
ORIGINAL RESEARCH
published: 02 October 2020

doi: 10.3389/fnbot.2020.00063

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2020 | Volume 14 | Article 63

Edited by:

Mu-Yen Chen,

National Taichung University of

Science and Technology, Taiwan

Reviewed by:

Yinyan Zhang,

Jinan University, China

Kuan-Yu Lin,

Ling Tung University, Taiwan

*Correspondence:

Jinglun Yu

yujinglun2016@163.com

Received: 28 June 2020

Accepted: 05 August 2020

Published: 02 October 2020

Citation:

Yu J, Su Y and Liao Y (2020) The Path

Planning of Mobile Robot by Neural

Networks and Hierarchical

Reinforcement Learning.

Front. Neurorobot. 14:63.

doi: 10.3389/fnbot.2020.00063

The Path Planning of Mobile Robot
by Neural Networks and Hierarchical
Reinforcement Learning
Jinglun Yu*, Yuancheng Su and Yifan Liao

Chongqing University-University of Cincinnati Joint Co-op Institute, Chongqing University, Chongqing, China

Existing mobile robots cannot complete some functions. To solve these problems, which

include autonomous learning in path planning, the slow convergence of path planning,

and planned paths that are not smooth, it is possible to utilize neural networks to

enable to the robot to perceive the environment and perform feature extraction, which

enables them to have a fitness of environment to state action function. By mapping the

current state of these actions through Hierarchical Reinforcement Learning (HRL), the

needs of mobile robots are met. It is possible to construct a path planning model for

mobile robots based on neural networks and HRL. In this article, the proposed algorithm

is compared with different algorithms in path planning. It underwent a performance

evaluation to obtain an optimal learning algorithm system. The optimal algorithm system

was tested in different environments and scenarios to obtain optimal learning conditions,

thereby verifying the effectiveness of the proposed algorithm. Deep Deterministic Policy

Gradient (DDPG), a path planning algorithm for mobile robots based on neural networks

and hierarchical reinforcement learning, performed better in all aspects than other

algorithms. Specifically, when compared with Double Deep Q-Learning (DDQN), DDPG

has a shorter path planning time and a reduced number of path steps. When introducing

an influence value, this algorithm shortens the convergence time by 91% compared

with the Q-learning algorithm and improves the smoothness of the planned path by

79%. The algorithm has a good generalization effect in different scenarios. These results

have significance for research on guiding, the precise positioning, and path planning of

mobile robots.

Keywords: neural network, hierarchical reinforcement learning, mobile robot, path planning, fusion algorithm

INTRODUCTION

Mobile robot autonomous navigation can be divided into three subsystems: information
perception, behavior decision-making, and manipulation control. Path planning is the basis of
mobile robot navigation and control (Ghosh et al., 2017; Orozco-Rosas et al., 2019). The goal of
mobile robot path planning is to find a path from the current position to the target position. The
path should be as short as possible, the smoothness of the path should meet the dynamics of the
mobile robot, and the safety of the path should be collision-free (Han and Seo, 2017).

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.00063
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.00063&domain=pdf&date_stamp=2020-10-02
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yujinglun2016@163.com
https://doi.org/10.3389/fnbot.2020.00063
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00063/full

Yu et al. Path Planning of Mobile Robot

Depending on how much information is known about the
environment in the path planning process, path planning can
be divided into global path planning and local path planning
(Li and Chou, 2018). There are many methods of path
planning. According to specific algorithms and strategies, path
planning algorithms can be roughly divided into four types:
template matching, artificial potential field, map construction,
and artificial intelligence (Zhao et al., 2018). Each type of
path planning algorithm has an optimal application scenario
and limitations. The current path planning of mobile robots
relies heavily on the surrounding environment. In addition
to the limitations of traditional path planning, robots cannot
complete their learning and judgment in complex environments,
a bottleneck in the development of research in this field (Bakdi
et al., 2017). It is therefore particularly important to develop a
path planning method with low reliance on the environment,
which can quickly adapt to the surrounding environment.

The Deep Q-Learning Network (DQN) is a way of modeling
the environment and calculating the collision energy function,
which is the main cause of a loss in functionality (Ohnishi et al.,
2019). To realize the path planning process, the neural network
is trained to minimize the loss function through the gradient
descent method. To enable better generalization ability in the
neural network, various sample data are needed for learning and
training, however, an over large data sample will increase the
training time (Shen et al., 2019a; Sung et al., 2020).

Deep Reinforcement Learning (DRL), as an important
machine learning method, has received more attention and there
are increasing applications of it in robot path planning DRL
(Arulkumaran et al., 2017). The agent obtains knowledge through
the exploration of an environment and learns using a process
of trial and error. The DRL method has obvious advantages
in path planning and requires less prior information about the
environment (Wulfmeier et al., 2017; Zheng and Liu, 2020).

Unlike the supervised learning method, reinforcement
learning does not require much sample data for training, like
neural network methods, and acquires sample data during the
training process. In recent years, scholars have focused on using
new algorithms or fusion algorithms to improve the performance
of mobile robots (Yan and Xu, 2018). Lei et al. found that adding
the Q-Learning algorithm to the reinforcement learning path
enhances the ability of robots to dynamically avoid obstacles
and local planning in the environment (Lei et al., 2018; Liu
et al., 2019). Wang et al. found that compared with Distributed
DQN (DDQN) algorithm, the Tree Double Deep Network
(TDDQN) has the advantages of fast convergence speed and
low loss (Wang P. et al., 2020). By using a neural network
to strengthen the learning path planning system, Wen et al.
suggested that the mobile robot can be navigated to a target
position without colliding with any obstacles and other mobile
robots, and this method was successfully applied to the physical
robot platform (Wen et al., 2020). Botteghi et al. introduced a
reward function training strategy in the fusion algorithm, which
not only outperformed the standard reward function in terms
of convergence speed but also reduced the number of collisions
by 36.9% of iteration steps (Shen et al., 2019b; Botteghi et al.,
2020). Therefore, the fusion algorithm has obvious advantages

FIGURE 1 | The path planning motion model of mobile robots.

in path planning and algorithm performance. However, the
path planning performance of current fusion algorithms is
not outstanding.

