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This paper focuses on the consensus problem of a vehicle platoon system with

time-varying topology via self-triggered control. Unlike traditional control methods, amore

secure event-triggered controller considering the safe distance was designed for the

vehicle platoon system. Then, a Lyapunov function was designed to prove the stability

of the platoon system. Furthermore, based on the new event-triggered function, a more

energy efficient self-triggered control strategy was designed by using the Taylor formula.

The new self-triggered control strategy can directly calculate the next trigger according to

the state information of the last trigger. It avoids continuous calculation andmeasurement

of vehicles. Finally, the effectiveness of the proposed two self-triggered control strategies

were verified by numerical simulation experiments.

Keywords: consense, event-triggered, self-triggered, distributed control, time-varying topology

1. INTRODUCTION

In recent years, multi-agent systems have been widely applied in intelligent transportation (Hee Lee
et al., 2013; Vilarinho et al., 2016). As an important part of the intelligent transportation system, the
self-driving vehicle platoon system has a wide range of applications in improving road utilization,
enhancing safety and reliability, and alleviating traffic congestion.

The formation of control is an important issue for the vehicle platoon system. It refers to the
control problem that a group of intelligent vehicles can interact with each other to maintain a
predetermined geometric formation during the movement of a specific target or direction. In
general, this mutual interaction between intelligent vehicles can be divided into fixed and time-
varying topology. Most of the current research is mainly focused on a fixed topology (Peters et al.,
2016; Viegas et al., 2018). However, in the actual driving process, the vehicle platoon system often
has to face various complex terrain and traffic conditions. Formations do not stay the same all
the time. The vehicle platoon system requires a change of formation. Therefore, it is necessary
to study the time-varying topology of vehicle platoon system. At present, there are few research
studies on vehicle platoon systems with time-varying topology. More research is focused on multi-
agent systems (Munz et al., 2011; Saboori and Khorasani, 2014). For example, we found that we
can design more reasonable and effective control strategies by analyzing the derivatives of time-
varying topological variables (Wang et al., 2018). It is thus more practical to study the time-varying
topology of the vehicle platoon system than fixed topology.
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Recently, the formation consistency of the vehicle platoon
system has been widely considered. It has been applied to deal
with consistency of formation control problems (Ren, 2007;
Stojković and Katić, 2017; Wang et al., 2017; Li et al., 2018).
Bela Lantos and Gyorgy Max achieved the formation consistency
of unmanned ground vehicles by using a two-trajectory non-
linear dynamicmodel (Lantos andMax, 2016). Peters et al. (2016)
designed a way by which each follower tracks its immediate
predecessor to achieve vehicle formation consistency.

Nevertheless, in the traditional vehicle platoon system
consistency study, it is assumed that the vehicle platoon
system has sufficient computing resources and energy supply
(Fax and Murray, 2004; Lafferriere et al., 2005). The vehicle
platoon system can thus carry on a continuous information
exchange and a continuous control. However, such assumption
is unreasonable. More often than not, the power supply and
communication bandwidth of a vehicle platoon system are
limited. Recently, it has been found that event-triggered
control can coordinate resources among intelligent vehicles.
Many scholars are thus interested in event-triggered control.
As an aperiodic control mode, event-triggered control
can update the controller only when needed. That is, the
controller of the intelligent vehicle takes an effect when the
measurement error of the vehicle platoon system exceeds a
certain threshold.

Since event-triggered control can reduce the energy loss to
a certain extent, many scholars apply it to consistency research
(Wei et al., 2017). The author in Chu et al. (2019) proposed an
unified event-triggered and distributed observer-based controller
with globally asymptotic convergence rate. The consistency of
vehicle platoon system is realized by the controller. A fault-
tolerant controller which considered the communication time-
delay and event-triggeredmechanismwas designed to achieve the
consistency of the vehicle platoon system (Fei et al., 2019).

However, in order to obtain the next trigger moment, we
need to constantly obtain the state information of surrounding
vehicles and calculate whether the trigger conditions are met
in the distributed event-triggered control function. It is because
of continuous communication and computation that an event-
triggered control strategy cannot reduce the detection loss
in essence. But the self-triggered control strategy only needs
to calculate the next trigger moment based on the status
information of the last trigger moment. In the self-triggered
strategy, data detection is no longer required between any two
triggering moments. From this perspective, the self-triggered
control strategy has a better performance. Authors designed a
self-triggered control strategy for the second-order multi-agent
system with fixed topology to ensure the consistency of the
formation system (De Persis and Frasca, 2013). As far as we know,
there are few research studies made on time-varying topology
under self-triggering control in vehicle platoon system, and this
sparked our research.

Based on the above considerations, we studied the consistency
of time-varying topology for vehicle platoon system with second-
order dynamics by using distributed event-triggered control and
self-triggered control strategies. The contributions of our work
are three-fold:

(1) A distributed event-triggered control function considering the
safe distance between vehicles was designed, and this event-
triggered control is more energy efficient than the continuous
control in Fax and Murray (2004) and Lafferriere et al. (2005).

(2) Based on the Lyapunov stability analysis method, the
distributed event-triggered control function under time-
varying leader and time-varying topology was given. In
comparison with the fixed topology in Du et al. (2017), the
research of time-varying topology is more practical. Moreover,
the research on time-varying leader is of more practical
significance.

(3) According to (1) and (2), two distributed self-triggered control
strategies were designed. In Zhang et al. (2016), Dolk et al.
(2017), Wei et al. (2017), Wen et al. (2018), Chu et al. (2019),
and Li Z. et al. (2019), an event-triggered control strategy
was designed. Compared with these, the self-triggered control
strategy further reduces the continuous detection of adjacent
vehicles. Additionally, the distributed self-triggered controller
is more general and practical than some existing control
methods.

