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The use of brain-machine interfaces in combination with robotic exoskeletons is usually

based on the analysis of the changes in power that some brain rhythms experience

during a motion event. However, this variation in power is frequently obtained through

frequency filtering and power estimation using the Fourier analysis. This paper explores

the decomposition of the brain rhythms based on the Empirical Mode Decomposition,

as an alternative for the analysis of electroencephalographic (EEG) signals, due to its

adaptive capability to the local oscillations of the data, showcasing it as a viable tool for

future BMI algorithms based on motor related events.

Keywords: brain-machine interface, frequency analysis, electroencephalography, empirical mode decomposition,

exoskeleton, motor imagery

1. INTRODUCTION

A brain-machine interface (BMI) (Rao, 2013) is a system that allows controlling a device through
the analysis of the electric biosignals that can be acquired from the brain, with the help of scalp
electrodes. Electroencephalographic (EEG) signals are thus acquired in a non-invasive way, for its
posterior processing and interpretation by the algorithms associated with the BMI. EEG activity
is usually categorized by different rhythms which are associated with certain brain activities and
specific frequency bands: activity below 4 Hz is related to Delta band [sleep waves (Amzica and
Steriade, 1998) andmotion related cortical potentials (Shibasaki andHallett, 2006)]; the Theta band
is usually assessed between 4 and 7 Hz and has been related, in the literature, to response repression
(Kirmizi-Alsan et al., 2006); the Alpha band, which oscillates between 8 and 15 Hz, varies when the
eyes are closed and it has been used with Beta band (16–31 Hz) for decoding the motor activity
(Pfurtscheller et al., 2006); finally, the Gamma band (32–100 Hz) has been used in movement and
attentive focus (Rao, 2013; Costa et al., 2016).

BMIs have emerged as a promising tool to rehabilitate or assist people when they are
commanding robotic exoskeletons (He et al., 2018). In the case of the control of robotic
exoskeletons by means of a BMI, the most common paradigms are based on:
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• Movement Related Cortical Potential (MRCP) are time-
frequency changes of the signal associated with movements or
decision making (Shibasaki and Hallett, 2006). However, their
low potential and frequency makes them difficult to detect in
a single trial due to the necessity to mitigate artifacts or other
mental processes, averaging several events.

• Event related Des/Synchronization (ERD/ERS) is based on the
fact that during motor intention there is a previous decrement
of the power in alpha and beta bands during the 2 s before
the voluntary movement, followed by an increase of the power
(Pfurtscheller and Neuper, 1994; Pfurtscheller et al., 1997,
2006). For the clear identification of the ERD/ERS, it is also
necessary tp average several trials. This paradigm has also been
used during the mental task of motor imagery (MI), as it can
produce a similar effect to the real movement (Jeon et al., 2011;
Del Castillo et al., 2018).

• Steady-State Visual Evoked Potentials (SSVEPs) are related to
the response offered by the brain due to an external stimulus.
Its nature is not directly related to the movement or MI, but
this response can be used to control an exoskeleton with a
BMI (Kwak et al., 2015; Zhang et al., 2015; Gui et al., 2017).
Although the potential is not related to a movement action, it
can be used to train the user to make a connection between the
visual stimulus and the desired robotic action.

In these paradigms, the extraction of features is usually
accomplished by the filtering of the frequency bands, associated
with the rhythms related to the brain activity being analyzed.
Although the features are generally extracted using traditional
signal processing filters, there are other alternatives in the
literature based on time vs. frequency analysis techniques, such
as the wavelet transform (Xu and Song, 2008; Yang et al., 2010;
Kant et al., 2019) and the Stockwell transform (Ortiz et al.,
2017). However, they have not been used in conjunction with
an exoskeleton (He et al., 2018). In the present study, a different
approach will be studied using a decomposition algorithm, the
Empirical Mode Decomposition (EMD). In this study, the EMD
algorithm will be used to detect the variations of the EEG signals
during MI tasks in comparison to the relaxed state, when a user
is commanding a lower-limb exoskeleton. Due to the oscillatory
nature of EEG and the lack of stationary behavior of EEG
rhythms, EMD is an interesting algorithm for to use for the
analysis of these signals. EMD has been used to detect epilepsy
(Martis et al., 2012; Li et al., 2013) or even as an EOG removal
technique (Looney et al., 2008), however, even as its utility for
EEG analysis has been demonstrated (Rutkowski et al., 2010), its
application for developing a BMI to command an exoskeleton
has not been explored yet. The results will be compared to those
obtained by a Butterworth filter. In addition, the activation of the
exoskeleton will be analyzed in the time domain, thanks to the
properties of the Hilbert transform.

