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In recent years, deep convolutional neural networks (CNNs) has made great

achievements in the field of medical image segmentation, among which residual structure

plays a significant role in the rapid development of CNN-based segmentation. However,

the 3D residual networks inevitably bring a huge computational burden to machines

for network inference, thus limiting their usages for many real clinical applications. To

tackle this issue, we propose AutoPath, an image-specific inference approach for more

efficient 3D segmentations. The proposed AutoPath dynamically selects enabled residual

blocks regarding different input images during inference, thus effectively reducing total

computation without degrading segmentation performance. To achieve this, a policy

network is trained using reinforcement learning, by employing the rewards of using

a minimal set of residual blocks and meanwhile maintaining accurate segmentation.

Experimental results on liver CT dataset show that our approach not only provides

efficient inference procedure but also attains satisfactory segmentation performance.

Keywords: segmentation, 3D residual networks, reinforcement learning, policy network, image-specific inference

1. INTRODUCTION

Automated segmentation is useful to assist doctors in disease diagnosis and surgical/treatment
planning. Since deep learning (LeCun et al., 2015) has utilized widely, medical image segmentation
has made great progresses. Various architectures of deep convolutional neural networks (CNNs)
have been proposed and successfully introduced to many segmentation applications. Among
various architectures, the residual structures in ResNet (He et al., 2016) play an important role
in the rapid development of CNN-based segmentation. The backbone which contains the residual
blocks has become essential support for many segmentation models, such as DeepLab V3 (Chen
et al., 2017), HD-Net (Jia et al., 2019), Res-UNet (Xiao et al., 2018), and so on. Despite the
superior performance of residual blocks, these structures inevitably bring a huge computational
burden for network inference. This leads to the difficulty of introducing deep models (such as 3D
ResNet-50/101) in clinical practice.

Recently, some strategies for model compression have been devoted to tackling the problem
of large computation, among which the network pruning approaches have been extensively
investigated (Li et al., 2016; He et al., 2017, 2018; Liu et al., 2017; Luo et al., 2017). In addition,
other researches are focusing on lightweight network architectures (Howard et al., 2017; Ma et al.,
2018; Mehta et al., 2018). However, all aforementioned methods including pruning, knowledge
distillation, and lightweight structures all require network retraining and hyper-parameters
retuning, which may consume plenty of extra time.
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This paper explores the problem of dynamically distributing
computation across all residual blocks in a trained ResNet
for image-specific segmentation inference (see Figure 1).
Relevant studies have been investigated in classification tasks.
Teerapittayanon et al. (2016) developed BranchyNet to conduct
fast inference via early exiting from deep neural networks. Graves
(2016) devised an adaptive computation time (ACT) approach
for recurrent neural network (RNN), by designing a halting
unit whose activation indicates the termination probability of
computations. Huang et al. (2016) proposed stochastic depth
for deep networks, a training strategy that enables the seemingly
contradictory setup to train short networks and use deep
networks at test time. Veit et al. (2016) proposed a description of
residual networks in classification showing that residual blocks
can be seen as a collection of many paths and they do not strongly
depend on each other thus can be selectively dropped. However,
there are two obvious differences between segmentation and
classification tasks: (1) The neural networks for classification
often take a short approach, such as identifying a car by its
shadow. Segmentation is classifying each pixel, thus the neural
networks cannot be lazy; (2) Classification can work with local
features, but segmentation needs to take global information
(such as shape priors) into consideration.

In this study, we propose AutoPath, an image-specific strategy
to design the inference path that uses minimal residual blocks but
still preserves satisfactory segmentation accuracy. Specifically, a
policy network is trained using reinforcement learning, by using
the rewards of involving a minimal set of residual blocks and
meanwhile maintaining accurate segmentation. To the best of
our knowledge, this is the first investigation of the dynamic
inference path for 3D segmentation using residual networks.
Experimental results demonstrate that our strategy not only

FIGURE 1 | A conceptual illustration of the proposed AutoPath. The motivation is to dynamically distributing computation across a ResNet. AutoPath selectively drops

unnecessary residual blocks for image-specific inference. Such inference simultaneously achieves efficiency and accuracy.

provides efficient inference procedure but also attains satisfactory
segmentation accuracy.

