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Though a robot can reproduce the demonstration trajectory from a human demonstrator

by teleoperation, there is a certain error between the reproduced trajectory and the

desired trajectory. To minimize this error, we propose a multimodal incremental learning

framework based on a teleoperation strategy that can enable the robot to reproduce the

demonstration task accurately. The multimodal demonstration data are collected from

two different kinds of sensors in the demonstration phase. Then, the Kalman filter (KF)

and dynamic time warping (DTW) algorithms are used to preprocessing the data for the

multiple sensor signals. The KF algorithm is mainly used to fuse sensor data of different

modalities, and the DTW algorithm is used to align the data in the same timeline. The

preprocessed demonstration data are further trained and learned by the incremental

learning network and sent to a Baxter robot for reproducing the task demonstrated by

the human. Comparative experiments have been performed to verify the effectiveness of

the proposed framework.

Keywords: incremental learning network, teaching by demonstration, teleoperation, data fusion, robot learning

INTRODUCTION

With the development of control theory and sensor technology, robots have been widely applied in
various fields, especially in industry and social service. It plays an increasingly vital role in human
daily life, such as entertainment, education, and home service, etc. In most cases (Billard et al.,
2008; Yang et al., 2018; Fang et al., 2019), robots need to learn and execute many complex and
repetitive tasks, which include learning the motion skills from observing humans performing these
tasks, also known as teaching by demonstration (TbD). TbD is an efficient approach to reduce the
complexity of teaching a robot to perform new tasks (Billard et al., 2008; Yang et al., 2018). With
this approach, a human tutor demonstrates how to implement a task to a robot easily (Ewerton
et al., 2019). Then, the robot learns the key features from human demonstration and repeats it
by itself. Obviously, the main issue of robot learning is how to learn more critical features from the
demonstration to fulfill a certain task well. Therefore, it is essential to take account of some learning
methods to learn much more useful features effectively. In this sense, robot learning contains two
tasks: motion perception based on multiple sensors and features learning with efficient methods.
Different modalities of sensors can enable obtaining an accurate description of the target motions
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and enrich the information (Chavez-Garcia and Aycard, 2016),
and the learning methods promote to learn the desirable features.
In this paper, we developed a novel robot learning framework to
enhance the performance of TbD. This framework combines the
superiority of the incremental learning network and the multiple
sensors fusion.

Multimodal sensor fusion is a promising technique to create
more accurate, more complete, or more dependable data with less
uncertainty (Elmenreich, 2002; Haghighat et al., 2011) to enrich
the features of demonstration data. Compared with individual
sensor data, the multi-sensor fusion data have a distinctive
preponderance in four general aspects (Mitchell, 2007). First, a
higher resolution and richer semantic become possible for usage
in the representation of the data. Second, the fused sensory data
or data from disparate sources can reduce the uncertainty of
information than these sources are used individually. Besides, a
more all-sided view regarding the object is allowed for a coherent
space to enhance the completeness of the information. Last,
if the data are noisy or have errors, the fusion process will
reduce or eliminate noise and errors. Hence, the data through
the fusion process are possible to achieve the desired result
with enhanced reliability, extended parameter coverage, and
improved resolution (Fung et al., 2017). The systemwithmultiple
sensors provides immense opportunities for applications in a
wide variety of areas. Applications that benefit from the sensor
fusion technology cover many engineering fields which include
internet of things (Din et al., 2015; Bijarbooneh et al., 2016),
automation systems (Iyengar et al., 2003; Caterina et al., 2015),
computer vision (Eitel et al., 2015), target tracking (Smith and
Singh, 2006), health care (Medjahed et al., 2011; Koshmak
et al., 2016), mechatronics (Luo and Chang, 2012), and robotics
(Chung et al., 2011).

Recently, the multimodal sensor fusion is widely engaged
in human–robot interaction (HRI) to enhance the performance
of interaction (Gui et al., 2017; Argyrou et al., 2018; Deng
et al., 2018; Fang et al., 2019; Li C. et al., 2019). Gui
et al. (2017) designed a multimodal rehabilitation HRI system,
which combines the electroencephalogram (EEG)-basedHRI and
electromyography (EMG)-based HRI to assistant gait pattern, to
enhance active participation of users for gait rehabilitation and
to accomplish abundant locomotion modes for the exoskeleton.
Argyrou et al. (2018) proposed a human–robot collaborative
monitoring system that can fuse data from multiple sources
to estimate the execution status of the tasks more accurately.
Deng et al. (2018) proposed an improved HRI by fusing the
operator’s gesture and speech to control the movements of a
robot. The fusion of gesture and speech improved the accuracy,
efficiency, and naturalness of the proposed system. Li C. et al.
(2019) developed an augmented reality interface based on HRI
that the Kalman filter (KF) algorithm was used to fuse the
position and velocity signals from the Leap Motion sensor
and the Kinect sensor to improve the tracking performance,
aiming to provide an easier and accurate interaction. Wan et al.
(2017) developed an intelligent system to teach robots to do
object assembly through multimodal vision for next-generation
industrial assembly. Zeng et al. (2019) proposed a TbD system to
teach the robots to learn specific tasks based on multiple sensor

