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The preprocessing of surface electromyography (sEMG) signals with complementary

ensemble empirical mode decomposition (CEEMD) improves frequency identification

precision and temporal resolution, and lays a good foundation for feature extraction.

However, a mode-mixing problem often occurs when the CEEMD decomposes an sEMG

signal that exhibits intermittency and contains components with a near-by spectrum

into intrinsic mode functions (IMFs). This paper presents a method called optimized

CEEMD (OCEEMD) to solve this problem. The method integrates the least-squares

mutual information (LSMI) and the chaotic quantum particle swarm optimization (CQPSO)

algorithm in signal decomposition. It uses the LSMI to calculate the correlation between

IMFs so as to reduce mode mixing and uses the CQPSO to optimize the standard

deviation of Gaussian white noise so as to improve iteration efficiency. Then, useful

IMFs are selected and added to reconstruct a de-noised signal. Finally, considering

that the IMFs contain abundant frequency and envelope information, this paper extracts

the multi-scale envelope spectral entropy (MSESEn) from the reconstructed sEMG

signal. Some original sEMG signals, which were collected from experiments, were

used to validate the methods. Compared with the CEEMD and complete ensemble

empirical mode decomposition with adaptive noise (CEEMDAN), the OCEEMD effectively

suppresses mode mixing between IMFs with rapid iteration. Compared with approximate

entropy (ApEn) and sample entropy (SampEn), the MSESEn clearly shows a declining

tendency with time and is sensitive to muscle fatigue. This suggests a potential use of

this approach for sEMG signal preprocessing and the analysis of muscle fatigue.

Keywords: surface electromyography, complementary ensemble empirical mode decomposition, least-squares

mutual information, multi-scale envelope spectral entropy, muscle fatigue
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1. INTRODUCTION

Muscle fatigue is defined as a temporary decrease in the
physical force during exercise (Liu et al., 2014; Kyranou et al.,
2018). During a continuous contraction, a localized muscle
gradually undergoes biological changes and enters the state
of muscle fatigue. While the mechanism of muscle fatigue is
complicated, accurate detection of fatigue is of great significance
for assessing functional impairment, planning training programs,
and evaluating rehabilitation effect (Gandevia, 2013). For these
reasons, the detection of muscle fatigue has been a hot topic in
the field of rehabilitation and sports medicine over the last couple
of decades.

A surface electromyography (sEMG) signal captures the state
of muscle activity and motor function and is considered as an
effective tool to evaluate local muscle fatigue (Chowdhury et al.,
2013). The changes in sEMG signals correlate to the number of
motor units, activity patterns, metabolic situations, and other
factors (Srhoj-Egekher et al., 2011). An sEMG signal is non-
stationary during muscle dynamic contractions and shows a high
degree of complexity (Zhang Q. et al., 2017). Thus, it is a reliable
approach to processing sEMG signals by a non-linear method
and to extract muscle fatigue features from the complexity.

An essential part of processing a non-stationary signal is to
find a way to represent the oscillatory modes of the signal. An
sEMG signal consists of many single harmonic signals, and each
contains only one oscillatory mode. Introduced by Huang et al.,
an intrinsic mode function (IMF) is a single harmonic signal
model that gives sharp identifications of embedded structures

through producing instantaneous frequencies as functions of
time (Huang, 2000). With the empirical mode decomposition
(EMD), a non-stationary signal is decomposed into IMFs and

performed time-frequency analysis (Huang, 2000). The EMD

was first used to filter the activity attenuation of sEMG signals
(Andrade et al., 2006). Later, it was widely used for the artifact
removal and feature extraction of sEMG signals (Pilkar et al.,
2017). Unfortunately, the mode-mixing problem often occurs for
the reason that the IMFs contain signals of different scales or the
signals of a similar scale spread in different IMFs (Hu et al., 2012).
To solve this problem, a method of analyzing noise-assisted
signals called ensemble EMD (EEMD) was presented (Wu and
Huang, 2009). The EEMD has been used not only to filter various
noises (Zhang and Zhou, 2013) but also to quantitatively analyze
the features of sEMG signals (Wu et al., 2017; Zhang Y. et al.,
2017). This method has a good effect on suppressing mode
mixing decomposed from weak discontinuous signals with high-
frequency noise, but the suppression effect is very limited for
signals with similar frequencies. Therefore, the EEMD may leave
a small amount of noise in reconstructed signals.

Many methods have been proposed to further reduce noise
for the EEMD, such as a complementary EEMD (CEEMD)
(Yeh et al., 2010) and a complete EEMD with adaptive noise
(CEEMDAN) (Torres et al., 2011). They improved the EEMD
in different ways. The CEEMDAN adds adaptive white noise to
the original signals and obtains IMFs by averaging the modal
components at each stage of signal decomposition. However, the
CEEMDAN still has some problems like spurious modes and

high computational cost (Rezaie-Balf et al., 2019; Li et al., 2020).
The CEEMD adds a pair of Gaussian white noises with equal
amplitudes and a relative phase difference of 180◦ to the original
signal, and then performs the EMD decomposition of the two
groups of signals.