The rest of this paper was organized as follows. Preliminaries
and the problem formulation are given in section 2. The event-
triggered control and self-triggered control of vehicle platoon
system with time-varying topology are studied in section 3. Two
numerical simulation experiments are presented in section 4.
Lastly, conclusions are drawn in section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Graph Theory
Consider the consensus issue of multi-agent systems with time-
varying topology; a communication graph is used to describe the
communication topology of these agents. An undirected graph
G = (V , E ,A) consists of a finite node set V = {1, 2, · · · ,N}, an
edge set E , where E ⊆ V × V , and an adjacency matrix A =
[

aij
]

∈ R
N×N . If (j, i) ∈ E , aij = 1, and aij = 0 otherwise. The

neighbor set of vehicle i is defined asNi , {j ∈ V|(j, i) ∈ E , j 6= i}.
The Laplacian matrix of the graph G is defined as L = [lij] ∈

R
N×N , where lii =

∑

j 6=i aij and lij = −aij, where i 6= j. Moreover,

we assume that there are no self-cycles, that is aii = 0 for any
i ∈ N. The degree matrices D = diag

{

d1, · · · , dN
}

are diagonal

matrices, whose diagonal elements are given by di =
∑N

j=1 aij.

The Laplacian matrix associated to G is defined as L = D − A.
The set of all neighbors of node i is denoted by Ni = {j ∈

V :(j, i) ∈ E}. The matrix B = diag
{

b1, b2, · · · , bN
}

, where bi
is called the adjacency coefficient between the following vehicle i
and the head vehicle. If the following vehicle i is adjacent to the
head vehicle bi = 1, otherwise bi = 0. In this paper, we define the
time interval constant hij > 0 to control the safe distance between
vehicles i and j. At the same time, we define hi > 0 to control the
safe distance between vehicle i and the leader vehicle.

2.2. Definitions and Lemmas
ASSUMPTION 2.1. It is assumed that no topology changes happen
during the trigger interval.
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ASSUMPTION 2.2. It is assumed that the communication between
vehicles is good, that is, there will be no communication delay and
other uncertain factors.

ASSUMPTION 2.3. Suppose that at least one spanning tree exists
in G and the node corresponding to the header is the root of the
tree. The existence of the spanning tree ensures that each following
vehicle can obtain the status information from the leader.

LEMMA 2.1. 2xTy ≤ axTx+ 1
ay

Ty, where a > 0, and the vectors x
and y can be any value.

LEMMA 2.2. Satur and Kharchenko (2020) suppose the matrix A is
a n × n real symmetric matrix, Y is an n-dimensional real vector,
and λmax(A) ≥ λi(A) ≥ λmin(A)(i = 1, 2, ...,N). One has

λmax(A)〈Y ,Y〉 ≥ 〈AY ,Y〉 ≥ λmin(A)〈Y ,Y〉. (1)

LEMMA 2.3. Li W. et al. (2019) assuming that the function f
satisfies Lipschitz condition, there is a non-negative constant l ≥
0 that satisfies

∥

∥f (t, xi)− f (t, x0)
∥

∥ ≤ l ‖xi − x0‖, or there are
non-negative constants lx ≥ 0, lv ≥ 0 satisfies

∥

∥f (t, xi, vi)− f (t, x0, v0)
∥

∥ ≤ lx ‖xi − x0‖ + lv ‖vi − v0‖ . (2)

2.3. Problem Formulation
An auto-driving vehicle formation system consisted of n smart
cars (see Figure 1) is considered in this paper. Between the
vehicles, status information can be transmitted according to
certain regulations. The hiv0 in Figure 1 is the distance between
the i th vehicle and the leader.

In this paper, the dynamics of the leader vehicle is described as

{ .
x0(t) = v0(t),
.
v0(t) = f (t, x0, v0),

(3)

where x0(t), v0(t) ∈ Rm express the displacement vector and the
velocity vector of the leader vehicle, and f (t, x0, v0) is the control
input of the leader vehicle. When f = 0, the velocity of leader
vehicle is constant, when f 6= 0 the velocity of the leader vehicle
is changing.

The dynamic equation of the i th follower intelligent vehicle is
described as

{ .
xi(t) = vi(t),
.
vi(t) = f (t, xi, vi)− f (t, x0, v0)+ ui(t),

(4)

where xi(t), vi(t) ∈ Rm express the displacement vector and the
speed vector of the follower intelligent vehicle i respectively, and
f (t, xi, vi) − f (t, x0, v0) + ui(t) is the control input of the i th
follower intelligent vehicle.

REMARK 1. The function f (t, x, v) is an acceleration function
known to all vehicles, and it satisfies LEMMA 2.3.

3. MAIN RESULT

3.1. Distributed Event-Triggered Control of
Vehicle Platoon System With Time-Varying
Topology
In order to reduce the sensor data acquisition and the energy
consumption of frequent communication between vehicles,
a distributed event-triggered controller is designed in this
section. In the distributed event-triggered controller, each of
the following vehicle has different trigger function, and its
controller update is asynchronous. When the trigger condition
is satisfied, the controller of the i th follower vehicle is
updated at tk

i(k = 0, 1, 2 · · · ). It is satisfied ui(t) =

ui(tk
i), and

.
ui(t) = 0, ∀t ∈ [tk

i, tk
i+1). Since the

topology is time-varying, the graph G can be treated as
G(t). Accordingly, A, L, D, and B become A(t), L(t), D(t),
and B(t). In this case, Assumption 1 and Assumption 2
still hold.