fusion. Compared with single modal data, the multimodal data
provide a more rich and complementary information source to
facilitate the diversity of robot TbD. These applications benefit
from sensor fusion technology because of multi-sensor-based
data fusion algorithms. Due to the varieties of the nature of
the fusion process, different algorithms are used to enable the
different levels of sensor fusion, such as KF (Kalman, 1960),
support vector machine (SVM) (Cortes and Vapnik, 1995; Waske
and Benediktsson, 2007), particle filter (Crisan and Doucet,
2002), Bayesian inference method (Khaleghi et al., 2013), fuzzy
sensor fusion approach (Gibson et al., 1994), and artificial neural
network (Hu, 2010), etc. Studies showed that the KF is ideally
suited to coping with multi-sensor estimation and data fusion
problems. This is mainly because the algorithm runs best with
well-defined state descriptions (such as positions, velocities) and
for states where observation and time-propagation models are
also well-understood. In this paper, the KF is used to fuse the
positions and velocities of a humanoid robot to achieve an overall
complete description of the joint positions with high accuracy
and fewer uncertainties.

Sensor fusion can enable to obtain more accurate
demonstration data, while effective learning methods can
learn more desired features of data. A deep learning neural
network, as a kind of popular feature learning algorithm, has
been successfully applied in various fields because of its powerful
approximation capability (Ciresan et al., 2012; Marblestone
et al., 2016; Sze et al., 2017). Although this advantage makes
it apply in amounts of areas, it often needs a large number of
datasets to train the network. Due to this, a complicated network
structure is needed to deal with them, and then the network
will suffer from a time-consuming process. Apart from that, the
network is also faced with the issue that entire retraining when
new samples are inputted. Considering these problems of deep
structure learning methods, Chen and Liu (2017) proposed an
incremental learning method, which provides an alternative way
for deep structure neural network (Liu and Chen, 2017). The
incremental learning network can rapidly learn and model the
target system without a retraining process if new samples are
fed into it. Also, the structure of this network can be expanded
flexibly in a wide sense. Like a deep structure neural network,
the approximation capability of an incremental learning network
is universal (Chen et al., 2018). Hence, it has been successfully
engaged in different fields employing efficient modeling and
fast learning ability. These applications mainly involved two
aspects: classification and regression. Most researchers employ
this algorithm in various kinds of classification (Zhang et al.,
2018; Li J. et al., 2019). For example, Zhang et al. (2018) applied
it to recognize facial expression to improve the accuracy of
recognition. Based on this method, Wang et al. (2018) integrated
it with the convolution neural network to classify EEG emotion
which achieves the highest average recognition accuracy. The
applications, which are involved in different curves fitting, were
seldom. Luo et al. (2019) used it to estimate human intention
by predicting the force of human hand. Chen et al. (2018) have
proved that compared with function approximation and time
series prediction, the incremental learning algorithm is superior
to other learning algorithms, such as SVM, least squared
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SVM, and extreme learning machine (ELM), on regression
performance. It is noted that the incremental learning network
and ELM algorithm (Huang et al., 2004) are similar among these
methods. Both networks have the structure of a single layer.
Also, both networks are thought to have potential advantages in
learning rate and generalization ability (Huang et al., 2006; Chen
et al., 2018). Apart from that, the incremental learning network
can be employed in other scenarios, such as fault diagnosis (Zhao
et al., 2019) and monkey oculomotor decision decoding (Shi
et al., 2020). However, this method is seldom used in HRI to
improve the performance of robot learning.

For the TbD system, we can teach a robot to move as the
desired trajectory. However, human movement is not always
necessarily optimal for the robot when it tries to repeat and
accomplish a task. Therefore, teaching a robot remotely, there
will be some deviations between the robot’s trajectory and
the target trajectory. Through learning based on a neural
network, the robot’s trajectory can approach the target trajectory.
To achieve that, the incremental learning algorithm is used
to learn the fused features of a certain task from different
sensors to enhance the learning performance. Then, experiments
are performed to verify the effectiveness of the proposed
multimodal framework.

The main contribution of this paper is to develop a framework
that integrates the advantages of the multiple modal information
fusion with the approximation capability of the incremental
learning algorithm to enhance the performance of the TbD
system. The remainder of the paper is organized as follows.
The System Outline section presents the whole architecture of
the proposed framework. The details of the data collection,
preprocessing, and learning methods are introduced in the
Methodology section. The Experiments and Results section
describes the experimental settings and explains the results of
the experiments. The experimental results are discussed in the
Discussion section. The Conclusions and Future Work section
concludes this work.

SYSTEM OUTLINE

System Description
The proposed framework of the TbD is shown in Figure 1, which
consists of three modules: the human demonstration module, the
learning module, and the robot execution module.