2. METHODS

Figure 2 illustrates the proposed framework. Given a new 3D
volume, the policy network outputs “keep” or “drop” decisions
for each residual block in the pretrained 3D DeepLab V3
network. Such image-specific inference path is then used for the

segmentation prediction. The policy network is trained using

reinforcement learning by rewarding accurate segmentation with
minimal involved blocks.

2.1. 3D Residual Backbone
We implement a 3D DeepLab V3 based on the original DeepLab

V3 (Chen et al., 2017), and further set its backbone to 3D ResNet
according to ResNet (He et al., 2016) (the classification head is
removed). We then specifically modify the 3D residual blocks
to achieve better baseline results. Optimized 3D residual blocks
assign the stride of each convolutional layer along z axis to 1 to

constrain downsampling along the slice direction. In addition, we
replace the straightforward upsampling operations after atrous

spatial pyramid pooling (ASPP) with a decoder consisting of a
series of convolutions according to Chen et al. (2019).

2.2. AutoPath Strategy
Backbone, as an indispensable part of segmentation networks,

occupies most of the memory and calculation. Generally, the
popular residual backbone consists of multiple repeated residual
blocks. We regard each block as an independent decision unit by
assuming that different blocks do not share strong dependencies
in segmentation. Then as shown in Figure 2, we introduce
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FIGURE 2 | Illustration of the proposed network. The 3D policy network is trained using reinforcement learning with the reward as both segmentation performance

and residual block usage. The 3D DeepLab V3 leverages the decisions made by the policy network to keep or drop corresponding residual blocks then outputs the

segmentation prediction for a given 3D volume. ASPP: atrous spatial pyramid pooling.

reinforcement learning to train a policy network to intelligently
conduct block dropping and explore the inference path that
generates accurate segmentation with fewer blocks.

2.2.1. 3D Policy Network
Considering the actions for residual blocks can only be “keep”
or “drop,” we define the policy for block dropping as a Bernoulli
distribution (Wu et al., 2018):

πW(a|x) =

N
∏

n=1

pann (1− pn)
1−an , (1)

where x denotes the input 3D image and N is the total number
of residual blocks in the pretrained 3D DeepLab V3 network.
W denotes the weights of the policy network. p represents the
“drop” likelihood (pn ∈ [0, 1]), and is the policy network’s output
after sigmoid activation. The action vector a is determined by p,
where an = 0 refers to drop the n-th block, otherwise keeping the
corresponding block.

2.2.2. Reward Function
3D Segmentation is generally considered to be voxel-level
classification, thus every voxel has to receive evaluation feedback
for the corresponding action. Thus, we design the following
voxel-level reward function:

R(a) =







1− ( |a|0N )2 if VDC(i) = 1
2

−τ if VDC(i) = 1,

(2)

where ( |a|0N )2 calculates the block usage. When the prediction
of a voxel i is the same as the label, we encourage dropping
more blocks by giving a larger reward to the policy. On the
other hand, we penalize using τ , which balances block usage and
segmentation accuracy. When τ is a large value, the policy is
prone to have a more solid segmentation result; otherwise, it is
more likely to drop blocks. We designed Voxel Dice Coefficient
(VDC) to identify which pixel should be penalized:

VDC(i) =
2 ∗ (y′i

⋂

yi)+ 1

y′i + yi + 1
, (3)

where yi ∈ {0, 1} and y′i ∈ {0, 1} denotes the ground truth and
prediction for voxel i, respectively.

2.2.3. Learning Strategy
Finally, we maximize the expected reward Ea∼πW [R(a)] to train
the policy network. We employ policy gradient to calculate the
gradient of the expected reward:

▽WEa∼πW [R(a)] = E[R(a)▽W log πW(a|x)] (4)

= E[R(a)▽W log

N
∏

n=1

pann (1− pn)
1−an ] (5)

= E[R(a)▽W

N
∑

n=1

log[pnan + (1− pn)(1− an)]].

(6)

The Equation (6) can be approximated by Monte-Carlo
sampling strategy.
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To achieve efficient training, we further employ curriculum
learning (Bengio et al., 2009) to train the policy network.
Specifically, for epoch c (c < N), the first N − c blocks are
kept, while the learning is conduct on the last c blocks. As c
increases, more and more blocks join the optimization until all
blocks are involved. Algorithm 1 shows the training procedure of
the proposed network.