3.1.1. The Leader Vehicle Speed Is Constant
In this section, the leader-follower consistency problem in
the case of time-varying topology, which is based on the
fact that the leader vehicle speed is constant, is studied, i.e.,
f (t, x0, v0) = 0.

To make the system consistent, we set the controller of i th
follower vehicle:

ui(t) =− k
[

∑

j∈Ni(tk
i)
aij(tk

i)(xi(tk
i)− xj(tk

i)− hijv0)

+ bi(tk
i)(xi(tk

i)− x0(tk
i)− hiv0)

]

− kr
[

∑

j∈Ni(tk
i)

aij(tk
i)(vi(tk

i)− vj(tk
i))+ bi(tk

i)(vi(tk
i)

− v0(tk
i))

]

, t ∈ [tk
i, tk

i+1),

(5)

where k and r are control gains, and Ni(tk
i) represents the set of

neighbors of the i th follower vehicle at tk
i.

In order to describe the displacement and speed tracking
between the following vehicle i and the leader vehicle, we defined
the displacement error εi and the velocity error ηi as follows:

εi(t) = xi(t)− x0(t)− hiv0,

ηi(t) = vi(t)− v0(t).
(6)

The measurement error exi (t) and evi (t) are designed to represent
the displacement and velocity differences between the triggering
and the measuring moments of the i th follower vehicle. We
have then

exi (t) = εi(t
i
k)− εi(t),

evi (t) = ηi(t
i
k)− ηi(t).

(7)
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FIGURE 1 | Platoon of vehicles.

So the controller of the following intelligent vehicle becomes

ui(t) =− k[
∑

j∈Ni(t)

aij(t)(εi(t)− εj(t))+ bi(t)εi(t)]

− kr[
∑

j∈Ni(t)

aij(t)(ηi(t)− ηj(t))+ bi(t)ηi(t)]

− k[
∑

j∈Ni(t)

aij(t)(ei
x(t)− ej

x(t))+ bi(t)ei
x(t)]

− kr[
∑

j∈Ni(t)

aij(t)(ei
v(t)− ej

v(t))+ bi(t)ei
v(t)].

(8)

The states and the measurement errors of intelligent vehicle are
written in the vector form:

ε(t) = col
(

ε1(t), ε2(t), . . . , εN(t)
)

,

η(t) = col
(

η1(t), η2(t), . . . , η3(t)
)

,

ex(t) = col
(

ex1(t), e
x
2(t), . . . , e

x
N(t)

)

,

ev(t) = col
(

ev1(t), e
v
2(t), . . . , e

v
N(t)

)

.

(9)

According to (9), we have















.
ε(t) = η(t),
.
η(t) = −k(L(t)+ B(t))⊗ Imε(t)− rk(L(t)+ B(t))

⊗Imη(t)− k(L(t)+ B(t))⊗ Ime
x(t)

−rk(L(t)+ B(t))⊗ Ime
v(t).

(10)

Theorem 3.1. Consider a fleet of N + 1 vehicles, where the
dynamic equations of the head vehicle and the follower vehicle are
(3) and (4). If the following conditions are met under the controller
(8), then

(1) The proposed event triggering function satisfies

ζ

(

∥

∥εi(t)
∥

∥

2
+

∥

∥ηi(t)
∥

∥

2
)

≤ M
(

∥

∥exi (t)
∥

∥

2
+

∥

∥evi (t)
∥

∥

2
)

, (11)

where M = kaλmin(H(t))
2 , H(t) = L(t)+B(t) and ζ will be indicated

below. When this condition is met, the controller automatically
updates, that is, the trigger time is reached.

(2) The minimum eigenvalue of (L(t) + B(t))⊗ Im is greater
than zero, which is greater than an arbitrarily small normal
number δ.

λmin

(

(L(t)+ B(t))⊗ Im
)

≥ δ > 0. (12)

(3) The differential coefficient of (L(t) + B(t)) ⊗ Im exists, and
the maximum eigenvalue of its derivative is greater than zero; for
any small positive number, σ is satisfied

λmax

(

d
(

(L(t)+ B(t))⊗ Im
)

/dt
)

≥ σ > 0, (13)

(4) The relation between η(t) and ex(t), ev(t) is

− < kH(t)⊗ Ime
x(t), η(t) > ≤ −

kaλmin(H(t))

2
||ex(t)||

+
kλmin(H(t))

2a
||η(t)||,

− < kH(t)⊗ Ime
v(t), η(t) > ≤ −

kaλmin(H(t))

2
||ev(t)||

+
kλmin(H(t))

2a
||η(t)||,

(14)

where ζ = max
(

kψ
2 ,

(

1
a − 1

)

kλmin(H(t))
)

, 0 < a < 1, ψ =

λmax

(

d
(

(L(t)+ B(t))⊗ Im
)

/dt
)

, then all the vehicle reach the
same state, and the existence of the safe distance hijv0 avoid a
collision. Hence, the problem of intelligent vehicle formation is
solved, i.e., for i = 1, 2, . . . ,N, we have

lim
t→∞

∥

∥ε(t)
∥

∥ = 0,

lim
t→∞

∥

∥η(t)
∥

∥ = 0.