Human demonstration module: This module, which is a
virtual demonstration system, allows the human demonstrator
to control the Baxter robot in Virtual Robot Experimentation
Platform (V-REP) via human joint information. The human joint
information including joint angles and joint angular velocities is
recorded by the Kinect sensor and Myo armbands separately.

The learning module: This module includes two steps:
data preprocessing and incremental learning. The target of
data preprocessing is to align the time series information
of the demonstrated tasks in the same timeline. After
that, an incremental learning method is used to learn the
preprocessed data.

The robot execution module: The main function of this
module enables the robot to complete the task with the learned

data from the training module. To this end, a specific task
will be performed by a robot to verify the effectiveness of the
proposed framework.

System Principle
The principle of the overall system based on the proposedmethod
with multimodal sensor data fusion is presented in Figure 2.
As shown in Figure 2, it consists of a Kinect sensor, two Myo
armbands, and a Baxter robot. Kinect sensor is a motion capture
device which is used to capture the motion of the human body.
Myo armband, as a wearable device, is used to capture the human
joint angular velocities. Baxter is a versatile semi-humanoid robot
which is equipped with several advanced sensing technologies
(including force, position, and torque sensing) which allow it to
be applied in scientific research. V-REP is a powerful open-source
robot simulator with an integrated development environment,
distributed control architecture, and rich user interface to make
it be an ideal platform for robot simulations. The remote
application programming interface (API) in V-REP can control
the robot simulation from an external application or remote
hardware. This work will simulate the Baxter robot and control
it by two developed API clients in V-REP.

Figure 3 shows the communication links of the virtual TbD
system. It is noted that the data collected from the Kinect sensor
and Myo armbands are separately recorded by two computers.
Two sensors both can recognize human hand gestures. To
capture the joint angles and angular velocities simultaneously, the
hand state is used to control the start or end of the data collecting.
When the human demonstrator’s hand state is open, the data of
joint angles and angular velocities will be recorded and saved in
different files. Instead, the data collecting work will stop.

According to the designed human demonstration model,
joint angles and angular velocities are recorded from the
multiple demonstrations based on a specific task. Then, the raw
demonstration data will be preprocessed and learned by the robot
learning module. After that, the learned data are transferred to
the Baxter robot in V-REP by MATLAB for execution. We can
verify the effectiveness of the proposed method by the execution
result of the Baxter robot.

METHODOLOGY

The proposed incremental learning framework includes three
processes: data collection, data preprocessing, and data learning
method, which correspond to the three modules mentioned
above. In this section, the data collection and preprocessing
processes will be introduced, and the details of the incremental
learning network and the multi-sensor fusion algorithm KF also
will be given.

Data Collection
In this section, we will introduce how to capture the human joint
angles and angular velocities using a Kinect sensor and two Myo
armbands in detail, respectively.
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FIGURE 1 | Outline of the robot teaching by demonstration (TbD) system.

Calculation of Joint Angles Using the Space Vector

Approach
Since we can get the three-dimensional (3D) joint coordinates of
a human body using the Kinect sensor, the key to obtain the joint
angles is how to convert these coordinates into corresponding
angles. This problem can be addressed by the space vector
approach. As we know, the distance between two specified 3D
points A(xa,ya,za) and B(xb, yb, zb) can be calculated by the
following equation:

dAB =

√

(xb − xa)
2 + (yb − ya)

2 + (zb − za)
2 (1)

Essentially, the distance dAB is equal to the norm of the vector
−→
AB = (xb − xa, yb − ya, zb − za). In a 3D space, the law of cosines
can be used to calculate the angles between two known vectors. In
the Kinect coordinate, a joint can be expressed as a vector. So, the

angle between joint 1 (
−→
PO) and joint 2 (

−→
OQ) can be computed as:

cos
(−→
PO,

−→
OQ

)

=

−→
PO ·

−→
OQ

∣

∣

∣

−→
PO

∣

∣

∣
·
∣

∣

∣

−→
OQ

∣

∣

∣

(2)
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FIGURE 2 | The principle of the whole system. The multimodal signals are collected by the corresponding sensors from human demonstration. Two sensors are

connected to different computers. Then, through incremental learning, the demonstration data are transmitted to the Baxter robot through the remote application

programming interface (API) indirectly. The Baxter robot is connected to the development workstation directly. Thus, the robot can execute the demonstrated task.

FIGURE 3 | The communication links of the robot virtual demonstration system. (A) The communication of data collecting. (B) The communication of robot simulation.

According to Equation (1), we can transform the coordinates
returned by Kinect into corresponding vectors. Then, the angles
of these vectors can be calculated by Equation (2).

The models of the full human body and the left arm are shown
in Figure 4. The coordinate system of Kinect in Cartesian space is
constituted by three directed straight lines AX, AY, andAZ, where
point A is the origin of the coordinate. According to Equation (2),

the shoulder pitch angle 6 AOC can be calculated by the vectors
−→
OA and

−→
OC from the position coordinates of points A, O, and

C. The elbow pitch angle 6 OCD is calculated using the same
method. We can get the shoulder yaw angle 6 JAK in a similar

way. The difference is that the vectors
−→
AJ and

−→
AK are obtained by

projecting vectors
−→
OB and

−→
OC to the XZ plane.
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FIGURE 4 | The models of human body skeleton and human left arm.