2. MATERIALS AND METHODS

2.1. Experimental Setup
2.1.1. Subjects
Three able-bodied adults voluntarily participated in the study. All
the information was given to the subjects before the experiment

FIGURE 1 | Image of a subject executing one of the experimental trials.

and they agreed by signing an informed consent form. All
procedures were approved by the Institutional Review Board of
the University of Houston (USA).

2.1.2. Equipment
Two non-invasive bundles of 32 wet electrodes were used for
the EEG acquisition with the help of an actiCap (Brain Products
GmbH, Germany) unit. The distribution followed the 10 − 10
international system, reallocating four scalp electrodes around
the eyes to assess the ocular artifacts in bipolar configuration
(TP10-TP9 for Vertical-EOG and PO10-PO9 for Horizontal-
EOG). Reference and ground were placed in the lower lobes of
each ear. Data were wirelessly transmitted by a Move transmitter
and amplified by two BrainAmp amplifiers (Brain Products
GmbH, Germany).

The lower-limb exoskeleton used was the REX (Rex
Bionics, New Zealand). Activation commands were sent to
the exoskeleton wirelessly, while the status of the exoskeleton
was received by the computer through wire serial port
communication. The control of the exoskeleton was done by
custom firmware developed in Matlab. Figure 1 shows a subject
commanding the REX exoskeleton during one of the trials.
Although REX can be commanded without external help, two
individuals were placed by the sides of the exoskeleton to avoid
any potential risk of losing balance.

2.1.3. Protocol
The objective of the paper was to compare the assessment of
the EEG variations observed in different rhythms associated
with motor imagery tasks when a subject is using a lower-limb
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FIGURE 2 | Example of trial: (A) Details of the activation command. (B) Details of the MI tasks ∼20 s (red) and relaxed state event ∼10 + 10 s (blue), and moving

reverse count (black top).

exoskeleton. With this aim in mind, the protocol was designed as
detailed below.

The whole protocol of a experimental session lasted around
2 h and involved the following parts: (1) adaptation of the
exoskeleton to the subject, (2) placing and gelling the 64
electrodes, achieving an impedance value below 20k� for each
electrode, (3) execution of several runs to make sure the subject
is comfortable with the REX movement, and finally (4) the
fulfillment of the 10 experimental trials. Figure 2 shows the
details of an experimental trial, the different events, and the status
of the exoskeleton.

Each trial started with 15 s of free mental task to help the
subject concentrate in the experiment and to allow enough time
to pass for the ocular artifact removal algorithm convergence
(Kilicarslan et al., 2016). This period of time was not considered
for the analysis, as it was not associated with any mental task.
After that, an acoustic signal warned the subject to relax and
to try imagine a rest state of no movement. This provided the
reference state (bottom blue points) to the MI event (red points)
that occurs after the rest event. After 10 s of rest, a new acoustic
cue indicated to the subject to focus on the mental task of the
movement of their legs (MI start). At the same time, a command
was issued to move the exoskeleton. However, as REX has a
variable time for activation, the start of the movement lagged
for up to 2 s (start of first step point). After the first step was
completed (around 5 s after the cue signal) the exoskeleton kept
walking at a steady pace (cycling walk) recording the EEG signal
for MI assessment (red top). After ∼20 s of MI, another cue
signal indicated to the subject to start making a reverse count
(black top line). This part serves as a control event to be sure
that the MI features were not caused by motion artifacts. After
another 20 s, a final acoustic cue indicated the final rest event.
This final event was not used in this study as it had no associated
MI event.

2.2. Empirical Mode Decomposition
EMD was developed by Norden E. Huang as a decomposition
method to improve the extraction of the instantaneous frequency
and amplitude of non-stationary signals (Huang et al., 1998).
The algorithm decomposes the original signals in several modes,
called intrinsic mode functions (IMF), to provide a better time-
frequency representation using the Hilbert transform. Each IMF
contains the local oscillation information of the signal, extracted
from higher to lower frequencies.

Given a discrete signal s(t), its EMD can be obtained following
the next steps:

1. Assign the signal to a temporal signal x(t) = s(t).
2. Find the local extrema of x(t).
3. Find the maximum envelope e+(t) of x(t) by passing a natural

cubic spline through the local maxima. Similarly, find the
minimum envelope, e−(t), with the local minima.

4. Compute an approximation to the local average: m(t) =

(e+(t)+ e−(t))/2.
5. Find the proto-mode function zi(t) = x(t)−m(t).
6. Check whether zi(t) is an IMF. An IMF is a wave that satisfies

two conditions: the number of extrema and the number of
zero crossings may differ by no more than one; and its local
average is zero. The threshold used to set this last condition
is critical, as a high value can lead to overtraining and a low
value can leave components unextracted. Moreover, to avoid
the extraction of accidental IMFs, the conditions must be
accomplished in at least two or three consecutive iterations.