Taking into account the shortcomings of these research
results, we designed a mobile robot path planning system based
on neural networks and hierarchical reinforcement learning.
Through neural networks, this system perceives the environment
and performs feature extraction to realize the fitting from the
environment to the state action function (Chen, 2018). The
mapping of the current state to the action of the hierarchical
reinforcement learning is satisfied through the enhancement
function, thereby realizing the demand for mobile robots.
Theoretically, the organic combination of the two can improve
the performance of mobile robots in path planning. Therefore,
in this study, the algorithm was embedded into a mobile robot,
and the designed algorithm was verified by comparing it with
other path planning algorithms in different environments and
scenarios. The initial Q-value of the proposed algorithm sped
up the convergence speed, redefined the number of states, as
well as the direction of motion, and step length. The real-time
performance of the mobile robot’s path planning and smoothness
was significantly improved, and could be used to guide robot
movement, and improve algorithm mobility (Liu and Wang,
2019).

METHODS

Mobile Robot Path Planning Model
The path planning task explored in this study is based on a
two-wheel differential mobile robot. The robot can control the
speed of its two driving wheels to achieve arbitrary trajectory
movements such as linear movement, turning, and turning
around in circles. Figure 1 shows the pose of the robot at adjacent
time intervals, based on which kinematic model is established.

The world coordinate system pose of the mobile robot at time

t is set to Wt =
[

xt , yt , θt
]T
; if the world coordinate pose of the

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

mobile robot at time t + 1t isWt+1t =
[

xt+1t, yt+1t, θt+1t

]T
,

the distance between the left and right driving wheels is L, the
speeds of the left and right driving wheels are vl and [[Mathtype-
mtef1-eqn-5.mtf]], and the robot linear speed and angular speed
are respectively v and ω, the speed v of the mobile robot in the
ideal motion state is:

v =
vl + vr

2
(1)

The angular velocity of the robot is:

ω=
vl-vr

L
(2)

The instantaneous curvature radius R is:

R =
v

ω
(3)

As shown in Figure 1, θ1=θ2=θ , after1t, the heading angle of the
robot changes as follows:

θt+1t=θt + θ (4)

The motion from position Wt =
[

xt , yt , θt
]T

to Wt+1t =
[

xt+1t, yt+1t, θt+1t

]T
can be regarded as a circular arc with radius

R. If the arc is used to approximate the actual trajectory of the
robot, the geometric relationship should be:





xt+1t

yt+1t

θt+1t



=





xt + R(sin(θt + θ)− sinθt)
yt+R(cos(θt + θ)− cosθt)
θt + θ



 , θ 6= 0 (5)

Combining the above equations, the motion equation of the
differential mobile robot can be obtained as:





xt+1t

yt+1t

θt+1t



=







xt +
L(vr+vl)
2(vr−vl)

(R(sin(θt + θ)− sinθt)

yt+
L(vr+vl)
2(vr−vl)

R(cos(θt + θ)− cosθt)

θt + θ






, θ 6= 0

(6)

ANN
ANN is a mathematical or computational model that simulates
the structure and function of biological neural networks, which is
used to estimate or approximate functions. With the continuous
deepening of research works on ANNs, it has made great
breakthroughs in the fields of speech recognition, pattern
recognition, automatic control, and predictive estimation. ANN
has successfully solved many problems that are difficult for
computers to solve, showing good performance.

In the practical application of ANN, most neural network
models use a backpropagation neural network (BPNN) and its

transformations, which have good nonlinear mapping ability,
self-learning ability, and fault tolerance. It mainly uses many
aspects such as pattern recognition, function approximation,
data compression, prediction estimation, and classification.
Therefore, the most representative BPNN is chosen as the basis of
modeling to analyze the robot path. AnANN is usually composed
of multiple BPNN layers and multiple neurons, which are mainly
divided into an input layer, a hidden layer, and an output layer,
where the input vector should be:

x = [x1, x2, x3...xi, ...xm] , i = 1, 2,m (7)

The output vector should be:

y =
[

y1, y2, y3...yk, ...yn
]

, k = 1, 2,n (8)

The neuron input of the hidden layer should be:

h(l) =
[

h(l)1, h
(l)

2, h
(l)

3...h
(l)

j, ...h
(l)

sl

]

, j = 1, 2,sl (9)

Where: sl is the number of neurons in layer 1; assuming that w(l)
ij

is the connection weight between the j-th neuron in layer 1-1,

b(l)i is the threshold of the i-th neuron in layer 1, and net(l)i is the
input of the i-th neuron in layer 1, then the following equation
is obtained:

h(l)i = f (net(l)i) (10)

net(l)i=

sl−1
∑

j=1

w(l)
ijh

(l-1)
j+b

(l)
i (11)

Here, the functions of the input layer to the output layer use
the S-type corresponding TANSIG function, the output layer
uses the PURELIN linear function, the learning rules use the
TRINGDX function, and the performance evaluation uses the
MES function, where the model number is set to 1,000 times
and the accuracy is set to 0.0001. The rest are the default
parameters of the system, and the specific structure is shown in
Figure 2.