To calculate the shoulder roll angle, the cross product
is applied to get the normal vector of different planes.
The normal vectors of the BOC and OCD planes can be
calculated by:

{−→
OM =

−→
OB×

−→
OC

−→
CH =

−→
CO×

−→
CD

(3)

Then, translating the vector
−→
CH along the vector

−→
CO to point O

can get the vector
−→
ON. So, the calculation of the shoulder roll

angle 6 MON is addressed. Using the same method, we can get
elbow roll angle 6 HCL, which is the angle between the planes of
OCD and CDE.

Here, only three joint angles of the human arm involving the
human shoulder and elbow are collected.

Calculation of Joint Angular Velocity From Myo

Armband
To obtain the joint angular velocity, two Myo armbands are
needed to wear on the user’s upper arm and forearm. The
quaternion method is used to obtain the joint angles. Then, the
joint angular velocities can be computed based the difference of
the joint angles. According to Yang et al. (2018), we can assume
that the joint angle of the initial position is zero. When the user’s
arm is moved from a pose T to a new pose P, the angle from
pose T to P is the rotation angle. For the pose P, pose T can
be regarded as the initial pose, and the rotation angel is the
joint angle.

Assume that the Myo armband’s orientation is expressed by
frame (x0, y0, z0) in the initial position, the current orientation is
expressed by frame (x1, y1, z1). Then, the angular velocities of the
shoulder roll, shoulder yaw, and shoulder pitch can be obtained
by the forearm armbands. The velocities of the elbow roll and
pitch angles are acquired by the armbands worn on the upper
arm. Thus, five joint angular velocities are obtained for each arm
from a pair of Myo armbands.

Thus, we can obtain two different modalities information of
human arm. After that, these joint angles and the joint angular
velocities will be fused by the KF algorithm.

Data Preprocessing
The demonstration data from the Kinect sensor and Myo
armband will be preprocessed before they are fed into the
incremental learning method. Firstly, the data fusion method
based on the KF is used to fuse the joint angles and joint
angular velocities to obtain a more accurate and smooth dataset.
Since the demonstration data are not matched in the timeline,
then the dynamic time warping (DTW) algorithm is applied
to align them. Here, the two preprocessing methods will be
introduced briefly.

Data Fusion by Kalman Filter
KF, as one of the most powerful sensor fusion algorithms, can
smooth noisy input data and optimize the estimation of the
current state based on current measurements and the previously
estimated state. These current measurements are often multiple
sequential measurements from several sensors with noise. The
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existing works have proved that the estimate of the system’s
state from multiple sensors is better than the estimate obtained
from only one sensor (Gui et al., 2017). Therefore, the sensor
fusion based on the KF is used to improve the accuracy
of data.

This algorithm uses a series of state prediction and
measurement update steps to update the state of the target
object. The prediction and update steps are presented below.
For a continuous simplified linear system, the dynamic model is
described as follows (Davari et al., 2016):

ẋ(t) = Fx(t)+ Gu(t)+Mn(t)
z (t) = Hx (t) + v (t)

(4)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the deterministic
input vector, z(t) ∈ R

p is the measurement vector, n(t) ∈ R
q

is the white noise term for the state vector with zero-mean and
covariance S, and v (t) ∈ R

p is the noise term for measurement
vector with zero-mean and covariance R. F ∈ R

n×n and G ∈

R
n×n are both system matrices.M andH are parameter matrices

related to the noise and measurement, respectively. The KF
model of the linear system can be expressed by the following
equations (Simon, 2006):

˙̂x (t) = Fx̂(t)+ Gu (t) + K (t)
[

z (t) −Hx̂ (t)
]

K (t) = 6 (t)HTR−1

6̇ (t) = F6 (t) + 6 (t) FT +MSMT − 6 (t)HTR−1H6 (t)

(5)

where K (t) is the filter gain, ˙̂x(t) is the state estimation of x, and
6 (t) is the estimation of covariance.

For the above equations, we assume that x(0), n, and v are
uncorrelated to each other, and all the KF parameters are first
order. If each joint of human arm is considered separately, we
have F = 0, G = 1, M = 1, and H = 1. Thus, Equations (4, 5)

can be simplified as:

ẋi = ui + ni
zi = xi + vi

(6)

˙̂xi = ui + K (t)
[

zi − x̂i
]

K = 6R−1

6̇ = S− 6R−16

(7)

where ui is the ith joint angular velocity of the human arm, zi is
the ith joint position (or the joint angles), and ˙̂xi is the fused data
of the ith joint. Note that the parameters K, 6, R, and S are scalar
values.

Data Preprocessing With Dynamic Time Warping
Through the human demonstration module, the angles and
angular velocities of the human joints are collected from
multiple demonstrations. As aforementioned, the time for every
demonstration is not the same. We employ the DTW algorithm
to align them in the same timeline.