The CEEMD decomposes a signal into IMFs based on the
characteristics of the signal itself, which is very important for
analyzing a non-stationary signal. It was used in some fields
and its applications demonstrate successful results (Zhao et al.,
2014; Lu et al., 2019). Based on the advantages of the CEEMD,
this paper employs it to preprocess sEMG signals, which lays
a good foundation for next signal reconstruction, de-noising,
and feature extraction. However, the CEEMD also has a small
number of mode-mixing components and long iterative times
when it decomposes a signal that exhibits intermittency and
contains components with proximity spectrum into intrinsic
mode functions (IMFs) (Zheng et al., 2014; Chen and Wang,
2017).

This paper analyzes the causes of these problems. On one
hand, there is information coupling between IMFs, which leads
to the existence of similar signal components in different IMFs.
On the other hand, the standard deviation of added Gaussian
white noise is not suitable. As a result, the signal decomposition
is not complete, or the number of iterations increases in order
to achieve a specific decomposition effect. Therefore, this paper
presents an improved CEEMD to overcome these defects.

After the sEMG signal is preprocessed, the feature of
evaluating muscle fatigue needs to be extracted. The quality
of the feature has a crucial influence on the classification and
predicting of muscle fatigue. The complexity of sEMG is a
commonly used index to reflect the physiological characteristics
of muscle activity (Talebinejad et al., 2011; Cashaback et al.,
2013). Extracting entropy from sEMG is an effective method
for analyzing muscle fatigue. Approximate entropy (ApEn) and
sample entropy (SampEn) are the earliest entropy parameters
and are still in use today (Pethick et al., 2019; Xie et al.,
2019). However, they are subject to the problem of tolerance
selection. Furthermore, Costa et al. found that the single-scale
entropy of a healthy person often conflicts with that of a heart-
disease patient for the use of their heartbeat fluctuations. To
solve these problems, they proposed the concept of multi-scale
entropy (MSEn), which is calculated on multiple time scales of
a signal (Gao et al., 2015). Different time scales are obtained
through a coarse granulation process, and providemore complete
information on signals than a single scale does. Note that the
evolution of muscle fatigue needs to be described in this study,
the selected entropy-based indicator should be related to the
characteristics of sEMG signals.

The purpose of this study was to devise a method, which
is called optimized CEEMD (OCEEMD), to process sEMG
signals with high precision and high efficiency, and to present
a new entropy-based index for muscle fatigue. The OCEEMD
integrates the least-squares mutual information (LSMI) (Kimura
and Sugiyama, 2011) and the chaotic quantum particle swarm
optimization (CQPSO) algorithm (Valdez et al., 2017) with
the conventional CEEMD. The LSMI is used to calculate
the correlation between IMFs to reduce their coupling. And
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TABLE 1 | Information of 10 subjects involved in experiments (Min., Minimum;

Max., Maximum; Avg., Average; Std. Dev., Standard Deviation).

Min. Max. Avg. Std. Dev.

Age (years) 23 39 29.7 12.1

Height (cm) 155.6 182.9 170.3 7.8

Weight (kg) 44 86.4 68.5 2.7

the CQPSO is used to search an optimal solution of the
standard deviation of Gaussian white noise to optimize a related
parameter. The advantage of the OCEEMD is that it suppresses
mode mixing and improves decomposition efficiency by making
the best use of the algorithms. After the OCEEMD decomposes
an sEMG signal into a set of IMFs adaptively, the useful IMFs
are reconstructed to a de-noised signal, eliminating most of
the interference. Then, multi-scale envelope spectral entropy
(MSESEn) is calculated. This index improves the reliability
of analyzing muscle fatigue based on the rich frequency and
envelope information of IMFs. Verification was carried out
for collected sEMG signals in a pedaling experiment for the
presented and the related methods. The results show that,
compared with other methods, the OCEEMD suppresses the
modemixing with high efficiency for the decomposition of sEMG
signals, and the extracted feature shows a high sensitivity to the
sEMG changes with muscle fatigue.

2. MATERIALS AND METHODS

This section first introduces the experimental protocol and tests.
Then, it describes signal preprocessing and feature extraction of
an sEMG signal.

2.1. Subjects and sEMG Data Acquisition
Ten healthy subjects (two females and eight males) performed
the experiments at the Advanced Mechatronics Laboratory,
School of Engineering, Tokyo University of Technology, Japan
(Table 1). They were covered by personal accident insurance
for students pursuing education and research provided by Japan
Educational Exchanges and Services. The advisability of students’
involvement in experiments and the experimental protocol were
first assessed by the ethical committee of Tokyo University of
Technology. All participants signed informed consent.

Each subject sat in front of a pedaling machine that
was developed for the rehabilitation training of lower limbs
(Figure 1). The training load, inclined pedal angle, seat height,
distance from the machine, and other parameters were calibrated
to suit the subject before running the experiments. Each subject
placed his/her left foot on the pedal for 5 min of up-down
pedaling, with appropriate training load so as to feel local muscle
fatigue after training. The sEMG data were collected from four
muscles of lower limbs: rectus femoris, biceps femoris, tibialis
anterior, and gastrocnemius (She et al., 2017a,b). Four electrodes
(Model: Biometrics SX230-1000; Origin: UK) were used to collect
sEMG signals, which were attached on the muscle belly along the
muscle fibers. The sEMG signals were sampled at 1,000 Hz with

FIGURE 1 | A shot of pedaling experiment.

a fixed gain of 60 dB (amplification factor: 1000). The data were
stored in a laptop computer [Model: DELL Precision M3800; OS:
Windows 8.1 Pro 64 bits; CPU: Intel(R) Core(TM) i7-4712HQ;
RAM: 16.0 GB] (Zhao et al., 2018).

