in the
ps2.0 test set. The precision-recall curves, running time, and
mean and standard deviation for the directional entrance line are
used as the evaluation metrics. The precision-recall rates can be
calculated as follows.

precision =
TruePositives

TruePositives+ FalsePositives

recall =
TruePositives

TruePositives+ FalseNegatives

(7)

As defined above, for a ground truth of directional entrance line
eg = {xg , yg , θg , lg , cg} and a detected directional entrance line
ed = {xd, yd, θd, ld, cd}, if they satisfy the following conditions,
the ed is a true positive and eg is correctly detected. Otherwise,
the ed is a false positive and eg is a false negative

cg = cd

|lg − ld| < 10

||(xg − xd, yg − yd)|| < 10

|θd − θt| < 15 or (360− |θd − θt|) < 15

(8)

The precision-recall curves of different detectors for directional
entrance line detection are shown in Figure 7. The larger the
enclosed area is or the higher the precision-recall curve is,
the better the DCNN-based directional entrance line detection
performance achieved. It is evident in Figure 7 that our method
outperforms the other two detectors for directional entrance line
detection. Moreover, the mean and standard deviation for the
directional entrance line when the object confidence is set to 0.5
are summarized in Table 1. Compared with the VGG16-based
detector and ResNet50-based detector, our method achieves
higher detection accuracy with a position error of 1.49 ±
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FIGURE 8 | Representative images in which the parking slot is not marked in the ps2.0 test set, but our method can detect it. The detected parking slot is marked

with a green box. The unclear vertex of the parking slot is marked with a red dot.

FIGURE 9 | Representative parking slot detection results in the ps2.0 test set, which include various environmental conditions, such as indoor, outdoor daylight, street

light, outdoor rainy, outdoor shadow, and outdoor slanted.

FIGURE 10 | Representative failure cases of the proposed method. The detected parking slot is marked with green lines. The ground truth is marked with red lines.

(A,B) Show the road lines being misidentified as entrance lines. (C,D) Show the location of the entrance lines being detected inaccurately.
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0.90, a length error of 2.26 ± 1.72, and a direction error of
3.74 ± 2.58. Although our detector has more layers than does
the VGG16-based detector, ours achieves the fastest running
time, 12 ms. This is because our feature extractor is composed
of 3×3 and 1×1 convolution kernels, which means that it
has higher computational efficiency. These results show that
the specially designed DCNN detector is more suitable for
directional entrance line detection than the existing networks.

3.3. Parking Slot Detection Performance
In this experiment, we evaluate the overall parking slot detection
performance of the proposed method in the ps2.0 test set. As
described in section 2.4, the parking slot consists of four vertices.
If the distance between the four vertices of the detected parking
slot and the four corresponding vertices of ground truth is no
more than 12 pixels, respectively, it is a true positive. Otherwise,
it is a false positive. In addition to our method, Table 2 also lists
various SOTA methods in this field, including PSD_L (Zhang
et al., 2018), DeepPS (Zhang et al., 2018), and DMPR-PS (Huang
et al., 2019). It needs to be noted that when one visible vertex
of the parking slot is unclear, the parking slot is not marked in
the ps2.0 dataset. However, as shown in Figure 8, our method is
based on directional line detection, so it can detect those parking
slots even if one of their visible vertices is not clear. To compare
these methods fairly, we remove these images (12 images in the
ps2.0 test set). Besides, the DMPR-PS can only detect the parking
slot with the right-angle head, so its precision-recall rate is
evaluated on the dataset with the slanted parking slots removed.
As shown in Table 2, our method gives a 1.13% higher precision
rate and a 14.77% higher recall rate than PSD_L. Besides, our
method also achieves a higher precision rate and recall rate than
other DCNN-based methods (DeepPS and DMPR-PS). This is
because PSD_L is based on machine learning (ACF + Boosting),
which is easily affected by complex visual conditions, andDeepPS
and DMPR-PS need complex geometric cues to match the two
visible vertices of the parking slot, whichmight cause amismatch.
Moreover, the average time for the proposed method to process
an around-view image is about 13 ms, which is almost as fast
as the DMPR-PS. As shown in Figure 9, three typical kinds of
parking slots under various environmental conditions can be
correctly detected. These results show that the proposed method
works well, and this is mainly because we convert the problem
of parking slot detection into a problem of directional entrance

line detection, which makes this task easier so that the designed
DCNN detector can achieve detection robustly and efficiently.

However, the proposed method is still not perfect. When the
parking slot is far from the vehicle, the entrance line of the
parking slot is unclear, and the proposed method might miss
it. Compared with false negatives, false positives are worse for
automatic parking slot detection. As shown in Figure 10, four
parking slots are incorrectly detected. In Figures 10A,B, the road
lines are misidentified as entrance lines. In Figures 10C,D, the
location of the entrance lines is detected inaccurately. In the
future, we may adopt the detection results of multiple frames in
the video sequence to solve this problem.

3.4. Generalization Performance in
Practice
In order to further evaluate the generalizability of the proposed
method, we conduct an experiment on a self-annotated parking
slot dataset. The dataset was collected at Hunan University using
a Peugeot 307 passenger car equipped with the AVM system
that we developed earlier. Some representative images from the
dataset are shown in Figure 11. The proposed method achieves
a precision rate of 97.65% and a recall rate of 93.62% in the
dataset. The results show that the proposedmethod has satisfying
generalization performance.

4. CONCLUSIONS

In the paper, we convert the parking slot detection problem into
a directional entrance line detection problem, which simplifies
the learning task. Subsequently, we design a DCNN detector
to detect the directional entrance line robustly. Finally, the
simple geometric information of the parking slot is used to infer
the complete parking slot. To evaluate the performance of the
proposed method, we conduct experiments in the ps2.0 dataset
and a self-annotated parking slot dataset. The results show that
the proposed method not only has SOTA detection performance
and satisfying generalizability in practice for various parking slots
but also achieves real-time performance. However, the proposed
method can still be improved in future research: (1) Fusion
of multi-frame detection results in video sequences could be
employed to reduce false positives and false negatives. (2) During
the parking process, the entrance line is easily blocked, which

FIGURE 11 | Representative images from the self-annotated parking slot dataset.
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leads to the parking slot being missed. Tracking of the directional
entrance line can be utilized to solve this problem.
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