DTW is a method to measure the similarity of two time series
with different lengths. It has been widely used in processing
the temporal sequences of video, audio, and graphics data. If
two given temporal sequences g and k satisfy the boundary,
monotonicity, and step size conditions, the objective of DTW
can be transformed into the optimal match path problem
between the two sequences. We expressed this optimal match
path as:

DTW (y1, y2) = min(d(y1, y2)) (8)

where d(y1, y2) represent the distance between sequences y1 and
y2. Then, the Dynamic programming is used to solve Equation
(8). At the same time, an accumulated cost matrix E with the
dimension of m × n is generated. The expression of matrix E is

FIGURE 5 | The architecture of incremental learning network.
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written as follows:

E
(

l1, l2
)

=
(

y1, y2
)

+































0 if l1 = 1 and l2 = 1

E
(

l1, l2 − 1
)

else if l1 = 1 and l2 > 1

E
(

l1 − 1, l2
)

else if l1 > 1 and l2 = 1

min(E
(

l1, l2 − 1
)

,

E
(

l1 − 1, l2
)

,

E
(

l1 − 1, l2 − 1
)

) otherwise

(9)

where l1 and l2 are the length of the sequences y1 and
y2, respectively.

Incremental Learning Method
The incremental learning algorithm is essentially a single-layer
neural network that the structure can be dynamically expanded
in a wide sense. It is constructed based on the random vector
functional link neural network (FLNN). The architecture of the
incremental learning network is shown in Figure 5.

The input of this network is composed of two parts: the
mapped features and the enhancement nodes. As shown in
Figure 5, the original inputs are first transformed into a group
of mapped features to extract the random features by some
linear feature mappings. Then, the mapped features are extended
to enhancement nodes by non-linear mappings. Further, the
mapping features and the enhancement nodes in the input layer
are both connected with the output linearly. Thus, the weights
between the input layer and the output layer can be calculated by
the ridge regression of the pseudo-inverse method.

The detailed process of the incremental network is presented
as follows. For a given input dataset {X} and m feature mapping
function fi, i = 1, 2, · · · ,m, the ith mapped features can be
calculated as:

Pi = fi
(

XWpi + bpi
)

, i = 1, 2, · · · ,m (10)

where X ∈ R
m×n, m is the number of training samples; n is the

size of each training sample; both the bias unit bpi and the weights
Wpi , which connect the original input and the mapped features,
are randomly generated. It is noted that the functions fi and fl
are equal for i 6= l. We denote the first ith groups of mapped
features as Pi ≡ [P1 P2 · · · Pi] and express the non-linear
mappings connected the mapped features with enhancement
nodes as hj, j = 1, 2, · · · , n. Then, using the non-linear function
hj, the relationship between the mapped features Pi and Qj, the
enhancement nodes can be built. The jth group of enhancement
nodes is expressed as:

Qj = hj(P
mWpj + bpj ), j = 1, 2, · · · , n (11)

where Wpj and bpj are randomly generated, and Wpj are the
weights connecting the mapped features and the enhancement
nodes. Likewise, the first jth group of enhancement nodes
is denoted as Qj ≡ [Q1 Q2 · · · Qj]. The enhancement
nodes Pi together with the mapped features Qj form the
actual input of the incremental learning network A ≡

[P1, · · · , Pm,Q1, · · · , Qn] = [Pm Qn]. Hence, the output O of
this network is computed as:

O = AWn
m, (12)

where the weights Wn
m connect the output layer and the input

layer. Since the target output O is given, we can calculate the
weightsWn

m as follows:

Wn
m = A+O, (13)

Here, the rigid regression learning algorithm is used to solve the
pseudo-inverse A in Equation (13). According to this algorithm,
the pseudo-inverse A is obtained by the following equation:

A = lim
λ→0

(λI + AAT)
−1

AT , (14)

Algorithm 1 presents the whole training process of the
incremental learning network.

Algorithm 1 The procedure of the incremental learning network.

Input: Demonstration dataset X, mapped feature group m, and
enhancement nodes group n.
Output: The parameter matrixW.
for i = 1 tom do

Randomly initialize the weightsWpi and bias unit bpi ;
Calculate Pi according to Equation (10).

end

Set mapped features group Pm ≡ [P1 P2 · · · Pm];
for j = 1 to n do

Randomly initialize the weightsWpj and bias unit bpj ;
Calculate Qj according to Equation (11).

end

Set the enhancement nodes group Qn ≡ [Q1 Q2 · · · Qn];
Calculate weightsWn

m according to Equation (13).