2.2. Optimized Complementary Ensemble
Empirical Mode Decomposition
An original sEMG signal contains noise and invalid frequency
components. So, we need to perform signal preprocessing to
extract true information. An improved CEEMD called optimized
CEEMD (OCEEMD) is used to decompose the original sEMG
signal into a set of IMFs, solving the mode-mixing problem
with high iteration efficiency. Then according to their frequency
characteristics, the useful IMFs are selected to reconstruct a new
signal, achieving the effect of de-noising.

The CEEMD decomposition has three main processes. First,
a pair of Gaussian white noises that have the same amplitudes
and a relative phase difference of 180◦ are added to an sEMG
signal to form two new signals by making use of the uniform
distribution property of the white-noise spectrum. Then, the
two new signals are decomposed and their IMF candidates are
obtained, separately. Finally, every two IMF candidates at the
same level are averaged as the IMF component of the original
signal, and thus the corresponding residual function is calculated
(Yeh et al., 2010).

Since two similar white-noise signals are added to the sEMG
signal with opposite phases, the residual noises in the IMFs are
only different in their signs. They cancel with each other when
the IMFs are added to form a new IMF that contains little
noise. Thismethod effectively suppressesmodemixing. However,
it is difficult to completely eliminate mode mixing in actual
applications. It is necessary to investigate the causes of mode
mixing so that we can further reduce it.

2.2.1. Least-Squares Mutual Information

Mode mixing occurs when the components of similar scales
reside in different IMFs. At this time, there is information
coupling between the IMFs, that is, the IMFs are not completely
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orthogonal to each other. So, the existence of information
coupling between the IMFs is a primary cause of mode mixing.

Theoretically speaking, eliminating the coupling between
IMF components ensures the perfect orthogonality of the
IMF components. Thus, it solves the mode-mixing problem
completely. Mutual information (MI) is a non-parametric and
non-linear measure indicator that quantitatively represents
the statistical correlation between two random variables in
information theory (Valdez et al., 2017). Since an sEMG signal
has a zero-mean characteristic, the MI can be used to measure
the coupling degree of IMF components obtained by the
CEEMD according to the equivalence principle of irrelevance
and orthogonality of zero-mean random signals. That is, it is
possible to use the MI to measure whether or not there is mode
mixing and the level ofmixing. Thus, the first improvement of the
OCEEMD on the CEEMD is the embedding of the least-squares
mutual information (LSMI) in the CEEMD.

For two given IMFs, {xi}
n
i=1 and {yj}

n
j=1, their LSMI is

calculated as follows.
Let the marginal probabilities of xi be and yj be p(xi) and p(yj),

respectively; and the joint probability of xi and yj be p(xi, yj). The
MI of two IMFs is defined to be

MI =

n∑

i=1

n∑

j=1

p(xi, yj) lnψ(xi, yj), (1)

where ψ(xi, yj) is a density-ratio function

ψ(xi, yj) =
p(xi, yj)

p(xi)p(yj)
. (2)

MI is non-negative. It is zero if xi and yj are statistically
uncorrelated, that is,

ψ(xi, yj) = 1. (3)

The logarithmic function in (1) is sensitive to a change inψ(xi, yj)
around one. This degrades the accuracy of MI around zero.
Note that based on the Taylor’s series approximation, when
ψ(xi, yj)− 1 → 0,

ln
{
1+ [ψ(xi, yj)− 1]

}
≈ ψ(xi, yj)− 1 (4)

and

{
1+ [ψ(xi, yj)− 1]

}2
≈ 1+ 2[ψ(xi, yj)− 1] (5)

hold. Combining (4) and (5) yields

lnψ(xi, yj) ≈
1

2
[ψ2(xi, yj)− 1] (6)

Thus,

p(xi, yj) lnψ(xi, yj) ≈
1

2
p(xi)p(yj)[ψ(xi, yj)− 1]2 (7)

when ψ(xi, yj) → 1.