Reinforcement Learning
Reinforcement learning is a machine learning method that
learns by interacting with the environment. An Agent uses
reinforcement learning methods to learn, which is to acquire
knowledge from a sequence of actions obtained by exploration.
Its sample data is not existing, meaning it is different from the
supervised learning process. After an Agent executes an action,
it will get feedback from the environment. This feedback is the
evaluation of the action made by the environment and is a
process of “trial and error.” The evaluation of the action made

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

FIGURE 2 | Structure of ANN.

FIGURE 3 | The schematic diagram of the reinforcement learning model.

by the environment is the immediate reward value received by
the Agent. The immediate reward is an enhanced signal, which
indicates the impact of the execution of this action on the result.
The larger the value is, the better the effect is, otherwise it
will have a poor impact. The reinforcement learning model is
shown in Figure 3. The learning process of the reinforcement
learning method is a heuristic process. It continuously tries
through random units, searches for the optimal action to obtain
the enhanced signal of the environment, and increases the
probability that the optimal action is selected by the iterative
update, thereby finding a set of optimal solutions (a set of action
sequences with the highest reward value).

The reinforcement signal in reinforcement learning comes
from the immediate reward of environmental feedback. This
reward value indicates the quality of the action performed instead
of telling the machine what the correct action is. The process of
the machine interacting with the environment can be regarded
as a Markov Decision Processing (MDP). As long as the random

FIGURE 4 | Schematic diagram of Q-Learning path planning method.

variable set {X1,X2,X3.... Xt} satisfies the following equation, the
set will have Markov attributes:

Pr(Xt+1 = x |Xt = xt ,Xt−1 = xt−1, ...X1 = x1)

= Pr(Xt+1 = x
∣

∣Xt = xt) (12)

Once the state x is determined, the actions before the state are
not correlated to the actions after the state and are independent
of each other. Among them, the state set S, the action set A,
the reward function R, the state transition function T, and the
objective function constitute the MDP. The state process of the
transition is as follows:

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

T(s,α, s′) = Pr(st+1 = s′ |st = s,αt = a) (13)

The process of Markov’s decision is mainly to realize a set of
action sequences α=π(s) so that the cumulative discount reward
∞
∑

t=0
γ ′R(st , at) reaches the maximum value. Through the iteration

of values, the optimization problem of MDP can be realized. The
function of the optimal value is defined as:

V ∗ (s) = max(R(s,α)+ γ
∑

s′∈S

T(s, a, s′)V ∗ (s′)),∀s ∈ S (14)

Then, the optimal strategy is calculated as follows:

π(s) = arg |max (R(s,α)+ γ
∑

s′∈S

T(s, a, s′)V ∗ (s′)) (15)

The reinforcement learning system is mainly composed of three
parts: reward function, value function, and action selection
strategy. Among them, reinforcement function is divided into
continuous reward function. By establishing a mathematical
model between the state and environmental feedback perceived
by the Agent at each moment, the Agent can obtain the
evaluation of the environment in each state, giving more
guidance information during the Agent training process, and
the Agent can find the optimal strategy faster. The calculation is
as follows:

Rt = f (st , it) (16)

The discrete reward functions require less a-priori information
and are simple to construct, which have better applications
in exploration and learning in unknown environments. The
calculation is as follows:

Rt =







1 Perform optimal actions
-1 Perform the worst action
0 Other situations

(17)

The reward function only gives the reward of the currently
executed action, but this does not guarantee that each action
can get a reward. As the training progresses, the value function
continuously optimizes and converges, and the action is selected
by strategy in a state, which ensures that each action will get not
only the largest reward but also the largest cumulative discount
reward, of which the limited non-discount cumulative reward
function is:

Vπ (st) =

h
∑

t=0

rt (18)

Where: rt is the reward immediately obtained by the machine
at time t, and the cumulative reward is the accumulation of the
immediate rewards obtained from the starting state to the target
state. The unlimited discount reward function is:

Vπ (st) =

h
∑

t=0

γ ′rt+10 ≤ γ ≤ 1 (19)

Where: γ ′ is the discount factor, and the value range is 0 ≤ γ ≤ 1,
which represents the limit of reinforcement learning. The value
function pays more attention to future rewards. The average
reward function is:

Vπ (st) = lim
h→∞

(
1

h

h
∑

t=0

rt) (20)

After learning, the optimal strategy can use the value function
obtained by training to select the action strategy. The equation is
as follows:

π* = argmaxVπ (s),∀s ∈ S (21)

The action selection strategy of Softmax is used to analyze the
probability of the action, which is generally described by the
Boltzmann distribution function. The mathematical model is as
follows, where T is the temperature control coefficient.

p(at/s) =) =
kVi/T

∑

α∈A
kVi/T

(22)

Different Path Planning Recognition
Algorithms
Here, different algorithms are compared to determine the
advantages of the proposed algorithm. There are many
recognition algorithms for the path planning of mobile robots.
These path planning algorithms are all based on the principle
of feature point positioning, which changes in any direction
of the images mainly through a Gaussian window. Through
this movement, the correlation matrix of different windows is
calculated and the image data of the environment are obtained.