3. EXPERIMENTS AND RESULTS

3.1. Materials and Implementation Details
3.1.1. Materials
Experiments were carried on liver CT images from LiTS
challenge (Bilic et al., 2019). LiTS dataset contains 131
contrast-enhanced CT images acquired from six clinical
centers around the world. 3DIRCADb is a subset from
the LiTS dataset with 22 cases. Our network was trained
using 109 cases from LiTS without data from 3DIRCADb,

Algorithm 1 | Training of the policy network

Input : An input 3D image x and corresponding label y
1 Initialize policy networkW randomly
2 Set epochs for curriculum training to C
3 for c ← 1 to C do
4 p ← output of policy network
5 if c < N then
6 set p[1 :N − c] = 1 ⊲ curriculum training
7 end
8 a ∼ Bernoulli(p)
9 Run the 3D DeepLab V3 based on a
10 Calculate R(a) using Eq (2)
11 Gradients back-propagation using Eq (6)

12 end

and then evaluated on the 3DIRCADb subset using
Dice metric.

3.1.2. Implementation Details
The experiments were conducted using 3D DeepLab V3
network with 18-layers and 50-layers, respectively. We adopted
Adam (Kingma and Ba, 2014) with learning rate of 0.01
and batch size of 4 and 11 for ResNet-18 and ResNet-50,
respectively. In addition, we utilized learning rate scheduler that
decreases by 0.1 for every 100 epochs. The maximum epoch was
set to 400.

For the policy network, we set learning rate to 0.001, τ

to 50 and used the batch size of 1 and 5 for ResNet-18 and
ResNet-50, respectively.

FIGURE 4 | The comparisons of segmentation performance from dropping

the first n blocks of residual backbones.

FIGURE 3 | The comparisons of segmentation performance from dropping different individual block of residual backbones.
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FIGURE 5 | The comparisons of segmentation performance from dropping

the last n blocks of residual backbones.

3.2. Performance Evaluation
3.2.1. Investigation of Blocks’ Dependencies
We first implemented the DropN strategy, which means
dropping a single n-th block in residual backbone, to observe
the dependencies of different blocks. We executed this strategy to
ResNet-18 and ResNet-50 backbone which has 8 and 16 residual
blocks, respectively. Figure 3 shows that dropping individual
block from residual backbone has a minimal impact on Dice
evaluation except for few blocks. This suggests that different
blocks in ResNet backbone do not share strong dependencies and
most blocks are not indispensable for the accurate segmentation.
Thus, dropping blocks in inference is feasible for segmentation.

3.2.2. Heuristic Dropping Strategies
We then evaluated threemanual dropping strategies as follows:

1) DropFirstN, which means to drop all blocks before the n-th
block;

2) DropLastN, which means to drop all blocks after the n-th
block;

3) DropRandomN, which means to drop n blocks randomly.

Note that DropRandomN is a random strategy, thus for each n
we performed 100 and 500 repeated experiments for ResNet-18
and ResNet-50, respectively.

Figures 4, 5 show the results of DropFirstN and DropLastN,
respectively. It can be observed from Figure 4 that first several
blocks were relatively important for ResNet backbone. The Dice
value dropped to almost 0 when the first three blocks were
dropped. As shown in Figure 5, for ResNet-50, dropping the last
8 blocks didn’t affect segmentation performance sharply.

As for the DropRandomN, with the increase of dropped
blocks in the shallow backbone, the segmentation performance
gradually decreased, as seen in Figure 6. In contrast, for the
ResNet-50, the average Dice was almost 0 when 8 blocks were
randomly dropped, as shown in Figure 7.

FIGURE 6 | The comparisons of segmentation performance from randomly

dropping n blocks of ResNet-18.

FIGURE 7 | The comparisons of segmentation performance from randomly

dropping n blocks of ResNet-50.

TABLE 1 | The comparisons of segmentation performance from heuristic

strategies and AutoPath at the same dropping level.