Substituting (7) into (1) gives a squared-loss mutual
information (SMI) (Kimura and Sugiyama, 2011)

SMI =
1

2

n∑

i=1

n∑

j=1

[ψ(xi, yj)− 1]2p(xi)p(yj). (8)

An equivalent form of (8) is used to simplify the calculation:

1

2

n∑

i=1

n∑

j=1

p(xi, yj)ψ(xi, yj)−
1

2
. (9)

Since neither p(xi), p(yj), nor p(xi, yj) is known, LSMI is used
to further approximately calculate ψ(xi, yj) so as to approximate
SMI from a paired data set of xi and yj: (x1, y1), · · · , (xn, yn)
(Kimura and Sugiyama, 2011). In this study, ψ(xi, yj) was
approximated by a Gaussian-radial-basis-function model

ψ2 =

n∑

i=1

2iK(xi, yj), (10)

where2i (i = 1, . . . , n) are estimated parameters and

K(xi, yj) = exp

(
−
‖xi − yi‖

2
2

2h2

)
(11)

is a kernel function. h in (11) is the width of the kernel.
The problem of optimizing the squared error of the estimated

parameters using an empirical approximation is defined to be

min
2

{
1

2
2TĤ2−2T ĥ+

λ

2
‖2‖2

}
, (12)

where λ is a regularization parameter; and Ĥ and ĥ are an n × n
matrix and an n-dimensional vector, respectively. They are





Ĥ =
1

n2

n∑

i=1

n∑

j=1

K(xi, yj)K(xi, yj)
T ,

ĥ =
1

n

n∑

i=1

n∑

j=1

K(xi, yj).

(13)

The analytical solution of (12) is

2̂ = (Ĥ + λI)−1ĥ, (14)

where I is the identity matrix. Thus, LSMI is given by

LSMI =
1

2
ĥT(Ĥ + λI)−1ĥ−

1

2
, (15)

which is used to approximate SMI. Note that LSMI between two
IMFs can be calculated directly. If all LSMIs for an sEMG signal
are sufficiently small, all of the IMFs are orthogonal to each other.
This means that there is no mode mixing.
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2.2.2. Chaotic Quantum Particle Swarm Optimization

The standard deviation of the added Gaussian white noise is an
important parameter in the CEEMD. An unsuitable value may
result in a large number of iterations and IMF modes and may
cause mode mixing. So, the unsuitable standard deviation of
Gaussian white noise is another cause of mode mixing.

Let d be the standard deviation of the added white noise.
The selection of d requires careful consideration. As a rule of
thumb, d is usually chosen to be a value between 0.1 and 0.2
(Torres et al., 2011). But choosing a different number between
0.1 and 0.2 inevitably leads to different decomposition results.
The chaotic quantumparticle swarm optimization (CQPSO) is an
evolutionary computational algorithm (Huang, 2016). The main
purpose of the algorithm is to obtain an optimal solution by
sharing information among individuals of particle populations.
It can be used here to search for the optimal solution of d. Thus,
the second improvement of the OCEEMD on CEEMD is the
embedding of CQPSO in the CEEMD to search for an optimal d.

LSMI is used as a fitness function for the CQPSO:

arg min
d

LSMI. (16)

A minimum LSMI corresponds to an optimal d, which is used to
determine the amplitudes of the white noise.

At the beginning of the tth iteration for a M-dimensional
space with N individuals, let the location of the ith particle be
Xi = {Xij}

M
j=1 (i = 1, 2, . . . ,N), the historical location of the ith

particle be Pi = {Pij}
M
j=1, and the searched optimal locations of

particle populations be P
(t)
k

= {P
(t)
kj
}Mj=1 (k = 1, 2, . . . ,N). The

CQPSO of searching for an optimal d has the following steps.

Step 1: Initialize the particle population by chaos and randomly
generate a series of parameters for d with N individuals.
Initialize the locations of the particles.

Step 2: On the tth iteration, calculate the fitness of each particle,
LSMI, at different locations, and compare each with the
corresponding historical optimal fitness. If the current
fitness is smaller than the historical one, replace the
location vector Pi by the current one,Xi. Otherwise, keep
Pi unchanged.

Step 3: Determine the optimal locations P
(t)
k

by comparing all
particles with their corresponding optimal fitness—the
minimum of LSMI.

Step 4: Update the location of each particle and calculate the
corresponding fitness like Step 2. Retain the particle with
the best performance in the population according to the

fitness function. Then, update Pi and P
(t)
k
.

Step 5: Check whether or not the current d meets the preset
accuracy requirement and if the number of iteration is
larger than a prescribed one. If not, let t = t + 1 and go
to Step 2. Otherwise, stop and output the solution of d

that corresponds to the optimal location P
(t)
k
.

The OCEEMD incorporating the LSMI and CQPSO reduces
mode mixing and improves iteration efficiency. It is used
to decompose an sEMG signal to IMFs with real physical
significance and a final residual according to a time scale. Then,

all useful IMFs are selected and added to reconstruct a new signal
in which most interference is removed.

2.3. Multi-Scale Envelope Spectral Entropy
A multi-scale entropy is a sample entropy measurement on
multiple time scales and can analyze the complexity of a signal
on different scales (Costa et al., 2008). Consequently, it provides
complete information about an sEMG signal. The envelope
spectrum is a spectral analysis method that is sensitive to
shock components of a signal and reflects sudden changes in
an sEMG signal (Lv et al., 2015). Since IMF components after
the OCEEMD decomposition preserve rich information about
frequency and envelope, we use multi-scale envelope spectral
entropy (MSESEn) as an index for the detection ofmuscle fatigue.