(1) The Q-Learning algorithm is a table-valued learning
algorithm because the state-action Q value table is established
during the interaction between the machine and the
environment. The reward in the environment will affect the
Q-value corresponding to the state-action. The Q-value of
the correct behavior is gradually increased under the positive
reward, and the Q-value corresponding to the wrong behavior
will also be reduced under the negative reward. The optimal
action is selected in the action selection strategy to make the
Agent obtain the optimal behavior strategy (Wei et al., 2016;
Zhu et al., 2017). The method of updating the Q-value is
as follows in Figure 4:

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

FIGURE 5 | Schematic diagram of the neural network approximation function

structure.

(2) The DQN algorithm is a process of using the neural network
to approximate the value function. As shown in Figure 5,
the optimal value function Q(s,α, θ) is approximated by
adjusting the weight of the neural network. The update value
function changes the parameters. After the neural network
training is completed, the parameters are determined, and the
corresponding function value will not change anymore. The
training process then converges (Liu and Hodgins, 2017; Zhu
et al., 2017). The location update equation is:

θt+1 = θt + α
[

r + γ maxQ(s,α, θ
]

1Q(s,α, θ) (23)

(3) The Potential DQN (PDQN) algorithm is an improvement
to the DQN algorithm. Its major purpose is to accelerate the
running speed of the algorithm. On this basis, the artificial
potential field method is added (Gupta et al., 2019). The
gravitational field is calculated as follows:

U(X) =
1

2
k(X − Xg)

2 (24)

Where: k is the gain coefficient, X is the current position of
the mobile robot, Xg is the target position, j is the planning
adjustment reward, and the relationship between reward and
gravity is as follows:

r = jU(X) (25)

(4) Actor-Critic (A3C) algorithm is a way of reinforcement
learning. It introduces an evaluation mechanism to solve the
high variance problem. It utilizes a neural network to predict
the selected action and directly passes the prediction result
back to increase the probability that the action is selected next
time. If the reward function shows that the selected action is
not optimal, the probability that the action is selected next
time will be reduced (Haarnoja et al., 2018). The strategy
gradient equation is as follows:

1θ Jθ =
1

T

T
∑

t

1θ logπ(αt |st; θ)(

n
∑

i=1

γ i−1rt + 1+ v(st + n)

− v(st))+ β1θH(π(st; θ) (26)

(5) The Deep Deterministic Policy Gradient (DDPG) algorithm
is an algorithm with a lot of improvements to DQN, in
which the A3C algorithm is added. It is a fusion algorithm
of neural network and reinforcement learning. The specific
improvement details are shown in Figure 6.

(6) THE double DQN (DDQN) algorithm estimates the
maximum action in the target network through the network
and uses this estimated action to select Q(s) in the target
network (Zhang et al., 2018; Han et al., 2019). Then, the goals
of TD should be:

Yt
DoubleDQN = Rt+1 + γQ(st+1, argmaxQ(st+1, θt

′)) (27)

Construction and Monitoring of Simulation
Environment
The simulation environment mainly uses the multimedia
framework pyglet under Python to design the interactive
applications as the simulation platform. A 200∗200-pixel static
environment is built in the experiment. In the environment, the
mobile robot is no longer a particle but is represented by a blue
circle of 10∗10 size. The green circle S represents the starting
coordinate. The pixel coordinate of the starting position is (5, 5).
The purple circle represents the target position and the five black
areas of different sizes in the figure are the positions of obstacles.
The white area indicates that there are no obstacles in the map, in
which the robot can move freely. Since the robot has size in the
real world when the boundary of the mobile robot is in contact
with the boundary of the obstacle area, it is considered to have
collided, and after the collision, it is considered to have failed and
is returned to the starting position. The state of the experiment is
represented by the rasterized state.

The detection mainly uses the summary.value.add () function
in TensorFlow to add variables to the monitoring log. The
changes in training process data can be viewed through
TensorFlow. After learning, the neural network parameters are
saved by using the tf.train.Saver () function and the neural
network is reloaded and run again to indicate the effect after
the learning is completed. The experimental results show that
the mobile robot can avoid dynamic obstacles in time and find
an optimal path to reach the target position after avoiding
the dynamic obstacles. In the experiment, the copy network
value function, the average number of steps used to reach the
target position, and the average cumulative reward of the copy
network are saved. At the end of the learning and training
process, the changing process of the three data can be viewed
through TensorBoard.

RESULTS AND DISCUSSIONS

Experimental Results of Different Path
Planning Algorithms of Mobile Robot
Figure 7 shows the experimental results of the path planning of
mobile robot under different algorithms. As shown in Figure 7,
under the same starting and ending conditions, all algorithms
can effectively avoid obstacles. Comparing Figures 7A,B, it was
found that in the traditional Q-Learning and A3C algorithms,

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

FIGURE 6 | Structure of DDPG network algorithm.

the reinforcement learning algorithm effectively reduces the
number of path steps. Comparing Figures 7A,C, it was found
that the introduction of a neural network algorithm based on
the traditional Q-Learning algorithm can greatly reduce the
number of paths and achieve the same effect as the reinforcement
learning algorithm. Comparing Figures 7C,D, it was found that
the introduction of the force field based on the neural network
has greatly accelerated the running speed of the algorithm,
causing a significant reduction in the number of steps. Although
the algorithm can effectively avoid obstacles, it has taken many
useless paths. Therefore, the DDQN algorithm of Q value
accumulation was added. As shown in Figure 7E, the algorithm
can effectively utilize the neural network to learn and achieve the
minimum number of steps. Compared to the DQN algorithm,
the running speed of DDQN was improved and compared to
the PDQN algorithm, the DDQN can find the optimal path.
As shown in Figure 7F, a reinforcement learning algorithm was
added based on the neural network. It was found that compared
to the DDQN algorithm, it runs faster and has an optimal
path. According to the above results, the fusion algorithm
using a neural network and reinforcement learning has better
performance in the path experiment.