PROOF. Based on system (10), we can construct the common
Lyapunov function candidate

V(t)=

∫ 1

0
< kH(t)⊗ Imωε(t), ε(t) >dω

+
1

2
< η(t), η(t) >,

(15)

where H(t) = L(t)+ B(t).
Firstly, we prove the positivity of V(t)

V ≥
1

2
kλmin

(

H(t)⊗ Im
) ∥

∥ε(t)
∥

∥

2
+

1

2

〈

η(t), η(t)
〉

=
1

2
kλmin

(

H(t)⊗ Im
) ∥

∥ε(t)
∥

∥

2
+

1

2

∥

∥η(t)
∥

∥

2

≥
1

2
min

{

kζ , 1
}

(

∥

∥ε(t)
∥

∥

2
+

∥

∥η(t)
∥

∥

2
)

.

(16)
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It can be seen that the Lyapunov function (15) selected is
positively definite.

The time derivative of (15) can be expressed as

dV

dt
=

d

dt

∫ 1

0
< kH(t)⊗ Imωε(t), ε(t) > dω

− < kH(t)⊗ Imε(t), η(t) >

− < kH(t)⊗ Imη(t), η(t) >

− < kH(t)⊗ Ime
x(t), η(t) >

− < kH(t)⊗ Ime
v(t), η(t) > .

(17)

Taking out the first term, we have

d

dt

∫ 1

0
< kH(t)⊗ Imωε(t), ε(t) > dω

=

∫ 1

0
< kH(t)⊗ Imωη(t), ε(t) > dω

+

∫ 1

0
< kH(t)⊗ Imωε(t), η(t) > dω

+

∫ 1

0
< k

d(H(t))

dt
⊗ Imωε(t), ε(t) > dω

=< kH(t)⊗ Imε(t), η(t) >

+

∫ 1

0
< k

d(H(t))

dt
⊗ Imωε(t), ε(t) > dω.

(18)

By (18), we get

dV

dt
=

∫ 1

0
< k

d(H(t)⊗ Im)

dt
ωε(t), ε(t) > dω− < kH(t)

⊗ Imη(t), η(t) > − < kH(t)⊗ Ime
x(t), η(t) >

− < kH(t)⊗ Ime
v(t), η(t) > .

(19)

Take (19) into consideration, we have

dV

dt
=

∫ 1

0
< k

d(H(t)⊗ Im)

dt
ωε(t), ε(t) > dω

− < kH(t)⊗ Imη(t), η(t) >

−
kaλmin(H(t))

2
||ex(t)||2+

kλmin(H(t))

2a
||η(t)||2

−
kaλmin(H(t))

2
||ev(t)||2+

kλmin(H(t))

2a
||η(t)||2

≤(
kψ

2
||ε(t)||2 + (

1

a
− 1)kλmin(H(t))||η(t)||2)

− (
kaλmin(H(t))

2
(||ex(t)||2 + ||ev(t)||2))

≤ς(||ε(t)||2 + ||η(t)||2)

− (
kaλmin(H(t))

2
(||ex(t)||2 + ||ev(t)||2)),

(20)

where ζ = max
(

kψ
2 ,

(

1
a − 1

)

kλmin(H(t))
)

, ψ = λmax(d((L(t)+

B(t)) ⊗ Im)/dt). According to the trigger condition (11), the
derivative of the Lyapunov function is less or equal to 0, so the
stability is proved.

3.1.2. The Speed of the Leading Vehicle Is Time

Varying
In the actual situation, the speed of the leading vehicle cannot
be fixed, most of them are time varying. Therefore, in this
section, we study the consistency of leader followers in the
case of time-varying topology based on the fact that the speed
of the leader vehicle is time varying, i.e., f (t, x0, v0) 6= 0. In
the meantime, suppose f (t, εi(t), ηi(t)) = f (tk

i, xi(tk
i), vi(tk

i)) −
f (t, x0(tk

i), v0(tk
i)).

Tomake the system consistent, we set the i th follower vehicle’s
controller as

ui(t) = − k[
∑

j∈Ni(tk
i)

aij(tk
i)(xi(tk

i)− xj(tk
i)− hijv0)

+bi(t)(xi(tk
i)− x0(tk

i)− hiv0)]

− kr[
∑

j∈Ni(tk
i)

aij(tk
i)(vi(tk

i)− vj(tk
i))+ bi(tk

i)(vi(t)

−v0(tk
i))], t ∈ [tk

i, tk
i+1).

(21)

Similar to (6)–(9), we can format the system (4) as follows

.
ε(t) = η(t),
.
η(t) = f (t, ε(t), η(t), ex(t), ev(t))− k(L(t)+ B(t))⊗ Imε(t)

−rk(L(t)+ B(t))⊗ Imη(t)− k(L(t)+ B(t))⊗ Ime
x(t)

−rk(L(t)+ B(t))⊗ Ime
v(t) (22)

Theorem 3.2. Consider a fleet of N + 1 vehicles, where the
dynamic equations of the head vehicle and the follower vehicle are
(3) and (4) respectively. If the following conditions are met under
the controller (21), then

(1) The designed event triggering function satisfies the
following conditions.

ζ (||εi(t)||
2 + ||ηi(t)||

2) ≤ (
kaλmin(H(t))

2
−

l

2a1
)

×(||ei
x(t)||2 + ||ei

v(t)||2)),

(23)

where H(t) = L(t)+B(t) and ζ will be indicated below. When this
condition is met, the controller automatically updates, that is, the
trigger time is reached.