The calculation of the MSESEn has two main steps: First,
calculate the envelope spectrum of a signal. Second, calculate the
multi-scale entropy (MSEn) of the envelope spectrum. The steps
are explained as follows:

In the first step, we carry out the Hilbert-Huang
transformation (HHT) on a reconstructed signal, f (t),

H(f (t)) =
1

π

∫ +∞

−∞

f (s)

t − s
ds. (17)

Structuring an analytic function yields the envelope of the signal

B(t) =

√
f (t)+H2(f (t)). (18)

Then, we use the fast Fourier transform (FFT) to obtain the
demodulation spectrum

B(ω) = FFT(B(t)). (19)

In the second step, dividing a sequence of an envelope spectrum
that contains N data points, {zi}

N
i=1, into K segments with a scale

τ , that is, {zj, zj+1, . . . , zj+τ }
K
j=1, where K is the integer part of

N/τ . The series of continuous coarse granulation is {w
(τ )
j }Kj=1 and

w
(τ )
j =

1

τ

jτ∑

i=(j−1)τ+1

zj, 1 ≤ j ≤ K. (20)

Then, for the sequence {w
(τ )
j }Kj=1, embedding m adjacent points

constructs a new sequence, {w
(τ )
k

,w
(τ )
k+1

, . . . ,w
(τ )
k+m

}K−m+1
k=1

. The

distance d
(τ )
i,j between different elements, (w

(τ )
i ,w

(τ )
i+1, . . . ,w

(τ )
i+m)

and (w
(τ )
j ,w

(τ )
j+1, . . . ,w

(τ )
j+m), is calculated for all i 6= j. For a

threshold γ , let the number of the distances satisfying d
(τ )
i,j ≤ γ

be n(τ ,m). The ratio of n(τ ,m) to K −m+ 1 is

C
(τ ,m)
i (γ ) =

n(τ ,m)

K −m+ 1
. (21)

The correlation degree between different vector elements is

C(τ ,m) =
1

K −m+ 1

K−m+1∑

i=1

C
(τ ,m)
i (γ ). (22)
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Similarly, C(τ ,m+1) is obtained for the sequence {w
(τ )
j }Kj=1

that embedding m + 1 adjacent points into the sequence

{w
(τ )
k

,w
(τ )
k+1

, . . . ,w
(τ )
k+m+1

}K−m
k=1

.
Finally, the MSEn of envelope spectrum, MSESEn, is defined

to be the set of sample entropy (SampEn) for the scale τ

MSESEn = SampEn(τ ,m, γ ) = − ln
C(τ ,m+1)

C(τ ,m)
. (23)

2.4. Flow of Signal Processing
After the OCEEMD is used to adaptively decompose and
reconstruct an sEMG signal, MSESEn is applied to evaluate the
state of muscle fatigue. In the OCEEMD, finding an optimal
solution of the standard deviation of Gaussian white noise helps
the sEMG signal to be decomposed quickly in an appropriate
way. Nevertheless, not all sub-signals can be decomposed
thoroughly. Thus, we calculate coupling degrees between IMFs to
detect whether there is mode mixing between IMFs. When mode
mixing is detected, we adjust the residual and then perform the
decomposition process again.

Note that the decomposition principle of the CEEMD allows
us to use the correlation between an IMF component and a
residual at the same level to replace the correlation between
adjacent IMF components. This is due to the fact that IMF
components is determined by the residual at the previous lever
(Lu et al., 2019). This treatment features small number of
iteration and high computational efficiency.

Summarizing the above explanation gives the following sEMG
signal processing steps based on the OCEEMD and MSESEn
(Figure 2).

Step 1: Calculate the standard deviation σ of an sEMG signal
x(t). Use the CQPSO to search for an optimal d to
determine the amplitude of added white noise.

Step 2: Decompose the signal with white noise using the
CEEMD and obtain an IMF candidate c(t) and a residual
r(t).

Step 3: Calculate LSMI between c(t) and r(t). Compare LSMI
with the selected threshold θ empirically. If LSMI ≤ θ ,
keep this c(t) as an effective IMF and go to Step 4.
Otherwise, discard this c(t) as an invalid IMF and go to
Step 5 to adjust the residual r(t).

Step 4: Check whether or not r(t) meets the terminal condition,
that is, whether or not r(t) is a monotonous function
(Yeh et al., 2010). If it is, go to Step 6. Otherwise, take
this r(t) as a new signal x(t) and go to Step 1 to start
another level of decomposition.

Step 5: Remove the overlapping residual information using

r̃(t) = r(t)− LSMI× c(t), (24)

take this new residual r̃(t) as x(t), and go to Step 1.
Step 6: Calculate the spectrum of each IMF component,

reconstruct a new sEMG signal, f (t).
Step 7: Obtain the envelope of the reconstructed signal, f (t),

by calculating the demodulation spectrum based on
the HHT.

FIGURE 2 | Flow chart of sEMG signal processing.

Step 8: Calculate the MSESEn, and thus extract the feature.

In Step 3, if there is LSMI ≤ θ , which means there is little
overlapping between c(t) and r(t), c(t) and r(t) are orthogonal.
On the other hand, if there is LSMI > θ , it means that modes are
mixing between c(t) and r(t).

3. RESULTS

The presented method was used to process sEMG signals of all
the ten subjects. The processing results of a sEMG signal sampled
from the rectus femoris of one subject (age: 39, height: 163 cm,
weight: 60 kg) is used as an example to show the typical results.