Performance Evaluation of Different Path
Planning Algorithms of Mobile Robot
Figure 8A illustrates the path planning time of different
algorithms under different path lengths. The results show that
as the path length increases, the path planning time is also
increasing, where the time required is proportional to the
path length. As far as different algorithms are concerned, the
traditional Q-Learning algorithm takes the longest time, with an
average of 78.35 s. The PDQN takes the shortest time because

the algorithm introduces a force field, causing the algorithm
to be improved continuously. The DDPG algorithm based on
neural networks andHRLmarks the second position, which takes
an average of 40.7 s and is 48.05% higher than the traditional
algorithm, 31.01% higher than the DQN algorithm of the neural
network, and 40.1% higher than the reinforcement algorithm.

Figure 8B illustrates the number of path steps of different
algorithms at different iteration times. As the number of
iterations increases, it does not affect the Q-Learning and
A3C algorithms because these two algorithms do not have
deep learning capabilities. With the increase in the number of
iterations, in terms of other algorithms, the number of path
steps continues to decrease under the same path. Of the different
algorithms, the reinforcement learning algorithm is significantly
better than the traditional Q-Learning algorithm, with a 20.56%
improvement. Of the different neural network algorithms, the
DDPG algorithm has the best performance, which has an average
path step of 63 steps; compared to the DQN algorithm, it has an
increase of 20.25%. When compared to the DDQN algorithm,
the number of path steps is increased by 8.69%. According to
the above results, the PDQN algorithm is more efficient under
the same path conditions, as the learning continues, the fusion
algorithm performs better in terms of path steps.

Figure 9A illustrates the convergence time of different
algorithms under different path steps. The results show that
as the path steps continue to increase, the convergence time
of each algorithm is continuously increasing. Compared to the
Q-Learning and A3C algorithms, after adding reinforcement
learning, the convergence time of robot path planning is
increased by 13.54%; compared to the Q-Learning and DQN
algorithms, after adding the neural network algorithm, the
convergence time of robot path planning is increased by 33.85%,

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

FIGURE 7 | Experimental results of different path planning algorithms of mobile robot.

which is the most obvious improvement. Comparing different
neural networks, it was found that the convergence time of the
DDQN algorithm with increased Q-value is greatly improved,
and the convergence time of path planning is improved by
94.44% compared with the previous Q-Learning algorithm. For
the DDPG algorithm based on neural network and HRL, the
convergence time of the algorithm under the unsynchronized
number is 1.34 s on average, which is 55.52% faster than the
optimal DDQN algorithm.

Figure 9B illustrates the cumulative rewards of different
algorithms under different path steps. Since the designed reward
rules are more stringent, the reward results are all negative,
but this does not affect the obtained results. As shown in
Figure 9B, as the number of path steps continues to increase,

the cumulative rewards continue to increase. For different
algorithms, comparing the Q-Learning and A3C algorithms,
the cumulative reward is significantly improved by 29.64%.
Compared to the Q-Learning algorithm, the neural network
DQNhas increased significantly. Under the same neural network,
it was found that the PDQN algorithm that introduces the force
field has less cumulative rewards. The reason may be that the
purpose of the algorithm is to enhance the running speed of
the algorithm. The mechanism for rewards is not very complete;
thus, the rewards are less. Among the neural network algorithms,
the DDQN algorithm has the best cumulative reward. However,
compared to the fusion algorithm DDPG, the performance of the
DDQN algorithm is not very good. The cumulative reward of
DDPG is increased by 41.5% compared to DDQN. According to

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

FIGURE 8 | Performance evaluation of time and steps of different mobile robot path planning algorithms (QL algorithm represents the Q-Learning algorithm).

FIGURE 9 | Evaluation of convergence time and cumulative reward performance of different path planning algorithms of the mobile robot (QL algorithm represents the

Q-Learning algorithm).

the above results, it is concluded that under different path steps,
the convergence time of the algorithm is the fusion algorithm; at
the same time, the algorithm can also obtain the most rewards.

Analysis of Performance Changes in
Neural Network and HRL Algorithms Under
Different Environmental Conditions
To explore the impact of different environmental conditions
on the performance of the algorithm, the performance of the
DDPG algorithm was tested under different action sets, grid
numbers, state sets, and force values. Under the premise of the
same starting point and ending point, the average value of the
algorithm was obtained after running 30 times. The results are
shown in Table 1. As shown in the table, the comparison between
M1 and M2 indicates that when the action set is doubled, the
convergence time of the algorithm will increase by 41%, and
the smoothness of the planned path is also increased by 53%.

Comparing M2 and M3, it is found that when the number of
grids is increased three times, the convergence of the algorithm
will be reduced by 69%, and the smoothness will be increased
by 45%. Comparing M3 and M4, it was found that increasing
the number of state sets will slow down the convergence speed
of the algorithm, but by adjusting the direction of the action
set, the right angles and corners in the path can be avoided,
and the smoothness with which it navigates the planned path is
increased by 18%. Comparing M4 and M5, it is found that the
introduction of the force field will reduce the convergence time
of the algorithm by 49%, which can increase the action step size,
thereby adjusting the number of state sets and the direction of
the action set. Therefore, when the action set is 4, the number of
grids is 3, and the state set is 40∗40∗8, with the introduction of
the force value, the algorithm can reduce the convergence time
by 91% compared with the traditional Q-learning algorithm, and
the smoothness of the path increased by 79%.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2020 | Volume 14 | Article 63

Yu et al. Path Planning of Mobile Robot

TABLE 1 | Effect of different environmental conditions on algorithm performance.