(2) The minimum eigenvalue of (L(t) + B(t))⊗ Im is greater
than zero. There is thus a small positive number δ satisfying

λmin

(

(L(t)+ B(t))⊗ Im
)

≥ δ > 0. (24)

(3) The differential coefficient of (L(t)+B(t))⊗Im exists, and the
maximum eigenvalue of its derivative is greater than zero, so there
exists a small positive number σ satisfying

λmax

(

d
(

(L(t)+ B(t))⊗ Im
)

/dt
)

≥ σ > 0. (25)
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(4) The relation between η(t) and ex(t), ev(t) is

− < kH(t)⊗ Ime
x(t), η(t) >≤ −

kaλmin(H(t))

2
||ex(t)||

+
kλmin(H(t))

2a
||η(t)||

− < kH(t)⊗ Ime
v(t), η(t) >≤ −

kaλmin(H(t))

2
||ev(t)||

+
kλmin(H(t))

2a
||η(t)||.

(26)

(5)

kaλmin(H(t))

2
−

l

2a1
> 0, (27)

where ζ = max( kψ2 + l
2a1

, 3a1l2 + l + kλmin(H(t))
a ),

ψ = λmax

(

d
(

(L(t)+ B(t))⊗ Im
)

/dt
)

, 0 < a, 0 < a1,
0 < k, then all the vehicles reach the same state, and at the same
time the existence of safe distance hijv0 avoid a collision. The
problem of intelligent vehicle formation has been solved, i.e., for
i = 1, 2, . . . ,N, we have

lim
t→∞

∥

∥ε(t)
∥

∥ = 0,

lim
t→∞

∥

∥η(t)
∥

∥ = 0.

PROOF. Based on system (22), we can construct the Lyapunov
function candidate

V(t)=

∫ 1

0
< kH(t)⊗ Imωε(t), ε(t) >dω +

1

2
< η(t), η(t) >, (28)

where H(t) = L(t)+ B(t).
It can be seen that the (28) selected is positively definite.
The time derivative of (28) can be expressed as

dV

dt
=

d

dt

∫ 1

0
< kH(t)⊗ Imωε(t), ε(t) > dω

+ < η(t), f (t, ε(t), η(t), ex(t), ev(t)) >

− < kH(t)⊗ Imε(t), η(t) > − < kH(t)⊗ Imη(t), η(t) >

− < kH(t)⊗ Ime
x(t), η(t) > − < kH(t)⊗ Ime

v(t), η(t) > .

(29)

Taking out of the first term, we have

d

dt

∫ 1

0
< kH(t)⊗ Imωε(t), ε(t) > dω

=

∫ 1

0
< kH(t)⊗ Imωη(t), ε(t) > dω

+

∫ 1

0
< kH(t)⊗ Imωε(t), η(t) > dω

+

∫ 1

0
< k

d(H(t))

dt
⊗ Imωε(t), ε(t) > dω

= < kH(t)⊗ Imε(t), η(t) >

+

∫ 1

0
< k

d(H(t)⊗ Im)

dt
ωε(t), ε(t) > dω.

(30)

Using Lemma 2 to enlarge the second item in (29), we yield

< η(t),f (t, ε(t), η(t), ex(t), ev(t)) >

≤
∥

∥η(t)
∥

∥ l(
∥

∥ε(t)
∥

∥ +
∥

∥η(t)
∥

∥

+
∥

∥ex(t)
∥

∥ +
∥

∥ev(t)
∥

∥).

(31)

Considering (30) and (31), we get

dV

dt
≤

∫ 1

0
< k

d(H(t)⊗ Im)

dt
ωε(t), ε(t) > dω

+
∥

∥η(t)
∥

∥ l(
∥

∥ε(t)
∥

∥ +
∥

∥η(t)
∥

∥ +
∥

∥ex(t)
∥

∥ +
∥

∥ev(t)
∥

∥)

− < kH(t)⊗ Imη(t), η(t) >

− < kH(t)⊗ Ime
x(t), η(t) > − < kH(t)⊗ Ime

v(t), η(t) > .

(32)

By using Lemma 3, the above items are amplified, and then

∥

∥η(t)
∥

∥ l(
∥

∥ε(t)
∥

∥ +
∥

∥η(t)
∥

∥ +
∥

∥ex(t)
∥

∥ +
∥

∥ev(t)
∥

∥)

= l(
∥

∥η(t)
∥

∥

∥

∥ε(t)
∥

∥ +
∥

∥η(t)
∥

∥

∥

∥η(t)
∥

∥

+
∥

∥η(t)
∥

∥

∥

∥ex(t)
∥

∥ +
∥

∥η(t)
∥

∥

∥

∥ev(t)
∥

∥),

(33)

∥

∥η(t)
∥

∥

∥

∥ε(t)
∥

∥ ≤
a1

2

∥

∥η(t)
∥

∥

2
+

1

2a1

∥

∥ε(t)
∥

∥

2
,

∥

∥η(t)
∥

∥

∥

∥ex(t)
∥

∥ ≤
a1

2

∥

∥η(t)
∥

∥

2
+

1

2a1

∥

∥ex(t)
∥

∥

2
,

∥

∥η(t)
∥

∥

∥

∥ev(t)
∥

∥ ≤
a1

2

∥

∥η(t)
∥

∥

2
+

1

2a1

∥

∥ev(t)
∥

∥

2
,

(34)

where a1 > 0.
Considering (34), we have

dV

dt
≤
kψ

2

∥

∥ε(t)
∥

∥

2
+ (

a1l

2
+ l)

∥

∥η(t)
∥

∥

2

+
l

2a1

∥

∥ε(t)
∥

∥

2
+

a1l

2

∥

∥η(t)
∥

∥

2
+

l

2a1

∥

∥ex(t)
∥

∥

2

+
a1l

2

∥

∥η(t)
∥

∥

2
+

l

2a1

∥

∥ev(t)
∥

∥

2
−

kaλmin(H(t))