7. If zi(t) is not an IMF, repeat the loop on zi(t). If zi(t) is an
IMF then set IMFn(t) = zi(t) and begin the process again
considering x(t) = x(t)− IMFn(t), being n = 1 :M.

8. The process stops when the desired limit of IMFs has been
achieved (n = M), or a maximum number of sifting
operations have been done i = p, without the IMF conditions
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FIGURE 3 | Empirical mode decomposition of one of the trials of subject S2 for Cz electrode. MI periods appear in red and relaxed state periods in blue. Each of the

modes corresponds to the local oscillations of the signal in descendent value of frequency.

fulfilled. In this case, the residual is considered as res(t) =

s(t)−
∑n=1

n=M IMFn

Nevertheless, the algorithm is not exempt of drawbacks, such
as the difficulty to separate near tones or border effects (Rilling
and Flandrin, 2008). Border effects and the time of computation
can be a drawback for the EMD employment in real time EEG
signals. As processing windows are usually short during online
processing, a great part of the data is susceptible to being spoiled
by the border effects of a bad envelope calculation during the
sifting process. As this research performs an offline analysis
of the data, it was exempt of this issue. Border effects were
outside the processing windows, as the whole trial was used as
input data to the EMD algorithm and not partially processed
in epochs. However, its application in real time would require
the use of overlapped processing epochs, neglecting the border
content. Nevertheless, this effect was studied for the EEG signals
of this research. For 1 s epochs overlapped by 0.5 s, the time of

processing was around 0.3 s per epoch on average and 40% of
the window was spoiled. As the time of computation depends
on the hardware, and the border effect depends on the sampling
frequency, it is difficult to recommend an epoch length. However,
an epoch should be as long and with as short a shifting as the
hardware allows for computational times.

2.3. Data Analysis
2.3.1. Pre-processing
The data acquisition was done at a 1 kHz sampling frequency.
However, in order to obtain a consistent set of IMFs, the data was
resampled to 200 Hz. The number of IMFs and the frequency
tone associated with them depends on the sampling frequency,
so a 1 kHz sampling frequency would not provide relevant
tones over the 100 Hz. Resampling to 200 Hz provide tones
below 100 Hz.
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FIGURE 4 | Instantaneous frequency of the first 5 IMFs obtained by EMD of one of the trials of subject S2. Each IMF oscillates within the EEG rhythms: IMF1

(Gamma), IMF2 (Beta), IMF3 (Alpha), IMF4 (Theta), and IMF5 (Delta).

In addition, the ocular artifact removal algorithm parameters
are optimized to work at 100–200 Hz sampling frequencies.
The H∞ algorithm employs the information of the pairs of
electrodes TP10-TP9 and PO10-PO9 (Kilicarslan et al., 2016).
The optimized parameters used were the following: γ = 1.15,
q = 10−10 and p0 = 0.5. Finally, a 60Hz notch filter was applied
to mitigate the network power supply component.

2.3.2. IMF Extraction
Once the previous filters were applied, the EMD, as explained in
section 2.2, was used to obtain the different modes of the nine
electrodes located at themotor cortex: FC1, FCz, FC2, C1, Cz, C2,
CP1, CPz, and CP2. Figure 3 shows an example of decomposition
of one of the trials for the electrode Cz. Border effects can be seen
at the tails of the signal, especially clear in the case of the end
of IMF5. In this study, only the first five IMFs were considered
(M = 5), as they were enough to obtain the EEG rhythms to be
analyzed as instantaneous frequency indicators.

Instantaneous frequency (f (t)) and amplitude (A(t)) were
computed using the Hilbert transform (Huang et al., 1998) of
each IMF. Both can be obtained based on the derivative of the
instantaneous phase and the module of the analytical function.
Given a signal s(t) = IMFn(t), its analytical complex function
z(t) can be obtained by applying the Hilbert transform (H()) as:

z(t) = s(t)+ j ·H(s(t)) = A(t)e(jφ(t)) (1)

obtaining the instantaneous frequency as a function of the
derivative of the instantaneous phase:

f (t) =
1

2π

dφ(t)

dt
(2)

Figure 4 shows the instantaneous frequency for the five IMFs
considered. As it can be seen that IMF 1 oscillates in the Gamma
band (40–60 Hz), IMF2 in the Beta band (20–30 Hz), IMF3 in
the Alpha band (5–15 Hz), IMF4 in the Theta band (2–7 Hz), and
IMF5 in the Delta band (<4 Hz). This associates each of the IMFs
with a significant EEG rhythm. It is necessary to clarify that the
order of the IMF and its relationship with each rhythm can differ
depending on the sampling frequency and the possible noise
content of the signal. This is one of the reasons why the signals
were resampled to 200 Hz in order to have a decomposition
similar to the EEG rhythms.