3.1. Acquired Signal
sEMG signals were sampled at a frequency of 1000 Hz. An
original signal is shown in Figure 3. The horizontal axis is the
sampling time, and the vertical axis is the amplitude of the
sEMG. Figure 3A shows the sEMG signal for the whole length
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FIGURE 3 | Original sEMG signal and processing result: (A) sEMG for the whole length, (B) sEMG for the first 30 s, (C) sEMG from 2 to 5 s, and (D) spectrum of

sEMG from 2 to 5 s.

(N = 300, 000). Figure 3B shows the signal for the first 30 s. It
is clear from the figure that the period of the wave is about 3 s.
Considering that a period of wave reveals the pedal movement,
we chose the signal from 2 to 299 s for processing. Thus, the first
period is from 2 to 5 s (Figure 3C), and there are 99 periods for
the whole data set.

It is clear from Figure 3D that most frequency components of
the sEMG signal are in the range [10, 200] Hz.

3.2. Signal Decomposition and
Reconstruction
In addition to the OCEEMD, we also used the CEEMD and
the CEEMDAN for comparison. Decomposing the signal in
Figure 3D and obtained a series of IMFs (Figures 4A, 5A, 6A).
These IMFs represent the characteristics of the original signal
on different scales. Next, we got the spectrum of each IMF by
fast Fourier transform (FFT) (Figures 4B, 5B, 6B). Then, we
reconstructed a signal using effective IMFs extracted based on
useful spectral distributions (Figures 4C, 5C, 6C), and obtained
the corresponding spectrums (Figures 4D, 5D, 6D).

The spectrum of the second IMF in Figure 4B and that of the
second and third IMFs in Figure 5B are mixed with other modes.
But this does not appear in Figure 6B. This shows that mode
mixing is suppressed more successfully for the OCEEMD than
that for the CEEMD and the CEEMDAN.

sEMG signals are concentrated within a certain frequency.
The highest frequency is about 200 Hz in Figure 4D, 180

Hz in Figure 5D, and 150 Hz in Figure 6D. It suggests that
the reconstructed signal in Figure 6C has the minimum noise,
which shows that the OCEEMD outperforms the CEEMD and
the CEEMDAN.

The qualitative and quantitative analysis was carried out to
compare the three methods using the root mean square error
(RMSE), the number of IMF components, and the standard
deviation of the amplitude ratio, d (Table 2). The results reveal
the follows:

(1) RMSE of the reconstructed signal is 2.8986 × 10−4 for the
OCEEMD. It is much smaller than those for the CEEMD
and the CEEMDAN. Note that the smaller RMSE is, the

difference between the de-noised sEMG signal and the
original signal is. So, it means that the reconstructed signal
using the OCEEMD has the highest accuracy.

(2) The number of IMFs is 6 for the OCEEMD. It is much

smaller than those for the other two methods. This suggests
that the computational efficiency of the OCEEMD is higher

than that of the CEEMD and the CEEMDAN.
(3) d was adjusted in the OCCEMD and the CEEMDAN

to adaptively process decomposition, while it was fixed
in the CEEMD. A comparison between the CEEMD and
the OCEEMD shows that only the first value of d is

larger for the OCEEMD than for the CEEMD, and the

others are all smaller for the OCEEMD than for the
CEEMD. A comparison between the CEEMDAN and the
OCEEMD shows that only the first value of d is the
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FIGURE 4 | IMFs and spectrums using CEEMD: (A) IMFs of signal in Figure 3C, (B) Corresponding FFTs, (C) Reconstructed signal, and (D) Spectrum of

reconstructed signal.

same for both methods, and the others are all smaller
for the OCEEMD than for the CEEMDAN. It shows that

the OCEEMD has stronger adaptability than the other
two methods.

(4) The LSMIs of adjacent IMFs are less than 0.1 for the

OCEEMD. They are much smaller than those for the other
two. The adjacent IMFs of the OCEEMD have the minimum
coupling degrees, indicating that the OCEEMD suppresses

the mode mixing very well.

In summary, Table 2 reveals that the OCEEMD is superior to the
CEEMD and the CEEMDAN while de-noising sEMG signals.

3.3. Extracted Entropy
This study used the MSEEn to quantify the envelope spectrum
of a signal containing 99 periods in the whole pedaling process.
We took a coarse-graining processing to each data sequence with
different τ (τ ∈[1, 20]) (Figure 7).

In Figure 7, the relationships between the MSESEn, the time,
and the scale τ show that the MSESEn is low for τ in the range
[1, 3] and [15, 20]. The MSESEn is the largest when τ = 8. It
means that this scale has the largest correlation with the sEMG
signals. Picking out the relationship between the MSESEn and
the time for τ = 8 gives Figure 8D. It shows that the MSESEn

decreases from 0.7565 to 0.1038 along time. This shows a clear
declining trend.