As aforementioned, the ELM method and the incremental
learning method both are single-layer neural networks, and the
learning speed of two methods is also fast. For the incremental
learning network, if the learning cannot reach the desired result,
it can be addressed by inserting additional enhancement nodes in
a wide sense not deep way to achieve a better performance. The
increase of the enhancement nodes will result in the recalculation
of weights. It is worth noting that only a part of the weights needs
to be recalculated, not all weights. The new weights are calculated
by the following equations:

Wn+1
m =

[

Wn
m − DBTO

O

]

, (15)

where C = hn+1

(

PmWpn+1 + bpn+1

)

− AnD, D =

(An)+hn+1(P
mWpn+1 + bpn+1 ), and

BT =

{

(C)+ if C 6= 0
(

1+ DTD
)

BT (An)+ if C = 0
, (16)

Note that 0 is zero matrix, and O is the output of the network.
For the ELM network, the solution to improve performance

is to increase the number of hidden layer neurons, which
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results in more connecting parameters. Thus, a great number of
parameters including all weights need to be updated. It means
that the ELMnetwork suffers from a complete relearning process.
In this respect, the incremental learning network is different.
Besides, the incremental learning network is allowed to increase
the number of input samples without relearning all samples.
Likewise, only the newly added samples need to be learned by the
incremental learning network. It also implies that the incremental
learning network can adapt to new data without forgetting its
existing knowledge, instead of relearning all samples. This is the
difference in the structural expansion between the two networks.

Furthermore, the mapped features of the incremental learning
network are randomly generated from the original input dataset
{X}. In other words, the mapped features are the results of feature
representation for the original input data. Feature representation
can capture the efficient characteristics of the data to achieve
outstanding performance in supervised learning tasks (Chen
et al., 2018). It explains why the incremental learning network
can learn the desired features. Also, it shows that the actual input
data of the two networks are different. This implies the difference
between the two networks from another aspect.

As stated above, the motivation to use the incremental
learning algorithm is its convenience in a specific scene and
feature learning ability.

EXPERIMENTS AND RESULTS

Experimental Setup
We test our method on the Baxter robot. The experimental
system is shown in Figure 6. The hardware devices consist of a
Baxter robot, a Kinect sensor, and two Myo armbands. Based on

the platform, two tasks (wiping and pushing) are performed to
verify the effectiveness of the proposed TbD system.

In the wiping task, the robot in V-REP follows human motion
to raise his left arm, move toward the left, and then put it down
along the path it passed. The difficulty of this task is that the
trajectories of up and down motions should be consistent. The
repetitive processes with the same task are performed more than
16 times.

The wiping task is performed under the following
three conditions:

• Condition 1: with Kinect sensor data and incremental learning
method. The demonstration data are only collected from
the Kinect sensor but without Myo armbands. Through
processing of DTW, the incremental learning network is used
to learn it. There is no data fusion in this condition.

• Condition 2: with two sensors data (Kinect and Myo armband)
and incremental learning method. The demonstration data are
collected from both Kinect and Myo armbands. In this case,
the sensor fusion process is added before data preprocessing
with DTW algorithm. Later, the preprocessed data are learned
by the incremental learning network.

• Condition 3: with two sensors data (Kinect and Myo) and
ELM algorithm. The demonstration data collection and
processing processes are the same as the second condition.
The difference is that the learning method of these data is
ELM algorithm (Huang et al., 2004) instead of the incremental
learning network.

In summary, the first condition is to show the performance of
incremental learning network with only joint angle information
but without joint angular velocities. The second condition is set

FIGURE 6 | The experimental system. (A) The diagram of the experimental system. (B) The experimental platform of the demonstration phase. During demonstration,

the joint angles and joint angular velocities of the human arm are collected simultaneously by Kinect and Myo armband. Then, the raw demonstration data will be

fused and aligned in the same timeline by the Kalman filter (KF) and dynamic time warping (DTW) algorithms in turn. After that, the incremental learning network is

applied to learn the processed data. During the robot learning phase, the learned data are directly sent to the robot model in Virtual Robot Experimentation Platform

(V-REP) and the real Baxter robot.
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FIGURE 7 | The demonstration data of joint angles and joint velocities regarding the joints S0, S1, and E1.

to validate the proposed incremental learning framework with
sensor fusion, while the third condition is to test the performance
of the ELM network with sensor fusion.

To find the optimal number of feature mapping group m and
enhancement nodes group n, we change m and n from 1 to 50
for the incremental learning network. The result shows that the
highest accuracy appears whenm and n are 6 and 8, respectively.
A similar test is conducted for the ELM algorithm. We can get
that when the number of hidden layer neurons is 11, the ELM
network has the best accuracy.

Experimental Results
Results of the Wiping Task
The results of the wiping tasks are shown in Figures 7–10. In
the demonstration phase, the raw multimodal data are recorded
by different sensors. Figure 7 presents four randomly selected
samples of human demonstrations. The results of preprocessing
are shown in Figures 8, 9. Figure 8 shows the curves of the fusion
datasets. Note that there are deviations between the raw joint
angles and the fused data. Figure 9 displays the aligned results
of the fused datasets. Compared with the demonstration data
without alignment in the timescale, the aligned data also retain

the primary characteristics through the aligning process by DTW
algorithm. The aligned results prepare for the next training and
learning of the neural network.

The difference between the first and second conditions
is that the demonstration samples are different for the
incremental learning network. Since deviations between the
raw original joint angles and the fusion joint angles exist,
the results of DTW aligning will be different. We can
observe it from the images of the second and third rows in
Figure 9. The dimension of the original raw demonstration
data is 105. After processing by DTW, the dimensions of
these datasets are 367 and 355 for the raw data and fusion
data, respectively.