Numbering Number of

states

Number of

actions

Action

step

Potential

field/s

Convergence

time

Convergence

round

Path

length

Total

corner/rad

M1 40*40 4 1 N0 1.9254 682.6 38.1 21.677

M2 40*40 8 1 N0 2.7139 629.7 32.7 10.210

M3 40*40 8 3 N0 0.8515 274.6 34.3 5.655

M4 40*40*8 4 3 N0 1.4259 340.1 32.8 4.616

M5 40*40 4 1 Yes 0.9848 559.8 38.0 21.834

M6 40*40*8 4 3 Yes 0.1735 155.3 32.1 4.555

FIGURE 10 | Path changes of algorithms in different scenarios.

Analysis of Changes in Paths Based on
Neural Networks and HRL Under Different
Scenario Conditions
Figure 10 and Table 2 indicate the path changes and quantitative
data of the algorithm under different scene conditions. As shown
in Figure 10, by comparing Figures 10A,B, it was found that at
the same starting point and ending point, under the condition
of different obstacles, the algorithm system can effectively
avoid obstacles and design the optimal paths. In addition, the
convergence time is maintained at about 0.15 s, the number of
convergence rounds is maintained at 145, and the total rotation
angle is 4.8 rad. By comparing Figures 10A,C, it was found

that under different environments and different starting points
and ending points, the system can still avoid collisions with
obstacles, maintain a high convergence time, and design an
optimal path. Simulation results show that the proposed path
planning algorithm for mobile robots based on neural networks
and HRL has a good generalization effect in different scenarios.

DISCUSSION

The neural network DQN can perceive the environment
and perform feature extraction to realize the fitting from
the environment to the state action function. This has been

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

TABLE 2 | Statistical results of algorithm path changes under different scenario

conditions.

Scenes Position Convergence

time/s

Convergence

round

Path

length

Total

corner/rad

P1 (1, 39) 0.1615 144.5 32.1 4.869

P2 (1, 39) 0.1468 147.0 31.6 4.712

P3 (39, 39) 0.1724 147.4 31.8 4.641

mentioned in the literature. Qiao et al. (2018) proposed an
adaptive DQN strategy and applied it to text recognition. These
results showed that the DQN algorithm is significantly better
than other algorithms, which also indicated the advantages of
the DQN algorithm in image recognition (Qiao et al., 2018).
Compared with the deep learning algorithm DQN, the DDQN
algorithm is better than DQN in terms of value accuracy and
strategy, which is also consistent with previous reports (Qu et al.,
2020). The hierarchical reinforcement learning technology is
utilized to achieve the mapping from state to action and meet the
mobile needs of mobile robots. The data have also proven that
the robot path planning method based on deep reinforcement
learning is an effective end-to-end mobile robot path planning
method, which has also been confirmed in a study by Wang B.
et al. (2020). The above results illustrate the feasibility of the
proposed method in the path planning of mobile robots.

The DDPG algorithm was developed based on the DQN
algorithm. The biggest improvement is that the action strategy
of the DQN algorithm can only select actions in discrete
action space, while the DDPG algorithm can select actions in
continuous action space. The results show that the algorithm is
significantly better than other algorithms in terms of operating
efficiency. This is consistent with the results of Shen X. et al.
(2019), in which it was found that when compared with the
exponential moving average the effective variance of DDPG
and average DDQN were reduced, which explained the efficient
runtime of the algorithm further (Shen X. et al., 2019). The
results also found that after reinforcement learning is added, the
convergence time of robot path planning is increased by 13.54%.
Low et al. used the flower pollination algorithm to properly
initialize the Q-value, which could speed up the convergence
of mobile robots (Low et al., 2019). The principle is similar
to reinforcement learning, therefore, the research results here
are also supported. The comparison between the Q-Learning
and DQN algorithms found that the convergence time of
robot path planning is increased by 33.85% after adding the
neural network algorithm. Some scholars have improved the
convergence performance of the model significantly by using
two natural heuristic algorithms in unknown or partially known
environments (Saraswathi et al., 2018). This natural heuristic
algorithm is similar to the neural network structure, further
proving the effectiveness of the proposed algorithm.

In summary, the proposed DDQN algorithm has been proven
to be applicable to image feature extraction, and the neural
network algorithm has also been proven to effectively improve
the performance and convergence of the algorithm. The data

obtained are consistent with previous research. However, in
terms of algorithm performance, the performance of mobile
robot path planning based on neural networks and hierarchical
reinforcement learning has been significantly improved. This
algorithm can significantly reduce path planning time and
improve smoothness, enabling mobile robots to move more
conveniently and flexibility.

CONCLUSIONS

Through neural networks, the fitting from the environment
to the state action function was realized by perceiving the
environment and performing feature extraction. Through the
enhancement function, the mapping of the current state to the
action of the hierarchical reinforcement learning was satisfied,
thereby enabling the robot to become more mobile. The
two were organically combined to improve the performance
of mobile robots during path planning. The mobile robot
path planning algorithm based on neural networks and
hierarchical reinforcement learning has better performance than
other algorithms in all aspects. In addition, the proposed
algorithm reduces the planning time, decreases the number
of path steps, shortens the convergence time, and increases
the smooth and efficient recognition and movement functions
of the mobile robots. Although the performance of each
algorithm has been analyzed as comprehensively as possible,
the following aspects need to be improved in the future.
First, it is impossible for the neural network learning method
of the mobile robot’s motion path planning to perform
multiple “trial and error” processes in actual operations,
which makes it difficult to apply the proposed algorithm. It
is therefore necessary to implement the application on the
physical platform before applying the algorithm to the actual
robots. Second, the path planning only involves static scenarios.
Whether the algorithm can show the same performance
when encountering dynamic environmental changes is yet
to be explored. The path planning capabilities of mobile
robots were improved, laying a theoretical foundation for
practical applications.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Chongqing University Ethics Committee. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2020 | Volume 14 | Article 63

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Yu et al. Path Planning of Mobile Robot

REFERENCES

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).

