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Traditionally the Perception Action cycle is the first stage of building an autonomous

robotic system and a practical way to implement a low latency reactive system within a

low Size, Weight and Power (SWaP) package. However, within complex scenarios, this

method can lack contextual understanding about the scene, such as object recognition-

based tracking or system attention. Object detection, identification and tracking along

with semantic segmentation and attention are all modern computer vision tasks in which

Convolutional Neural Networks (CNN) have shown significant success, although such

networks often have a large computational overhead and power requirements, which

are not ideal in smaller robotics tasks. Furthermore, cloud computing and massively

parallel processing like in Graphic Processing Units (GPUs) are outside the specification

of many tasks due to their respective latency and SWaP constraints. In response

to this, Spiking Convolutional Neural Networks (SCNNs) look to provide the feature

extraction benefits of CNNs, while maintaining low latency and power overhead thanks to

their asynchronous spiking event-based processing. A novel Neuromorphic Perception

Understanding Action (PUA) system is presented, that aims to combine the feature

extraction benefits of CNNs with low latency processing of SCNNs. The PUA utilizes

a Neuromorphic Vision Sensor for Perception that facilitates asynchronous processing

within a Spiking fully Convolutional Neural Network (SpikeCNN) to provide semantic

segmentation and Understanding of the scene. The output is fed to a spiking control

system providing Actions. With this approach, the aim is to bring features of deep learning

into the lower levels of autonomous robotics, while maintaining a biologically plausible

STDP rule throughout the learned encoding part of the network. The network will be

shown to provide a more robust and predictable management of spiking activity with

an improved thresholding response. The reported experiments show that this system

can deliver robust results of over 96 and 81% for accuracy and Intersection over Union,

ensuring such a system can be successfully used within object recognition, classification

and tracking problem. This demonstrates that the attention of the system can be tracked

accurately, while the asynchronous processing means the controller can give precise

track updates with minimal latency.
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1. INTRODUCTION

Understanding and reasoning is a fundamental process in most
biological perception action cycles. It is through understanding
of our visual perception that helps to inform our basic
decision-making processes like ‘friend or foe” and “edible or
inedible,” which ultimately is key to progression or survival.
Adding some level of understanding into this cycle can
help to deliver a robust robotic system that could perform
more complex variations of simple following and tracking
tasks. Computer Vision (CV) has made this understanding
a reality for robotics systems, with traditional CV methods
providing simple feature extraction at low latency, or modern
deep learning-based Convolutional Neural Networks (CNN)
providing state of the art results in almost every task with
high precision and accuracy, but at the cost of higher latency
and computation throughput. This often leaves the CNN
out of the reach of the small robotic system world due to
its lower power and computational specifications. Modern
research looks toward biological inspirations to help solve
these tasks, by bringing forward neuromorphic robotics, which
seeks to merge the computational advantages of system, such
as the neuromorphic event-based vision sensor (NVS) and
neuromorphic processors together, combined with Spiking
Neural Network (SNN) which can allow for processing and
control system structures. Typically a robotic system in this
domainmight aim to reach a Perception, Cognition, Action cycle,
while the simpler approach of Understanding as a step toward
cognition could be realized in an easier way, using the Perception
Understanding Action (PUA) cycle as a stepping stone toward
this goal.

Perception using neuromorphic vision sensors has become
a promising solution. An NVS, as for example the Dynamic
Vision Sensor (DVS) (Lichtsteiner et al., 2008), mimics the
biological retina to generate spikes in the order of microseconds,
in response to the pixel-level changes of brightness caused
by motion. NVSs offer significant advantages over standard
frame-based cameras, with no motion blur, a high dynamic
range, and latency in the order of microseconds (Gehrig
et al., 2018). Hence, the NVS is suitable for working
under poor light conditions and on high-speed mobile
platforms. There has been considerable research detailing
the advantages of using an NVS in various vision tasks,
such as high-speed target tracking (Lagorce et al., 2015;
Mueggler et al., 2017) and object recognition (Kheradpisheh
et al., 2018). Moreover, due to the fact that a pixel of
an NVS is a silicon retinal neuron represented by an
asynchronously generated spiking impulse, this can be directly
fed into Spiking Neural Networks (SNNs) as input spikes for
implementing target detecting and tracking in a faster and more
neuromorphic approach.

Understanding through asynchronous spiking event-based
computations like SNNs, often seen as the low latency biologically
inspired alternative to CNNs, could provide an alternative
solution to tracking and segmentation problems, through the
ability to only compute on the currently active parts of the

network, which in comparison to Artificial Neural Networks
(ANN) and CNNs can require orders of magnitude less power
consumption (Park et al., 2014). SNNs differ from normal
computation processing and take inspiration from closer to
biology, where expensive memory access operations are negated
due to computations and memory being exclusively local
(Paugam-Moisy and Bohte, 2012). Instead of using numerical
representations like traditional methods, SNNs use spikes to
transmit information with a key emphasis on the timing
of those spikes. Several methods exist to train SNNs, with
recent implementations seeing a conversion from CNN to
SNN (Cao et al., 2015; Hunsberger and Eliasmith, 2015; Kim
et al., 2019; Sengupta et al., 2019) yield promising results
and open SNN architectures to the wider Machine and Deep
Learning (ML-DL) audience. However, this method is still
burdened with the training computational overhead and does
little to utilize the efficiency of event driven computations. The
SNN’s Spike Time Dependent Plasticity (STDP) and spike-based
back-propagation learning have been demonstrated to capture
hierarchical features in SpikeCNNs (Masquelier and Thorpe,
2007; O’Connor et al., 2013; Panda et al., 2017; Kheradpisheh
et al., 2018; Masquelier and Kheradpisheh, 2018; Falez et al.,
2019). Both of these methods better equip the network to deal
with event driven sensors, where the significant gains over CNNs
could be realized.