Then we calculated the MSESEn of the original signal for
τ = 8 in Figure 3A. The distribution of theMSESEn (Figure 8A)
is scattered and is hard to judge the tendency. The MSESEn of
the original signal does not show a distinctive feature. However,
if we calculated the MSESEn of the reconstructed signals in
Figures 4C, 5C, 6C, we can easily observe the correlation of the
data and the trend of the muscle fatigue from the distributions
(Figures 8B–D). Moreover, we can observe that the regularity
and the decreasing tendency of the MSESEn in Figure 8D is
more obvious than that in Figures 8B,C. MSESEn clearly shows
the changing process of the muscle from fresh to fatigue. It has
the advantages of high concentricity, good monotonicity,
and relative consistency. These results also show that
OCEEMD is an effective preprocessing method for extracting
the MSESEn.

Then, we quantitatively analyzed two other indicators, ApEn
and SampEn, and compared them with the MSESEn for
the reconstructed sEMG signal processed by the OCEEMD.
Figures 9A–C show the distributions and the best fitting
straight lines for the three indicators. A comparison of them
shows that MSESEn in Figure 9C declines more significantly
and its distribution is more concentrated than ApEn in
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FIGURE 5 | IMFs and spectrums using CEEMDAN: (A) IMFs of signal in Figure 3C, (B) corresponding FFTs, (C) reconstructed signal, and (D) spectrum of

reconstructed signal.

Figure 9A and SampEn in Figure 9B during the development of
muscle fatigue.

Table 3 lists the gradients and intercepts of the trend lines
in Figures 9A–C. The absolute gradient of MSESEn is 0.0051. It
is 1.5 times larger than that of ApEn and more than 1.3 times
larger than that of SampEn. The intercept of MSESEn is 0.57.
It is larger than those of the ApEn and SampEn. These values
figure that, among these three indicators, the MSESEn dropped
the most, suggesting the MSESEn are the most sensitive to the
generation of muscle fatigue. Furthermore, Figure 9D shows a
box diagram of the three indicators. Clearly, the MSESEn has
the least data dispersion and thus the best robustness among the
three indicators.

3.4. Statistical Analysis
The goodness of fit, R2, was used to test 40 sEMG signals (four
muscles for each of the ten subjects). It measured whether our
method effectively extracted the features of the sEMG signals. It

is defined to be

R2 =

n∑
i=1

y2i −
n∑

i=1
(yi − ŷi)

2

n∑
i=1

y2i

, (25)

where yi is the ith extracted entropy and ŷi is the corresponding
value on the fitting line. We calculated R2 with the three
preprocessing methods and three feature extraction methods.

The average of R2, R2, with different methods is shown inTable 4.
It is clear from Table 4 that, compared with the CEEMD and

the CEEMDAN, the OCEEMD yields the largest R2 for three
different definitions of entropy. This indicates that the OCEEMD
extracts the entropy more effectively than the other two methods
do. Moreover, the MSESEn, which is the new one used in this
study, has the largest R2 than the ApEn and the SampEn. This
shows the advantage of using this entropy in this study.
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FIGURE 6 | IMFs and spectrums using OCEEMD: (A) IMFs of signal in Figure 3C, (B) corresponding FFTs, (C) reconstructed signal, and (D) spectrum of

reconstructed signal.

TABLE 2 | Comparison of CEEMD, CEEMDAN, and OCEEMD.

CEEMD CEEMDAN OCEEMD

RMSE 4.5347× 10−2 1.3275× 10−3 2.8986× 10−4

No. of IMFs 10 12 6

d ±0.27 0.32

0.37

0.28

0.22

0.21

0.16

0.11

0.11

0.09

0.07

0.03

±0.32

±0.26

±0.18

±0.12

±0.12

LSMI of adjacent

IMFs

0.5751

0.5826

0.3529

0.2529

0.1721

0.0819

0.0525

0.0427

0.7238

0.6147

0.4629

0.4588

0.3025

0.3126

0.1196

0.1064

0.1012

0.0828

0.0911

0.0866

0.0562

0.0104

4. DISCUSSION

The non-linear methods were explored to process the sEMG
signals. Figures 4, 5, 6, and Table 2 show that the CEEMD,

FIGURE 7 | MSESEn of reconstructed signal using OCEEMD with

different scales.

the CEEMDAN, and the OCEEMD have their merits. While
the number of IMFs is smaller for the CEEMD than for the
CEEMDAN, the de-noising effect is better for the CEEMDAN
than for the CEEMD. The features closely relate to their
decomposition processes as well as the intermittent and spectral
characteristics of sEMG signals. The CEEMD adds N sets of
Gauss white noise with the same amplitudes but opposite signs
to an original sEMG signal, and separately decomposes the 2N
new signals into mode components (Yeh et al., 2010). Since there
may have asymmetric mode components in sEMG signals, some
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FIGURE 8 | MSESEn of original and reconstructed signals for different methods: (A) original signal, (B) CEEMD, (C) CEEMDAN, and (D) OCEEMD.

FIGURE 9 | ApEn, SampEn, and MSESEn of OCEEMD: (A) ApEn (gradient: −0.0034), (B) SampEn (gradient: −0.0038), (C) MSESEn (gradient: −0.0051), and (D)

box diagram.

noise may remain in the signals when summing up and averaging
the components. The CEEMDAN adaptively adds white noise
to an original signal and yields the IMFs by obtaining a unique
residual at each decomposition level (Torres et al., 2011). This
method ensures that the noise does not transfer from the present

decomposition level to the next level, but the computational
expense is high and this method has some dummy IMFs.