2.3.3. Event Assessment
Two different analyses were carried out. The first analyzed the
behavior of the different EEG rhythms during the MI event.
In this analysis, the changes of power in the different IMFs
were calculated taking the previous rest state as a reference. In
order to avoid taking into account evoked potentials, the events
considered only the stationary parts of the events. This means
that only the power of the IMFs, when the exoskeleton was
stopped or during stable walking, was considered (see Figure 2
bottom blue for rest and top red for MI). For a determined
start event, the variation of power was assessed for each IMF (i)
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FIGURE 5 | Boxplot of the variation of power of the MI tasks related to the relaxed state: (A) Left image shows the variation of power for the nine electrodes averaged

through the 10 trials placed in the motor cortex zone. (B) Left one shows it for the electrode Cz for the individual 10 single trials.

and electrode (ch) based on the power of the signal during the
MI periods:

Pi,ch =

tMI=t2∑

tMI=t1

IMF(t)2i,ch/1t (3)

and the rest periods:

Ri,ch =

trest=t2∑

trest=t1

IMF(t)2i,ch/1t (4)

as the percentage of variation of the power taking the rest period
as reference:

1Pi,ch(%) =
Pi,ch − Ri,ch

Ri,ch
· 100 (5)

As 1t = t2 − t1 can be different for rest and MI periods, power
was divided by it.

In the second analysis, the rhythms were evaluated by its
instantaneous variation in time. The instantaneous power of each
IMF was computed based on its analytical function as:

IPi,ch(t) = A(t)2 = z(t) · z∗(t) (6)

3. RESULTS

3.1. Motor Imagery Analysis (Power
Variation)
A statistic analysis was carried out to detect the significant
differences for the1P(%) between the subjects and the electrodes
using SPSS (Andy, 2013). Data included the 1P(%) of the five
extracted IMFs for each of the three subjects and the nine
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TABLE 1 | Descriptive statistics of the variation of power for the first 5 IMFs

averaged through the 10 trials.

Electrode Subject IMF1 IMF2 IMF3 IMF4 IMF5

S1 41,6 33.1 18.3 29.7 27.9

FC1 S2 17.7 11.0 −0.9 −9.4 −12.4

S3 17.7 10.9 2.3 6.6 23.1

S1 39.0 29.7 4.5 24.1 6.9

FCz S2 18.4 9.4 −3.8 −9.9 −9.5

S3 18.2 6.5 4.6 6.1 25.9

S1 40.0 31.6 11.7 25.3 17.8

FC2 S2 18.2 9.8 −3.8 −13.2 −15.7

S3 20.0 10.7 9.0 8.7 25.1

S1 42.8 39.1 17.5 20.0 21.7

C1 S2 17.0 10.9 −2.6 −4.7 −0.3

S3 16.1 9.8 1.2 9.5 21.6

S1 41.3 30.6 6.2 21.4 10.6

Cz S2 11.6 7.6 −3.4 −16.7 −3.4

S3 16.6 11.0 −1.7 18.4 20.4

S1 44.2 37.2 9.3 19.2 13.9

C2 S2 15.7 7.5 −3.5 −9.8 −4.9

S3 0.6 −2.2 −0.2 −0.8 −7.1

S1 46.4 41.9 20.4 17.2 21.9

CP1 S2 19.1 10.0 −3.3 −0.3 −4.3

S3 20.9 9.8 0.6 17.9 26.1

S1 47.6 43.5 12.1 19.2 8.6

CPz S2 19.0 8.4 0.7 −7.2 0.1

S3 19.8 10.2 8.7 14.1 19.5

S1 48.5 41.8 17.6 21.4 11.7

CP2 S2 15.4 10.5 −1.5 −10.7 −0.5

S3 21.6 13.5 7.5 29.0 26.9

S1 43.5 ± 3.4 36.5 ± 5.4 13.1 ± 5.7 21.9 ± 3.8 15.7 ± 7.1

Average S2 16.9 ± 2.4 9.5 ± 1.3 −2.5 ± 1.6 −9.1 ± 4.7 −5.7 ± 5.7

S3 16.8 ± 6.4 8.9 ± 4.5 3.6 ± 4.0 12.2 ± 8.8 20.2 ± 10,5

The table shows the 1P(%) for each electrode and the averaged value ± the

standard variation.