The trajectories learned by the incremental learning network
and ELM network are shown in Figures 10A–C with red dotted
lines. For the Baxter robot, all changes of seven joint angles are
aimed to obtain a desired trajectory of the end effector because
the robot execution eventually depends on the end effector. We
recorded the trajectory of the end effector in Cartesian space
during robot execution, which is shown in Figure 10D. Seven
joint angles of the real Baxter’s left arm are also recorded and
shown in Figure 10E.
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FIGURE 8 | The raw data and the fused data of joint angles S0, S1, and E1. The green lines are the raw joint angles, and the red lines are the fused data by Kalman

filter (KF) algorithm which fuses the joint angles and joint angular velocities.

Based on the learned results by the incremental learning
network, the Baxter robot can implement the wiping task.
The robot implementation includes a simulation experiment
of the Baxter robot in V-REP and an experiment for real
Baxter robot. And the wiping task covers four directions
of continuous and smooth movement: up, down, right,
and left.

Results of the Pushing Task
To test the generalization ability of the proposed method, a
pushing task is performed. The pushing task requires the robot
to push two square workpieces over on the desk in sequence. In
other words, the robot should firstly push the workpiece on the
right to the desk. During pushing, the robot cannot touch the
workpiece on the left. Then, the robot pushes the right one to
the desk. The short distance between the two workpieces makes
it more difficult for the robot to complete this task. Because
the aims of the pushing task and the wiping task are different,
the pushing task is only conducted under the above conditions

2 and 3. The experimental steps are the same as the wiping
task. The experimental results are ultimately reflected in the
trajectory of the robot end effector, which determines whether
the robot can complete the demonstrated task. Hence, Figure 11
only presents the trajectories of the real Baxter robot in the
simulation scene and real environment, but not the results of
data preprocessing.

As shown in Figure 11, the distance between the two tasks
is very close. Any deviation in the trajectory of the robot end
effector could result in the robot failing to complete the task.
Nevertheless, we can find that the Baxter robot can complete the
pushing task well from the experimental results. For this task, the
results can directly reflect the performance of the two learning
methods. Since the result of the robot end effector’s trajectory
under condition 3 is a failure to complete the pushing task,
the corresponding result is not displayed in Figure 11. Also, the
results for the wiping tasks are undiscussed in the next section.
These results illustrate that the proposed method can not only
improve the performance of TbD but also be applied in learning
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FIGURE 9 | The fused data and the aligned data by the dynamic time warping (DTW) algorithm. The figures in the first line and second line show the result of the raw

demonstration data fused by the Kalman filter (KF) method and alignment by the DTW algorithm, respectively. The images in the third line display the aligned result of

the data collected by the Kinect sensor. The three columns are the corresponding results of joints S0, S1, and E1, respectively.

different tasks for the robot. It implies that the proposed method
has good generalization ability.

DISCUSSION

The purpose of this work is to investigate the practical effect of
the proposed method on robot TbD, as well as to explore the
impact on the result considering the fusion of multiple modality
information. It is noted that only the results of the wiping task are
discussed in this section. Because the pushing task requires more

accurate execution for the Baxter robot, the performance of the
learning method can be directly judged by the execution results

of the Baxter robot. The experimental results of the pushing task
clearly illustrate that using the incremental learning method can

enable the robot to complete the pushing task well, while the ELM
algorithm cannot.

Firstly, we examine the effectiveness ofmultimodal data fusion
by comparing the results in Figures 10A,B under the first and

second conditions. It is clear that the bias between the reference
trajectories and the real trajectories of the first condition is much
larger than the second one, especially in the start phase of the
interval (0, 100). And the curves of the real trajectories are
inconsistent for the first and second conditions in Figures 10A,B.
For joints S0 and S1, the trend of reference trajectories is almost
the same under conditions 2 and 3. Concerning the joint E1, the
differences between the curves are especially evident under the
same conditions. In Figure 10A, the maximum difference value
between the reference and the real value is already close to 2.
But this value is not more than 0.6 under the second condition,
which can be observed from Figure 10B. The trajectories of the
real Baxter robot regarding the joints S0, S1, and E1 illustrate that
the multimodal data fusion can promote a result that is much
closer to the reference values.

Next, we discuss the superiority of the proposed method in
comparison with another robot learning method. Figures 10B,C
show the corresponding results by using the proposed method
and the ELM method. The red dotted lines are the learning
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FIGURE 10 | The execution results of the real Baxter robot. (A–C) The joint angles of the real Baxter robot under conditions 1, 2, and 3, respectively. (D) The

trajectories of Baxter end effector under the three conditions. (E) Seven joint angles of the real Baxter robot under the three conditions. In panels (A–C), the red dotted

line is the output of the network under the three conditions, and the green solid line is the real Baxter robot’s joint angles. The green solid dots are the start point of the

Baxter end effector, and the red solid dots are the end point in panel (D). The red, green, and purple solid lines, respectively, display the joint angles of S0, S1, and E1

in panel (E), and the other colored solid lines display the rest of the four joint angles.