2
||ex(t)||

+
kλmin(H(t))

2a
||η(t)||

−
kaλmin(H(t))

2
||ev(t)||+

kλmin(H(t))

2a
||η(t)||

≤(
kψ

2
+

l

2a1
)
∥

∥ε(t)
∥

∥

2
+ (

3a1l

2
+ l+

kλmin(H(t))

2a

+
kλmin(H(t))

2a
)
∥

∥η(t)
∥

∥

2

− (
kaλmin(H(t))

2
−

l

2a1
)(

∥

∥ex(t)
∥

∥

2
+

∥

∥ev(t)
∥

∥

2
)

≤ς(
∥

∥ε(t)
∥

∥

2
+

∥

∥η(t)
∥

∥

2
)− (

kaλmin(H(t))

2
−

l

2a1
)

(
∥

∥ex(t)
∥

∥

2
+

∥

∥ev(t)
∥

∥

2
).

(35)

According to the trigger condition (23), the derivative of the
Lyapunov function (29) is less or equal to 0, and it is constant,
so the stability is proved.
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3.2. Distributed Self-Triggered Control of
Vehicle Platoon System With Time-Varying
Topology
As can be seen from the distributed event-triggered control (11)
and (23), the control method reduces the dependence on the
global state information and the real-time state of measurement
error in the trigger interval. However, it will increase the energy
consumption of the sensor and microprocessor in the process of
continuous measurement error detection. In order to improve
this problem, we apply the self-triggered control strategy to solve
the problem of intelligent vehicle formation. Under this strategy,
the next trigger moment ti

k+1
of the i th follower vehicle can

obtained according to the state of the i th vehicle at the previous
trigger time.

3.2.1. The Leader Vehicle Speed Is Constant
In this part, we will transform the event-triggered control (11)
into a self-triggered control strategy for the case that the vehicle
speed of the leader is constant.

We know that from the previous distributed event triggering

control
(

∥

∥εi(t)
∥

∥

2
+

∥

∥ηi(t)
∥

∥

2
)

≤ γ

(

∥

∥exi (t)
∥

∥

2
+

∥

∥evi (t)
∥

∥

2
)

, where

γ = kaλmin(H(t))
2ζ . Using Taylor’s formula, expand εi, ηi, e

x
i , e

v
i at t

i
k
,

we have

εi(t) =ηi(tk
i)(t − tk

i)+ εi(tk
i),

ηi(t) =
.
ηi(tk

i)(t − tk
i)+ ηi(tk

i)

=
(

− k

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

− kr(

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)(t − tk

i)
)

+ ηi(tk
i),

ei
x = εi(tk

i)− εi(t) = −ηi(tk
i)(t − tk

i)

ei
v = ηi(tk

i)− ηi(t) =
.

−ηi(tk
i)(t − tk

i)

=−
(

k

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

− kr

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)
)

(t − tk
i),

(36)

where Lj,· represents Lj,k, and k = 0, 1, 2, · · · ,N.
According to the above expressions and the distributed event-

triggering control function (11), we get

(

||ηi(tk
i)(t − tk

i)+ εi(tk
i)||2+||

(

k
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

−kr
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)
)

(t − tk
i)+ ηi(tk

i)||2
)

≤ γ

(

|| − ηi(tk
i)(t − tk

i)||2 + ||

−
(

− k
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

− kr
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i))ηj(tk
i)
)

)

(t − tk
i)||2

)

. (37)

In order to simplify (37), we define

�=

∥

∥

∥

∥

∥

∥

∥

∥

∥

−
(

− k
N
∑

j=1
(Lj,·(tk

i)+ Bj,·(tk
i))εj(tk

i)

−kr
N
∑

j=1
(Lj,·(tk

i)+ Bj,·(tk
i))ηj(tk

i)
)

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

+
∥

∥−ηi(tk
i)
∥

∥

2
, (38)

and

π=− k
(

N
∑

j=1

(Lj,·(tk
i)+ Bj,·(tk

i))εj(tk
i)
)

− kr
(

N
∑

j=1

(Lj,·(tk
i)+ Bj,·(tk

i))ηj(tk
i)
)

.

(39)

Suppose σi=t − ti
k
, we have

∥

∥ηi(tk
i)σi + εi(tk

i)
∥

∥

2
+

∥

∥πσi + ηi(tk
i)
∥

∥

2
≤ γ�σ 2

i . (40)

We can see that when σi=0, the inequality is not true. So σi > 0,
that is to say t − tk

i > 0. To sum up, the self-triggering control
strategy of the follower vehicle at ti+1

k
moment is determined by

the following conditions

∥

∥ηi(tk
i)σi + εi(tk

i)
∥

∥

2
+

∥

∥σi + ηi(tk
i)
∥

∥

2
= γ�σ 2

i . (41)

σi > 0 which satisfies (41), we get the next trigger time ti+1
k

=

σi + ti
k
. In particular, if the topology of the vehicle queue changes

at time t, so that ti+1
k

= t.

REMARK 2. The existence of σi indicates that a Zeno behavior
does not exist. At the same time, it indicates that the self-triggered
control strategy can realize the leader-follower consistency of
vehicle formation under the condition of time-varying topology and
the leader vehicle speed being the same. The proof of stability is
same to event-triggered control, so we are omitted here.

3.2.2. The Speed of the Leading Vehicle Is Time

Varying
In this part, we will transform the event-triggered control (23)
into a self-triggered control strategy for the case that the vehicle
speed of the leader is time varying.