TABLE 2 | Descriptive statistics of the variation of power for Cz electrode for the

first 5 IMFs during the ten single trials.

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

S1 41.3 ± 21.0 30.5 ± 25.6 6.2 ± 15.1 21.4 ± 12.3 2.6 ± 21.2

S2 11.6 ± 12.9 7.6 ± 8.5 −3.4 ± 7.7 −16.7 ± 10.3 −3.4 ± 31.2

S3 16.6 ± 43.7 11.0 ± 52.9 −1.7 ± 52.9 18.4 ± 53.5 20.4 ± 55.6

Data show the averaged 1P(%) ± the standard variation.

electrodes during the 10 trials executed, for a total sample size
of 270 vectors per IMF. Equation (5) was used for computing
the power variation during MI events. The nine electrodes were
analyzed to check if there was a similar trend when they were
averaged or between the supplementary motor area (SMA), the
primary motor cortex (M1), and the pre-motor area (PM): FC1,
FCz, FC2, C1, Cz, C2, CP1, CPz, and CP2.

TABLE 3 | Comparison between the averaged 1P(%) calculated using EMD and

signal filtering by a second order Butterworth filter.

Method Signal/band S1 S2 S3

EMD IMF1 43.5 ± 3.4 16.9 ± 2.4 16.8 ± 6.4

Freq. Filter 32–49 Hz 42.4 ± 4.6 31.3 ± 1.1 18.0 ± 7.2

EMD IMF2 36.5 ± 5.4 9.5 ± 1.3 8.9 ± 4.5

Freq. Filter 16–31 Hz 36.3 ± 3.2 17.6 ± 0.6 5.9 ± 3.5

EMD IMF3 13.1 ± 5.7 −2.5 ± 1.6 3.6 ± 4.0

Freq. Filter 8–15 Hz 32.3 ± 3.0 6.4 ± 1.7 6.1 ± 3.9

EMD IMF4 21.9 ± 3.8 −9.1 ± 4.7 12.2 ± 8.8

Freq. Filter 4–7 Hz 4.5 ± 4.0 −6.3 ± 1.7 8.1 ± 5.3

EMD IMF5 15.7 ± 7.1 −5.7 ± 5.7 20.2 ± 10.5

Freq. Filter 1–4 Hz 18.4 ± 4.2 −14.7 ± 1.9 11.5 ± 7.9

The highest increments for the high frequency components appear in bold.

A Shaphiro-Wilks test of normality (S-W) was applied to
check for the normality assumption (Ghasemi and Zahediasl,
2012). Averaging the electrodes, S1 and S2 followed a normal
distribution for all the IMFs (S1: D(10) = [0.885 −

0.0.989], p > 0.05; S2: D(10) = [0.828 − 0.0.989], p >

0.05, appearing statistic in a range for the five IMFs).
However, S3 showed a clear deviation from the normal
distribution for all the IMFs (S3: D(10) = [0.530 −

0.733], p < 0.05).
Using the individual electrode 1P(%) output for each IMF

as a dependent variable, splitting the data for each subject and
electrode, the S-W test results indicated that S1 followed a
normal distribution for all the IMFs and electrodes (D(10) =

[0.870 − 0.986], p > 0.05, appearing statistic in a range for the
five IMFs and nine electrodes), except IMF1(FC2) [D(10) =

0.833, p < 0.05], and IMF1(Cz) [D(10) = 0.840, p < 0.05]. S2
followed a normal distribution for all the IMFs and electrodes
(D(10) = [0.853 − 0.986], p > 0.05), except IMF3(FC1)
[D(10) = 0.817, p < 0.05], IMF3(C1) [D(10) = 0.837, p <

0.05], and IMF4(C1,Cz) (D(10) = [0.708, 0.808], p < 0.05).
The majority of the electrodes of S3 did not follow a normal
distribution (D(10) = [0.493 − 0.810], p < 0.05, appearing
statistic in a range for the five IMFs and nine electrodes),
except IMF1(C2) [D(10) = 0.911, p > 0.05], IMF3(C2)
[D(10) = 0.865, p > 0.05], and IMF5(C2) [D(10) =