FIGURE 11 | The execution results of the pushing task. The green lines in the four figures are the trajectories of the real Baxter robot. The trajectories of the real

Baxter robot are sent to the Baxter model in the Virtual Robot Experimentation Platform (V-REP), which is plotted out with green lines.
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FIGURE 12 | The errors of the root mean square error (RMSE) and mean absolute error (MAE) between the learned joint angles and the real Baxter robot joint values

under the three experimental conditions. (A) RMSE. (B) MAE. The area of each color square indicates the magnitude of two errors.

result of the two networks. Obviously, the trends of red reference
trajectories in Figures 10B,C are consistent. It indicates that
both of the methods can learn the features of the joint angles
to complete the wiping task. However, the biases between the
reference trajectories and the real trajectories of the two methods
are different. To analyze the result quantitatively, we calculate
the mean absolute error (MAE) and root mean square error
(RMSE), which are shown in the second and third columns of
Figures 12A,B. The RMSE is calculated as follows:

RMSE =

√

√

√

√

1

N

N
∑

t=1

(yt − ŷt)
2, (17)

whereN is the size of the demonstration sequences, ŷt is the value
fused by the KF algorithm, and yt is the value measured by the
Kinect sensor.

The calculation of MAE is as follows:

MAE =
1

N

N
∑

t=1

|yt − ŷt|, (18)

Noteworthy, RMSE and MAE are the errors between the
reference data (namely, the output of the incremental learning
network or the learned trajectories) and that of the real Baxter
robot data. The areas of the squares using the proposed method
are less than that of squares using the ELM method. The RMSE
andMAE results imply that the errors of the incremental learning
method are smaller. This shows that the experiment performance
of the proposed method is better than the ELM method. We can

also find that the maximum error under the three conditions is
from the result without data fusion. It also implies that through
data fusion, both errors are diminished notably.

As aforementioned, the difficulty of the wiping task is how
to ensure that the trajectories of upward and down motion are
consistent. We find that the result under condition 1 is worst, and
the trajectory is disordered in Figure 10D. On the contrary, the
trajectories under the second and third conditions are smooth
and orderly. Furthermore, the result of the second condition is
better than that of the third one. It also proves that data fusion can
improve the experiment performance in another way. Besides,
we compute the distance between the start point and the end
point for three conditions, which are 0.8825, 0.0135, and 0.0778,
respectively. For the results, the shorter the distance, the better
the performance. It is obvious that the distance for the second
condition is the shortest. That is to say, both the trajectories
of the end effector and the distance illustrate that the proposed
method is better. These results suggest that the proposed method
is superior to the ELM method, not only the joint angles but also
the trajectories of the end effector.

Lastly, we compare all recorded joint angles of the robot’s
left arm under the three conditions. The desired result is
that the other four joint angles are approximate to zero
except for S0, S1, and E1, which is shown in Figure 10E.
The four joint angles in the interval (0, 100) under the
first condition are much bigger than zero, and then they
gradually trend to zero. However, the four joint angles are much
closer to zero under the second and third conditions from
beginning to end. It also shows that sensor fusion can decrease
demonstration errors.
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To sum up, the demonstration data with multimodal
information can significantly improve the experiment
performance, and the proposed method can achieve a better
execution result with smaller errors. This is probably because
data fusion is beneficial to obtain a demonstration dataset close
to the real value. At the same time, the KF algorithm smooths
the raw data to some extent. All of these help the real robot move
smoothly and efficiently. On the other hand, the incremental
learning network can learn more effective features to enhance
TbD performance.

CONCLUSIONS AND FUTURE WORK

In this paper, we propose an incremental learning framework to
learn demonstration features by integrating different modality
data. Using the proposed method and the KF algorithm, the TbD
performance is remarkably improved. To verify the proposed
method, comparative experiments involving the incremental
learning network and ELM algorithm were conducted based
on a Baxter robot in a real physical environment. Through the
experiments, the robot achieved a better result with smaller
errors using the proposed network on the basis of two modality
information fusions. The effectiveness of the proposed method
was verified by analyzing the learned data and the real robot
data in comparison with ELM methods. As a result, the
proposed method can learn more critical features to get the
desired result. Since the TbD system is based on two modality
information fusions, we also verify the effect of multimodal
integration on the real robot. Compared with the results of
single-modality data, the multimodal data with sensor fusion
can achieve a better performance. It implies that the fusion

of modality information is beneficial to improve the accuracy
of data. To test the generalization of the proposed method, a
pushing task is performed. The successful experiment results
show that the proposed method has the generalization ability
in TbD. In the future, integrating modality information from
different types of sensors, e.g., force, will be addressed to perform
complex tasks online. We will further explore the complete
time of a specific task for the real robot by employing other
methods. Also, how to reduce the effect of demonstrations
from different people on the experimental results is taken
into account.
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