Deep reinforcement learning: a brief survey. IEEE Signal Process. Magazine 34,

26–38. doi: 10.1109/MSP.2017.2743240

Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., and Bouzouia,

B. (2017). Optimal path planning and execution for mobile robots using

genetic algorithm and adaptive fuzzy-logic control. Robot. Autonomous Syst.

89, 95–109. doi: 10.1016/j.robot.2016.12.008

Botteghi, N., Sirmacek, B., Mustafa, K. A., Poel, M., and Stramigioli, S. (2020).

On reward shaping for mobile robot navigation: a reinforcement learning and

SLAM based approach. arXiv:200204109. 2020, 1025–1037.

Chen, M. (2018). “The research of human individual’s conformity behavior in

emergency situations,”(Library Hi Tech). doi: 10.1108/LHT-08-2018-0113

Ghosh, S., Panigrahi, P. K., and Parhi, D. R. (2017). Analysis of FPA

and BA meta-heuristic controllers for optimal path planning of mobile

robot in cluttered environment. IET Sci. Measure. Technol. 11, 817–828.

doi: 10.1049/iet-smt.2016.0273

Gupta, U., Mandal, S. K., Mao,M., Chakrabarti, C., and Ogras, U. Y. (2019). A deep

Q-learning approach for dynamic management of heterogeneous processors.

IEEE Comp. Architect. Lett. 18, 14–17. doi: 10.1109/LCA.2019.2892151

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., et al. (2018). Soft

actor-critic algorithms and applications. arXiv:181205905. 2018, 26–32.

Han, J., and Seo, Y. (2017). Mobile robot path planning with surrounding

point set and path improvement. Appl. Soft Comp. 57, 35–47.

doi: 10.1016/j.asoc.2017.03.035

Han, X., He, H., Wu, J., Peng, J., and Li, Y. (2019). Energy management

based on reinforcement learning with double deep Q-learning for

a hybrid electric tracked vehicle. Appl. Energy 254, 113708–113725.

doi: 10.1016/j.apenergy.2019.113708

Lei, X., Zhang, Z., and Dong, P. (2018). Dynamic path planning of unknown

environment based on deep reinforcement learning. J. Robot. 2018, 25–32.

doi: 10.1155/2018/5781591

Li, G., and Chou, W. (2018). Path planning for mobile robot using self-

adaptive learning particle swarm optimization. Sci. China Inform. Sci. 61,

052204–052213. doi: 10.1007/s11432-016-9115-2

Liu, L., and Hodgins, J. (2017). Learning to schedule control fragments for

physics-based characters using deep q-learning. ACM Trans. Graph. 36, 1–14.

doi: 10.1145/3083723

Liu, Q., Cheng, Z., and Chen, M. (2019). Effects of environmental education on

environmental ethics and literacy based on virtual reality technology. Electron.

Lib. 37, 860–877. doi: 10.1108/EL-12-2018-0250

Liu, Z., and Wang, C. (2019). Design of traffic emergency response system

based on internet of things and data mining in emergencies. IEEE Access 7,

113950–113962. doi: 10.1109/ACCESS.2019.2934979

Low, E. S., Ong, P., and Cheah, K. C. (2019). Solving the optimal path planning

of a mobile robot using improved Q-learning. Robot. Autonomous Syst. 115,

143–161. doi: 10.1016/j.robot.2019.02.013

Ohnishi, S., Uchibe, E., Nakanishi, K., and Ishii, S. (2019). Constrained Deep Q-

learning gradually approaching ordinary Q-learning. Front. Neurorobot. 13,

103–112. doi: 10.3389/fnbot.2019.00103

Orozco-Rosas, U., Montiel, O., and Sepúlveda, R. (2019). Mobile robot path

planning using membrane evolutionary artificial potential field. Appl. Soft

Comp. 77, 236–251. doi: 10.1016/j.asoc.2019.01.036

Qiao, J., Wang, G., Li, W., and Chen, M. (2018). An adaptive deep Q-

learning strategy for handwritten digit recognition. Neural Netw. 107, 61–71.

doi: 10.1016/j.neunet.2018.02.010

Qu, Z., Hou, C., Hou, C., and Wang, W. (2020). Radar signal

intra-pulse modulation recognition based on convolutional neural

network and deep Q-learning network. IEEE Access 8, 49125–49136.

doi: 10.1109/ACCESS.2020.2980363

Saraswathi, M., Murali, G. B., and Deepak, B. (2018). Optimal path planning of

mobile robot using hybrid cuckoo search-bat algorithm. Proc. Comp. Sci. 133,

510–517. doi: 10.1016/j.procs.2018.07.064

Shen, C.-,w., Ho, J.-,t., Ly, P. T. M., and Kuo, T.-,c. (2019a). Behavioural

intentions of using virtual reality in learning: perspectives of acceptance

of information technology and learning style. Virtual Reality 23,

313–324. doi: 10.1007/s10055–018-0348–1

Shen, C.-w., Min, C., and Wang, C.-,c. (2019b). Analyzing the trend of O2O

commerce by bilingual text mining on social media. Comp. Human Behav. 101,

474–483. doi: 10.1016/j.chb.2018.09.031

Shen, X., Yin, C., Chai, Y., and Hou, X. (2019). “Exponential moving

averaged Q-network for DDPG,” in Chinese Conference on Pattern

Recognition and Computer Vision (PRCV). (Beijing: Springer), 562–572.

doi: 10.1007/978-3-030-31654-9_48

Sung, I., Choi, B., and Nielsen, P. (2020). On the training of a neural network

for online path planning with offline path planning algorithms. Int. J. Inform.