0.992, p > 0.05].
Analyzing 1P(%) of the IMFs as dependent variables for

each subject without splitting the data by electrode, the S-W
test indicated that S1 followed a normal distribution for all the
IMFs with only a small deviation from normality in the Q-
Q plot for IMF1 [D(90) = 0.919, p < 0.05] and a small
asymmetry in the histogram toward the high tail. S-W test
for S2 indicated a deviation from the normal distribution for
IMF1-4 (D(90) = [0.947 − 0.972], p < 0.05) with only a
small skewness (S-shape) in the Q-Q plots. S3 distribution was
not normal with a clear double peak shape for all the IMFs
in the histograms (D(90) = [0.560 − 0.734], p < 0.05) and
a clear kurtosis deviation in the Q-Q plots, which indicated
different performance in some of the trials. As normality could
not be assured for all the subjects and electrodes, data were
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FIGURE 6 | Instantaneous power of IMF3 after the acoustic cue for MI (black line) for trial 1 of subject S1. The value is compared with the instantaneous power of the

signal filtered by a Butterworth filter (5–15 Hz). The peak response is higher using the IMF. REX start of movement is represented by a red spot.

analyzed using non-parametric tests to compare the subject and
electrode dependency.

For the averaged electrodes, using the Kruskal-Wallis
(K-W) test, the IMF output was significantly affected by the
subject (H(2) = [9.757, 11.027, 10.934, 17.559, 8.565], p < 0.05,
appearing in the data for each IMF). The Mann-Whitney
test was used to analyze the differences between the
subjects. A Bonferroni correction was applied and so
all effects are reported at a 0.0167 level of significance.
S1 results were significantly different in comparison
to S2 for IMFs1-5 (U = [14, 17, 12, 0, 15], r =

[−0.61,−0.56,−0.64,−0.84,−0.59]), and S3 for IMFs1-4
(U = [17, 14, 15, 10], r = [−0.56,−061,−0.59,−0.68]), but
similar for IMF5 (U = −1.134, r = −0.25). S2 had behaved
similarly to S3 for all the IMFs (U = [34, 25, 33, 28, 22], r =

[−0.27,−0.42,−0.29, − 0.37, − 0.47]).
Analyzing each subject individually, the K-W test

indicated that there were no differences between the
electrodes for the five IMFs of all the subjects: S1
(H(8) = [3.721, 3.279, 10.252, 6.226, 7.732], p > 0.05),
S2 (H(8) = [3.174, 2.183, 2.153, 6.357, 3.910], p > 0.05), and S3
(H(8) = [1.496, 0.501, 6.790, 11.344, 4.984], p > 0.05). This
means that the electrodes behaved in a similar way for a given
IMF and subject. This matches the boxplot representation. The
left part of Figure 5 shows the boxplots of the power variation
for the average of the nine electrodes during the 10 trials
accomplished by a subject, while the right part shows the same
data for the Cz electrode. The associated descriptive statistics
to the boxplots can be seen in Table 1 for all the electrodes and
its average, and particularized for the Cz electrode in Table 2.

As can be seen, if the electrodes were averaged through the
10 trials, there was a similar trend for the three subjects, with
a clear increment of the power, especially for high frequency
IMFs associated with gamma (IMF1) and beta bands (IMF2).
However, IMFs3-5 (alpha, theta, and delta bands) showed a
more erratic behavior. Focusing our attention on one of the
most representative electrodes, Cz (see right part of Figure 5), its
boxplot follows the same trend than the average. However, the
deviation, as can be seen in the boxplot and Table 2, is higher,
which indicates the difficulty to see this pattern in a single trial
without averaging the electrodes.

The comparison of the averaged1P(%) calculated using EMD
and the components extracted from the signal by a second order
Butterworth filter, show that the results were similar (Table 3).
The table shows, using bold text, the methods with a higher
increment for 1P(%) in the first two IMFs.

3.2. Gait Intention Analysis (Instantaneous
Power)
In order to study the transient when a subject focuses on the
motion intention, an additional study was carried out. The
ERD/ERS phenomenon indicates that for certain subjects, the
motor intention involves a desynchronization of the mu band
(8–12 Hz) followed by a posterior synchronization (Pfurtscheller
et al., 2006). Although the phenomenon can be observed in a
single trial, it usually requires averaging several trials. Moreover,
the effect is also more difficult to notice in foot imagery than
in hands. In this study, EMD is proposed as a technique to
evaluate the desynchronization and posterior synchronization
of the signal during the motion intention. As literature focuses
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its attention on the mu band, the IMF under study was IMF3,
as its instantaneous frequency oscillated around 10 Hz (see
Figure 4 IMF3).