ResNet-18 backbone ResNet-50 backbone

Dice Dropped blocks Dice Dropped blocks

DropFirstN 19.67% 2 0.00% 4

DropLastN 61.03% 2 80.66% 4

DropRandomN 67.80% 2 59.11% 4

Ours 87.11% 2.4 89.14% 4.5

Full backbone 89.54% 8 used 93.16% 16 used

3.2.3. AutoPath
We compared the segmentation performance of heuristic
strategies (i.e., DropFirstN, DropLastN, DropRandomN) and
the proposed AutoPath at the same dropping level. Table 1
reports that by considering image-specific input, our AutoPath
can achieve an average block dropping ratio of more than
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FIGURE 8 | The statistics of the AutoPath for all testing data. For most cases, AutoPath can provide high quality segmentation with fewer block usage. Left:

ResNet-18; Right: ResNet-50.

FIGURE 9 | 3D visualizations of some segmentation results obtained using AutoPath (green) and full backbone (red), respectively. It can be observed that the

segmentation performance from the proposed AutoPath was comparable to that of the full backbone architecture.

25%, meanwhile with only 2 and 4% decrease of Dice values
for ResNet-18 and ResNet-50, respectively. Also can be seen
from Table 1 that by dropping the same number of residual
blocks, our AutoPath outperformed other heuristic strategies by
a large margin.

Figure 8 further plots the statistics of the AutoPath for all
testing data. For the image-specific inference, the AutoPath
selectively dropped 2 or 3 blocks for ResNet-18, and 3,
4, 5, or 8 blocks for ResNet-50. For most cases, AutoPath
can maintain a high quality segmentation with fewer block
usage, which demonstrates its promising application for real
clinical circumstance. Figures 9, 10 visualizes some 3D and
2D segmentation results obtained using AutoPath and full

backbone, respectively. It can be observed that the segmentation
performance from the proposed AutoPath was comparable to
that of the full backbone architecture.

4. DISCUSSION AND CONCLUSION

This paper develops a reinforcement learning method to select
image-specific and efficient inference paths for 3D segmentation,
which addresses the problem of huge computational burden for
3D segmentation networks. To our best knowledge, this is the
first study of the dynamic inference path for 3D segmentation.
We refer to it as AutoPath, which can leverage an image-specific
path including fewer residual blocks to attain accurate prediction.
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FIGURE 10 | 2D slices of some segmentation results obtained using AutoPath (yellow), full backbone (blue), and the ground truth (red), respectively.

To achieve this, we train a network to determine the policy
of block dropping and the pretrained segmentation network
executes inference according to this policy. We conducted
extensive experiments on the liver CT dataset using 3D
DeepLab V3 network with 18-layers and 50-layers, respectively.
Experimental results demonstrate that AutoPath is a reliable
method for the dynamic inference in 3D segmentation.

Deep neural networks offer excellent segmentation
performance, yet their computational expense restrict their
clinical usage, especially for the 3D segmentation. To tackle this
issue, various compressed models have been proposed (Li et al.,
2016; He et al., 2017, 2018; Liu et al., 2017; Luo et al., 2017).
While the network efficiency has been improved somehow, the
solution is a one-size-fit-all network that omits different inputs’
complexity. In contrast, we investigate adaptively allocating
computation across a CNN model according to specific input.
Furthermore, our image-specific inference is conducted on the
trained network, thus do not have to spend extra time for the
network retuning.

In this study, although the DeepLabV3 network was employed
as backbone to equip with residual structures, it could be
replaced using other backbone architectures. With regard to
our image-specific inference method, the residual structures are
the most crucial components but not the design of backbones.
In medical segmentation tasks, various CNN-based approaches
have employed residual structures. For example, the encoder
of HD-Net (Jia et al., 2019) is based on 3D ResNet-101
and BOWDA-Net (Zhu et al., 2019) utilizes dense connection

multiple times. In addition, Xiao et al. (2018) propose a weighted
Res-UNet which replaces the convolution block with residual
block to achieve remarkable results in retina vessel segmentation.
Furthermore, there are some improved structures based on
ResNet, such as ResNext (Xie et al., 2017), SE-Net (Hu et al.,
2018), and SK-Net (Li et al., 2019). Our proposed method can
be utilized to dynamically distribute computation across their
residual blocks for image-specific segmentation inference.

Our current scheme mainly focuses on the usage reduction
of the residual blocks due to their independent design. It may
not be directly adopted to other network configurations without
residual structures. Future work may further investigate the
dynamic inference for other network configurations. In addition,
although our method attained satisfactory performance on liver
CT volumes, further validations on large amount of various
medical images will be conducted to investigate the robustness
and generalization ability of the proposed scheme.
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