Manage. 102142–102150. doi: 10.1016/j.ijinfomgt.2020.102142

Wang, B., Liu, Z., Li, Q., and Prorok, A. (2020). Mobile robot path planning

in dynamic environments through globally guided reinforcement learning.

arXiv:200505420. 2020, 22–29.

Wang, P., Li, X., Song, C., and Zhai, S. (2020). Research on dynamic path planning

of wheeled robot based on deep reinforcement learning on the slope ground. J.

Robot. 9, 36–39. doi: 10.1155/2020/7167243

Wei, Q., Lewis, F. L., Sun, Q., Yan, P., and Song, R. (2016). Discrete-time

deterministic $ Q $-learning: a novel convergence analysis. IEEE Trans.

Cybernet. 47, 1224–1237. doi: 10.1109/TCYB.2016.2542923

Wen, S., Zhao, Y., Yuan, X., Wang, Z., Zhang, D., and Manfredi, L.

(2020). Path planning for active SLAM based on deep reinforcement

learning under unknown environments. Intelligent Service Robot. 1–10.

doi: 10.1007/s11370-019-00310-w

Wulfmeier, M., Rao, D., Wang, D. Z., Ondruska, P., and Posner, I. (2017). Large-

scale cost function learning for path planning using deep inverse reinforcement

learning. Int. J. Robot. Res. 36, 1073–1087. doi: 10.1177/0278364917722396

Yan, Z., and Xu, Y. (2018). Data-driven load frequency control for stochastic power

systems: a deep reinforcement learning method with continuous action search.

IEEE Trans. Power Syst. 34, 1653–1656. doi: 10.1109/TPWRS.2018.2881359

Zhang, Q., Lin, M., Yang, L. T., Chen, Z., Khan, S. U., and Li, P. (2018). A

double deep Q-learning model for energy-efficient edge scheduling. IEEE

Trans. Services Comp. 12, 739–749. doi: 10.1109/TSC.2018.2867482

Zhao, Y., Zheng, Z., and Liu, Y. (2018). Survey on computational-

intelligence-based UAV path planning. Knowledge Based Syst. 158, 54–64.

doi: 10.1016/j.knosys.2018.05.033

Zheng, Y., and Liu, S. (2020). “Bibliometric analysis for talent identification

by the subject–author–citation three-dimensional evaluation model in the

discipline of physical education,” (Library Hi Tech). doi: 10.1108/LHT-12-201

9-0248

Zhu, J., Song, Y., Jiang, D., and Song, H. (2017). A new deep-Q-learning-

based transmission scheduling mechanism for the cognitive Internet of

Things. IEEE Internet Things J. 5, 2375–2385. doi: 10.1109/JIOT.2017.2

759728

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Yu, Su and Liao. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 12 October 2020 | Volume 14 | Article 63

https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/j.robot.2016.12.008
https://doi.org/10.1108/LHT-08-2018-0113
https://doi.org/10.1049/iet-smt.2016.0273
https://doi.org/10.1109/LCA.2019.2892151
https://doi.org/10.1016/j.asoc.2017.03.035
https://doi.org/10.1016/j.apenergy.2019.113708
https://doi.org/10.1155/2018/5781591
https://doi.org/10.1007/s11432-016-9115-2
https://doi.org/10.1145/3083723
https://doi.org/10.1108/EL-12-2018-0250
https://doi.org/10.1109/ACCESS.2019.2934979
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.3389/fnbot.2019.00103
https://doi.org/10.1016/j.asoc.2019.01.036
https://doi.org/10.1016/j.neunet.2018.02.010
https://doi.org/10.1109/ACCESS.2020.2980363
https://doi.org/10.1016/j.procs.2018.07.064
https://doi.org/10.1007/s\hbox {10055--018}-\hbox {0348--1}
https://doi.org/10.1016/j.chb.2018.09.031
https://doi.org/10.1007/978-3-030-31654-9_48
https://doi.org/10.1016/j.ijinfomgt.2020.102142
https://doi.org/10.1155/2020/7167243
https://doi.org/10.1109/TCYB.2016.2542923
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1177/0278364917722396
https://doi.org/10.1109/TPWRS.2018.2881359
https://doi.org/10.1109/TSC.2018.2867482
https://doi.org/10.1016/j.knosys.2018.05.033
https://doi.org/10.1108/LHT-12-2019-0248
https://doi.org/10.1109/JIOT.2017.2759728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning
	Introduction
	Methods
	Mobile Robot Path Planning Model
	ANN
	Reinforcement Learning
	Different Path Planning Recognition Algorithms
	Construction and Monitoring of Simulation Environment

	Results and Discussions
	Experimental Results of Different Path Planning Algorithms of Mobile Robot
	Performance Evaluation of Different Path Planning Algorithms of Mobile Robot
	Analysis of Performance Changes in Neural Network and HRL Algorithms Under Different Environmental Conditions
	Analysis of Changes in Paths Based on Neural Networks and HRL Under Different Scenario Conditions

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References