With this purpose in mind, the instantaneous power of IMF3
was assessed as indicated by equation 6. Figure 6 shows the
instantaneous power during the 5 s after the acoustic cue was
issued (t = 0) for one of the trials (black line). A red spot
indicates the real start of the REX movement, which indicates
that the previous time to the red spot is a MI period with
no movement, exempt for this reason of any possible motion
artifacts. The instantaneous power was compared to the one
obtained by only using a second order Butterworth bandpass
filter to the signal between 8 and 15 Hz (blue line). Upon
inspection of the figure, it can be seen that there are several peaks
during the motor imagery period previous to the activation of the
exoskeleton. For several electrodes there is a first peak around 1 s
before the movement and another one just before the movement.
As can be seen, the peak that appears just before the start of
the movement is especially clear, using the IMF power (black
line), compared to that of the filtered signal (blue line). This
indicates that there is an increment of power around 1 s after the
acoustic cue, followed by a decrement and a posterior increment
just before the real movement starts, which could be related to
the ERD/ERS phenomenon. However, the peak magnitudes are
variable, which makes it difficult to quantify the phenomenon in
a single trial.

Table 4 shows a comparison of both methods for the time
at which the maximum peak of the instantaneous power is
computed in the five s after the acoustic cue for the MI event
is issued. The mean time shows the averaged time for the 10
trials accomplished by each subject per electrode. A negative
time indicates that the peak achieved was average for a channel
before the REX activation. According to K-W test, the subjects
showed no significant differences when using EMD [H(2) =

5.42, p > 0.05], while they did for the frequency filter band
[H(2) = 27.13, p < 0.001]. As Table 4 shows, a negative
time was achieved for the average of the 10 trials in all the
subjects for the electrodes C1, CPz, Cz, and FC2 when using
the EMD method. The filtered signal showed a higher dispersion
for the times, detecting the intention later for the majority of
the electrodes.

Furthermore, Figure 6 shows that there are also several peaks
for certain electrodes after the exoskeleton started moving. To
check the evolution and magnitude of these peaks and its
possible relationship with the statistical results of section 3.1, the
instantaneous power is represented for the full trial in Figure 7.
This was limited to IMF1 and IMF2, as these IMFs were the
ones that showed a clearer increment of power during MI in
Table 2. To see the behavior in a clearer way, the instantaneous
power was averaged with a moving mean of 1 s. Figure 7 shows
this averaged value for the MI (red), rest (blue), and the control
period of the reverse count (green) events. Upon inspection of
Figure 7, it is evident that the MI periods show a clear increment
in rest periods. In addition, they also show an increment in
reverse count operations, which indicates that the increment is
not related to any possible motion or exoskeleton artifact, since
during the reverse count periods the exoskeleton was moving in

the same way than during the MI events. In fact, reverse count
periods show a similar power to rest periods.

4. DISCUSSION

By analyzing the results, it has been demonstrated that EMD can
be a useful tool in characterizing the EEG rhythms during MI
events associated with a BMI operating an exoskeleton.

Regardingmotor imagery, an increment of power was noticed,
not only in average for the MI vs. rest periods, but also in
comparison to an alternative mental task during movement
(reverse count) in the case of the high frequency IMFs. The
power for the IMFs associated with these IMFs showed a different
pattern only for the MI events, while showing a similar one for
the rest periods. This is consistent with the literature on gamma
power increment during motion (Seeber et al., 2014). This
behavior could be explained by the attention focus to gait during
these periods (Costa-García et al., 2019), which could be useful
for the future development of a BMI based on high frequency
rhythms assessing the attention to gait. On the other hand, lower
frequency IMFs showed a more inconsistent behavior during
MI tasks. This can be explained by the nature of EMD, as low
frequency IMFs are more susceptible to over-training problems.
In addition, in the case of a real-time application, shorter
windows of computation could make it more difficult to obtain a
consistent result using these IMFs due to possible border effects.
This advise against the use of high order IMFs (low frequency
ones), at least for BMI control, even as the residual captures
the low frequency oscillations of the EEG channel in a precise
way (see Figure 3). Furthermore, the statistical analysis revealed
that the results were dependant on the subject. However, given a
determined subject and IMF, they have a similar behavior for the
nine electrodes considered. Nevertheless, the high deviation of
the 1P(%) per individual electrode makes its use in a single trial
difficult, without averaging the nine electrodes through the trials.

Regarding motor intention, the analysis revealed important
facts. As Figure 6 shows, motor intention analyzed by the IMF
associated with alpha band followed a pattern similar to the one
explained by the ERD/ERS (Pfurtscheller et al., 2006; Jeon et al.,
2011) in a single trial. The effect was more noticeable than when
using a frequency filter. However, it requires a processing window
of at least 4 s, which could compromise the BMI response in real
time, as processing would delay the command and increase the
computational times. In addition, the magnitude of the peaks
was variable, which makes computing them in a significant
stable base, or to estimate a statistical trend to be used in a
BMI algorithm, difficult, even as statistically the maximum peak
is usually achieved during the first 5 s before the actual start
of movement.