We know that from the previous distributed event triggering

control.
(

∥

∥εi(t)
∥

∥

2
+

∥

∥ηi(t)
∥

∥

2
)

≤ γ

(

∥

∥exi (t)
∥

∥

2
+

∥

∥evi (t)
∥

∥

2
)

where

γ = kaλmin(H(t))
2ζ − 1

2a1ζ
.
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Using Taylor’s formula, expand εi, ηi, e
x
i , e

v
i at t

i
k
, we have

εi(t) = ηi(tk
i)(t − tk

i)+ εi(tk
i),

ηi(t) =
.
ηi(tk

i)(t − tk
i)+ ηi(tk

i)

=
(

f
(

t, ε(tk
i), η(tk

i), ex(tk
i), ev(tk

i)
)

− k

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

− kr

N
∑

j=1

(Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)
)

(t − tk
i)+ ηi(tk

i)

(42)

and

ei
x = εi(tk

i)− εi(t) = −ηi(tk
i)(t − tk

i)

ei
v = ηi(tk

i)− ηi(t) = −
.
ηi(tk

i)(t − tk
i)

=−
(

f
(

t, ε(tk
i), η(tk

i), ex(tk
i), ev(tk

i)
)

− k

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

− kr

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)
)

(t − tk
i).

(43)

According to the above two formulas and (23), we get

(

∥

∥ηi(tk
i)(t − tk

i)+ εi(tk
i)
∥

∥

2

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

f (t, ε(tk
i), η(tk

i), ex(tk
i), ev(tk

i)

−k
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

−kr
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)

)

(t − tk
i)

+ηi(tk
i)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

)

≤ γ

(

∥

∥−ηi(tk
i)(t − tk

i)
∥

∥

2

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−

(

f (t, ε(tk
i), η(tk

i), ex(tk
i), ev(tk

i)

−k
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

−kr
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)

)

(t − tk
i)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

)

.

(44)

In order to simplify (44), we define

�=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−

(

f (t, ε(tk
i), η(tk

i), ex(tk
i), ev(tk

i)

−k
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

−kr
N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i)

)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

+
∥

∥−ηi(tk
i)
∥

∥

2
, (45)

π = f (t, ε(tk
i), η(tk

i), ex(tk
i), ev(tk

i)

− k

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

εj(tk
i)

− kr

N
∑

j=1

(

Lj,·(tk
i)+ Bj,·(tk

i)
)

ηj(tk
i).

(46)

Suppose σi = t − ti
k
, we have

∥

∥ηi(tk
i)σi + εi(tk

i)
∥

∥

2
+

∥

∥πσi + ηi(tk
i)
∥

∥

2
≤ γ�σ 2

i . (47)

We obtain that σi = 0, and the inequality is not true; σi > 0
that is to say t − tk

i > 0. To sum up, the self-triggering control
strategy of the follower vehicle at ti+1

k
moment is determined by

the following conditions:

∥

∥ηi(tk
i)σi + εi(tk

i)
∥

∥

2
+

∥

∥πσi + ηi(tk
i)
∥

∥

2
= γ�σ 2

i . (48)

If there is a σi > 0 which satisfies (48), we get the next trigger
time ti+1

k
= σi + ti

k
. In particular, if the topology of the vehicle

queue changes at time t, so that ti+1
k

= t.

REMARK 3. The existence of σi indicates that a Zeno behavior
does not exist. At the same time, it indicates that the self-triggered
control strategy can achieve the leader-follower consistency of
vehicle formation under the circumstance that both the topology
structure and the leader vehicle speed are time varying. The proof
of stability is the same to the event-triggered control. It is thus
avoided here.

4. SIMULATION

In this section, we will give two numerical experiments to
verify the correctness and validity of the above theorems.
Both experiments are based on a leader-follower vehicle
formation system, which consist of a leader vehicle and four
follower vehicles.

Firstly, we verify that the speed of the leader vehicle is
constant. The dynamic equation of leader and follower are
shown below:

{

ẋ0(t) = v0(t),
v̇0(t) = 0,

{

ẋi(t) = vi(t),
v̇i(t) = ui(t),

(49)

where ui(t) is defined in (5), k = 3.4, r = 1.2. and the parameters
satisfy the conditions in Theorem 3.1.

In order to more intuitively verify the effectiveness of the self-
triggering control strategy proposed in this paper, we assume that
the vehicle formation system carries out three topology switches.
The topology structure between vehicles at the initial moment
is shown in Figure 2. Each adjacency matrix A and coefficient
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FIGURE 2 | Topology at initial time.

FIGURE 3 | The velocity error between the follower car and the leader car.

matrix H are defined as follows

A1 =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









, A2 =









0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0









,

A3 =









0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0









,H1 =









0 −0.1 −0.2 −0.3
0.1 0 −0.1 −0.2
0.2 0.1 0 0.1
0.3 0.2 0.1 0









,

H2 =









0 −0.1 −0.2 0.1
0.1 0 −0.1 0.2
0.2 0.1 0 0.3
−0.1 −0.2 −0.3 0









,

H3 =









0 0.3 0.2 0.1
−0.3 0 0.1 −0.2
−0.2 0.1 0 −0.1
−0.1 0.2 0.1 0









.

FIGURE 4 | The real-time distance between each follower car and the leader

car.

The initial values of the leader vehicle and the follower vehicle are
defined as follows:

x0(0) = (0, 0), x1(0) = (−0.4,−0.5), x2(0) = (−0.3,−0.3),
x3(0) = (−0.2,−0.4), x4(0) = (−0.2,−0.1),
v0(0) = (0.1, 0.1), v1(0) = (0.15, 0.1)
v2(0) = (0.1, 0.12),
v3(0) = (0.15, 0.1), v4(0) = (0.18, 0.2).