Then, the OCEEMD further improves the performance. For
example, the number of IMFs for the OCEEMD is 38% less
than that for the CEEMD. This indicates the OCEEMD has high
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TABLE 3 | Gradients and intercepts for different indicators in Figure 8.

Gradient Intercept

ApEn −0.0034 0.32

SampEn −0.0038 0.39

MSESEn −0.0051 0.57

TABLE 4 | R2 with different methods.

CEEMD CEEMDAN OCEEMD

ApEn 0.8408 0.8613 0.8996

SampEn 0.8914 0.9039 0.9372

MSESEn 0.9423 0.9771 0.9806

decomposition efficiency. It might be due to that the OCEEMD
embedded the CQPSO and thus quickly found the optimal
solution of d. However, the d at the first level is larger. The
reason is that the standard deviation of the reconstructed sEMG
signal after using the OCEEMD is very small, which indicates
the reconstructed sEMG signal after using the OCEEMD was
de-noised very well. Other values of d are smaller, validating
the adaptability of the OCEEMD. For the LSMI, the correlations
between each IMFs are reduced by more than 80%. The results
are inseparable from the threshold criterion of the LSMI on each
level. The crucial step was only IMFs with very small LSMI could
be further decomposed to the next level. So, every adjacent IMFs
were irrelevant finally. Thus, there was no mode mixing in the
whole decomposition.

Figure 8 and Table 4 show that the OCEEMD is superior
to the CEEMD and the CEEMDAN. The MSESEn reveals the
trend of muscle fatigue. The trend can hardly be observed
from the MSESEn in Figure 8A because the original signal
was not preprocessed. Using the CEEMD, the CEEMDAN,
and the OCEEMD to preprocess the signal explicitly displays
the trend. As shown in Figures 8B–D, the MSESEn in
Figures 8B–D decreases over time. This indicates that these
methods are suitable for processing non-stationary sEMG
signals. In particular, the MSESEn for the OCEEMD is
well-lumped to show the trend (Figure 8D and Table 4). This is
because that the OCEEMD greatly reduces the mode mixing and
residual noise of IMFs.

The results in Figures 8B–D shows high consistency with
the conclusions in (Pincus, 2006; Pethick et al., 2019). The
MSESEn, like ApEn and SampEn, reflects the complexity and the
power distribution of sEMG signals in a frequency range (Pincus,
2006; Pethick et al., 2019). When a muscle begins contraction
during physical activity, the muscle fibers are activated and show
disordered discharge, producing a signal with widely distributed
power. At this point, the components of the sEMG signal are
complex, and the ratio of the power to total power is large.
Thus, the MSESEn is large. After a period of muscle contraction,
some muscle fibers are “tired” and the main muscle fibers still
participate in the activity. So, the power decreases. It is clear and
simple to detect the main components of the signal. Thereby,

the MSESEn becomes small. Thus, the decrease of the MSESEn
reveals the degree of muscle fatigue.

Compared to the ApEn and the SampEn, the MSESEn has
better centrality and robustness. Table 3 shows that the gradient
of the MSESEn increased by 33% compared with the ApEn and
25% compared with the SampEn. Tables 3, 4 also show that the
MSESEn has the best fitting effect. There are two reasons. First,
the OCEEMD decomposes the sEMG signals according to their
envelope spectrum characteristics. The MSESEn, which takes
into consideration “envelope spectrum entropy,” is sensitive to
the changing trend in sEMG signals. Second, sEMG signals have
unknown potential sequence patterns and related time scales.
The MSESEn, which uses multiple scales, provides additional
spatial statistics. So, the MSESEn decreases the most, suggesting
that it has the greatest correlation with muscle fatigue levels, and
thus it best reflects the changes of muscle fatigue. Furthermore,
this obvious downward trend indicates that it has good
anti-interference ability and facilitates the feature classification of
muscle fatigue in the next step. Therefore, MSESEn is a feasible
feature for analyzing muscle fatigue based on sEMG.

Overall, the OCEEMD, which integrates the LSMI and
CQPSO, is used to decompose sEMG signals to obtain some
IMFs with no mode mixing. This algorithm, along with the
next signal reconstruction by useful IMFs, aims to de-noise
and purify the signals. Then, the MSESEn of the reconstructed
sEMG is calculated to detect the process of muscle fatigue.
The test on the decomposition and reconstruction demonstrates
that the OCEEMD effectively suppressed mode mixing between
IMFs with fast iteration. Experiments on the extracted envelope
illustrate that the MSESEn displays muscle fatigue clearly. These
results show that our method has the potential to process sEMG
signals and measure muscle fatigue.

In this study, we devised the OCEEMD and MSESEn to
capture the features of sEMG signals reflecting the changing
trend of muscle fatigue. A 5-min pedaling experiment was
designed to record the sEMG signals and to verify the
effectiveness of our method. On the other hand, experiments for
different conditions, such as time duration and pedaling load,
may provide us a more comprehensive understanding of the
relationship between sEMG signals and muscle fatigue. They will
be carried out in the future.
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