The results obtained for the 1P(%) were similar to the ones
obtained for the filtered signal, but clearer for themotor intention
despite its higher computational load. Nevertheless, EMD could
be an interesting alternative for the assessment of ERD/ERS,
but would require further investigation and an experimental
protocol specifically designed for its study. Future research will
explore the viability of using this paradigm for the detection
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TABLE 4 | Comparison between IMF3 and the signal filtered between 8 and 15 Hz for the detection time of gait intention.

95% Confidence interval

Electrode Subject Method Mean time (s) Lower bound Upper bound

C1(EMD) S1 EMD −0.130 −0.691 0.432

Freq. Filter −0.469 −1.044 0.106

S2 EMD −0.453 −1.015 0.109

Freq. Filter 0.009 −0.566 0.584

S3 EMD −0.503 −1.065 0.059

Freq. Filter −0.388 −0.963 0.187

C2
S1

EMD −0.152 −0.714 0.410

Freq. Filter −0.016 −0.592 0.559

S2 EMD 0.044 −0.518 0.605

Freq. Filter −0.463 −1.038 0.113

S3
EMD 0.080 −0.482 0.642

Freq. Filter 0.358 −0.217 0.933

CP1
S1

EMD 0.019 −0.542 0.581

Freq. Filter 0.180 −0.396 0.755

S2 EMD −0.025 −0.587 0.537

Freq. Filter −0.283 −0.858 0.292

S3 EMD −0.489 −1.051 0.073

Freq. Filter −0.832 −1.407 −0.257

CP2 S1 EMD 0.127 −0.435 0.688

Freq. Filter 0.183 −0.392 0.758

S2 EMD −0.568 −1.129 −0.006

Freq. Filter −0.238 −0.813 0.338

S3 EMD −0.226 −0.787 0.336

Freq. Filter −0.516 −1.091 0.059

CPz (EMD) S1 EMD −0.128 −0.689 0.434

Freq. Filter 0.250 −0.325 0.825

S2 EMD −0.728 −1.289 −0.166

Freq. Filter −0.538 −1.113 0.037

S3 EMD −0.242 −0.804 0.320

Freq. Filter −0.730 −1.305 −0.154

Cz (EMD) S1 EMD −0.162 −0.724 0.400

Freq. Filter 0.120 −0.455 0.695

S2 EMD −0.449 −1.011 0.113

Freq. Filter 0.177 −0.398 0.752

S3 EMD −0.260 −0.822 0.302

Freq. Filter −0.657 −1.232 −0.081

FC1 S1 EMD −0.077 −0.639 0.485

Freq. Filter 0.264 −0.312 0.839

S2 EMD 0.139 −0.423 0.700

Freq. Filter 0.234 −0.342 0.809

S3 EMD 0.069 −0.493 0.630

Freq. Filter −0.549 −1.124 0.027

FC2 (EMD) S1 EMD −0.627 −1.188 −0.065

Freq. Filter 0.384 −0.191 0.959

S2 EMD −0.051 −0.613 0.511

Freq. Filter 0.590 0.014 1.165

S3 EMD −0.123 −0.685 0.439

Freq. Filter −0.696 −1.271 −0.121

FCz S1 EMD

Freq. Filter

0.126

0.588

−0.436

0.013

0.687

1.163

(Continued)
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TABLE 4 | Continued

95% Confidence interval

Electrode Subject Method Mean time (s) Lower bound Upper bound

S2 EMD −0.221 −0.782 0.341

Freq. Filter −0.404 −0.979 0.172

S3 EMD −0.109 −0.671 0.452

Freq. Filter −0.817 −1.392 −0.242

Avg. S1 EMD −0.111 ± 0.224

Freq. Filter 0.165±0.292

S2 EMD −0.257 ± 0.304

Freq. Filter −0.102 ± 0.378

S3 EMD −0.200 ± 0.208

Freq. Filter −0.536 ± 0.365

The maximum peak is computed for each electrode within the 5 s after the MI acoustic cue is issued. Zero reference is marked by the instant the exoskeleton starts moving. A negative

time indicates that the detection is accomplished before the exoskeleton starts moving. The table shows the averaged time for the ten trials of each subject and its 95% confidence

interval. Electrodes with negative times are in bold and methods with negative times for all the subjects appear between brackets.

FIGURE 7 | Evolution of the instantaneous power for trial 1 of subject S2: (A) IMF1. (B) IMF2.
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of motor intention through the analysis of moving epochs and
the usability of high frequency features, extracted with EMD or
other time-frequency algorithms, for a BMI that commands an
exoskeleton in real time.
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