(50)

Figures 3–7 are the results for the leader vehicle at constant

speed. Figure 3 shows the velocity error between the follower

car and the leader car. Figure 4 express as the real-time distance

between each follower car and the leader car. Figure 5 express
as the changes in the controller of each follower car. Because
the topology is changed, the controller changed dramatically

twice. The self-trigger interval of each follower are displayed in

Figure 6. Figure 7 shows the relative position of vehicles when
the formation is finally stabilized.

As we can see from Figures 3–5, when the topology changes,
the controller of the follower vehicle adjusts the vehicle speed
to keep the vehicle in formation and the error of vehicle speed
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tends to zero over time. This indicates that the controller can
adapt to various topological switching situations by adjusting
the control intensity. At the same time, due to the change of
topology, the relative positions between vehicles will also change,
and the follower vehicles will constantly adjust their positions to
the new relative positions under the action of the controller. It
is worth noting that the position error of the follower vehicles
does not gradually approach zero as time goes on, and it reaches
a fixed value greater than zero in Figure 4. This fixed value is the
safe distance (hijv0) between the vehicles. As shown in Figure 7,

FIGURE 5 | Control input signals of each follower vehicle.

when a stable state is reached, the vehicles should keep a safe
distance from each other. Moreover the self-triggering instants
are displayed in Figure 6. The simulation results exhibit that the
controller and the self-triggering control strategy designed by
us have a good performance. It achieves the stability of vehicle
formation system under the condition of constant topological
changes. Moreover, the vehicles can keep a safe distance.

Secondly, we verify that the speed of the leader vehicle is time
varying. In order to more intuitively verify the effectiveness of
the self-triggering control strategy, we randomly selected several

FIGURE 7 | The position information of the vehicle when the formation is

stable.

FIGURE 6 | The event trigger interval of each follower vehicle.
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FIGURE 8 | The velocity error between the follower car and the leader car.

time points and used the leader vehicle dynamics Equation (4) to
change the state of the leader vehicle. The dynamic equation of
the leading vehicle are as follows

{

ẋ0(t) = v̇0(t),
v̇0(t) = − sin

(

x0(t)
)

− 0.25v0(t)+ 1.5 cos(2.5t).
(51)

When the speed of leader changes, the dynamic equation of the
follower’s vehicle is defined as

{

ẋi(t) = v̇i(t),

v̇i(t) = f (t, xi, vi)− f (t, x0, v0)+ ui(t),
(52)

where f (t, x, v) = − sin (x)− 0.25v+ 1.5 cos(2.5t).
The define of Figures 8–12 is similar to Figures 3–7, but

Figures 8–12 show the results of a leader with time-varying
velocity. From Figures 8–10, we can see that when the speed
of the leader vehicle or topology changes, the follower vehicle
can quickly adapt to the changing so that its speed is consistent
with the leader vehicle, and the real-time distance between
follower vehicle and leader vehicle change rapidly. Moreover,
it can be seen from Figure 10, that after the vehicle formation
system reaches stability, the controller of the follower vehicle no
longer exerts control. The self-triggering instants are displayed
in Figure 11. Notably, after the leader vehicle speed changes, the
safety distance of the follower vehicle also changes in Figure 9.
However, the vehicles ultimately kept a safe distance, as shown in
Figure 12. The simulation results show that the controller and
the self-triggering control strategy designed in this paper have
a good performance. It can make the vehicle formation system
reach stable state under the condition of changing topology and
leader speed.

The number of triggers with a distributed event-triggered
control scheme in Yang et al. (2018) and self-triggered control
scheme (41) within 0–15 s are shown in the Table 1. What we can

FIGURE 9 | The real-time distance between each follower car and the leader

car.

FIGURE 10 | Control input signals of each follower vehicle.

obtain from Table 1 is that the self-triggered control scheme (41)
needs less triggering events than the distributed event-triggered
control scheme in Yang et al. (2018). At the same time, the
mean time interval which represents the average time between
each trigger in Table 2 indicates that the self-triggered control
strategy designed in this paper has a lower trigger probability
and execution moment. It shows that the self-triggered control
strategy proposed here can effectively reduce the energy loss of
data detection and calculation in the control process.

5. CONCLUSIONS

In this paper, we have studied leader-follower consistency in
vehicle formation systems with time-varying topology under
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FIGURE 11 | The event trigger interval of each follower vehicle.

FIGURE 12 | The position information of the vehicle when the formation is

stable.

TABLE 1 | Triggered numbers of follower agents.

Control strategy
Numbers of triggered events of agents

1 2 3 Total

Event-triggered in Yang

et al. (2018)

582 857 1,029 2,468

Self-triggered (41) 275 234 226 735

event-triggering mechanism. The difference between our work
and the published papers is that we have designed a self-
triggering control strategy that avoids continuous calculation and

TABLE 2 | Mean time interval of follower agents.

Control strategy
Mean time interval

1 2 3

Event-triggered in Yang et al. (2018) 0.0127 0.0119 0.0151

Self-triggered (41) 0.0546 0.0641 0.0662

measurement and reduces the loss of communication resources.
At the same time, we have proved the consistency of the system
under the control of the trigger function. In addition, we have
also studied the consistency of the vehicle formation system with
time-varying topology when the leader speed is time varying.
Finally, the effectiveness of the proposed controllers has been
verified by numerical experiments. In addition, it should be noted
that, although we proved the stability of formation system by
Lyapunov function, we did not give its string stability which will
be studied in the future.
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