This work aims to build on the already successful perception-
action models (Nishiwaki et al., 2003; Xie, 2003; Bohg et al.,
2017; Masuta et al., 2017) and add some semantic understanding
to the robotic system. With image segmentation seen as a
critical low-level visual routine for robot perception, a semantic
understanding of the scene can play an important role for robots
to understand the context in their operational environment. This
context can then lead to a change in the action that could be
undertaken. In this article, we show how using a spiking fully
convolution neural network for event-based segmentation of a
neuromorphic vision sensor can lead to accurate perception and
tracking capabilities with low latency and computation overhead.
Leveraging this spiking event-based segmentation framework to
feed a spiking control system allows the low latency to continue
from the perception to the action.

The PUA system presented builds on SpikeSEG, a spiking
segmentation network from previous work (Kirkland et al.,
2020), and extends it with a systematic approach to spike-based
object recognition with tracking, lateral inhibition classifications,
a new thresholding mechanism and modification to STDP
learning process. Moreover, differently from Kirkland et al.
(2020), the novel work presented is applied to a different
application context, i.e., object recognition with attention. In
light of this the novel contributions of this work include:

• SpikeSEGs segmentation output is integrated into a
spike-based control system to produce the Perception-
Understanding-Action system where the segmentation infers
the attention of the system to allow controller track updates.

• The revised network includes more features to enhance the
segmentation ability, including:
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– Lateral inhibition pseudo classification mechanism for
semantic segmentation-based attention.

– A new Pre-Empt then Adapt Thresholding (PEAT)
approach designed to deal with potentially noisy, corrupt
or adversarial inputs.

– Amodification to the STDP learning rules to include feature
pruning (resetting) if under/over utilized.

The rest of the paper is organized as follows. Section 2 reviews
related research topics covering each of the PUA framework
individual sections. Section 3 presents the methodology, with an
insight to each of the proposed system components. The results
are detailed in section 4 and section 5 provides the conclusion.

2. RELATED WORK

The allure of low latency object recognition and localization has
brought the attractive features of the NVS (mainly the DVS) to
the forefront of research. Early low latency control examples,
such as the Pencil Balancer (Conradt et al., 2009) and the
Robotic Goalie (Delbruck and Lang, 2013), help to highlight
the latency advantages that an NVS can provide. Exploiting the
sparse and asynchronous output of the sensor allow successful
applications to these low latency reactive tasks. However, both
systems fall short of fully capitalizing on the event-driven
asynchronous output, through a processing and control regime
of similar nature.

The concept of exploiting the NVS low latency continues into
object tracking. Low latency tracking relies upon robust feature
detection, with geometric shapes being ideal features to detect.
A number of methods have been implemented successfully,
such as geometric constraints (Clady et al., 2015) along with
advanced corner detectionmethods, as for example Harris (Vasco
et al., 2016) and FAST (Mueggler et al., 2017). The use of
more complex features, such as Gaussians, Gabors, and other
hand crafted kernels (Lagorce et al., 2015) provides a pathway
to modern Convolutional Neural Network feature extraction
approaches (Li and Shi, 2019), that implement a correlation filter
from the learned features of the CNN. This allows a multi-level
approach whereby correlations of intermediate layers can also be
performed to improve the inherent latency disadvantage of the
CNN approach, albeit with an accuracy trade-off.

Spiking Neural Networks have seen success with NVS data
used for object detection and classification (Bichler et al.,
2012; Stromatias et al., 2017; Paulun et al., 2018). Recent
work has implemented Spiking Convolutional Neural Networks
(Kheradpisheh et al., 2018; Falez et al., 2019) with NVS-like
data created using a difference of Gaussian filter, suggesting the
combination of SNNs and Deep Learning could yield successful
results (Tavanaei et al., 2019). SNNs have also been utilized for
tracking with an NVS through implementations inspired by the
Hough Transform (Wiesmann et al., 2012; Seifozzakerini et al.,
2016; Jiang et al., 2019), to be able to detect and track lines
and circles. Spiking Neural Networks can also be utilized to
implement control systems, from simple altitude control (Levy,
2020) to an adaptive robotic arm controller (DeWolf et al., 2016).
Ultimately the majority of research only utilizes one aspect of

the SNN, either processing or control. Even though SNNs have
been shown to implement a full perception cognition action cycle
with Spaun (Eliasmith et al., 2012), underpinning the ideology
of a fully spike-based neuromorphic system similar to that
proposed with the Perception Understanding Action framework
in this paper.

3. METHODOLOGY

3.1. Perception-Understanding-Action
Framework
The Perception-Understanding-Action framework specifies how
the system will utilize the asynchronous event driven nature
of the Neuromorphic spiking domain, and it is illustrated
in Figure 1. In the Perception block, the NVS is used to
sparsely and asynchronously encode the luminosity changes
within the scene. In the Understanding block, inputs are
understood through the use of the Encoder-Decoder SpikeCNN
[SpikeSEG (Kirkland et al., 2020)] contextualizing and building
understanding of the scene through semantic segmentation. In
the Action block, the segmented output is used to provide
an input to the spike counters at the edge of the field of
view, allowing a simplistic semantic tracking controller to be
realized. This control output would then be able to influence
motors or actuators to allow an asynchronous end to end
Neuromorphic system. This system aims to provide a low
latency competitor to the Perception Action robotic system
where the sensor input is directly fed to the controller, while
providing an upgraded feature representation to the more
complex line and edge detection-based approaches. The system
can even provide benefits or replace some computer vision-based
robotic tasks which utilize CNNs for complex feature extraction,
while providing lower latency and computational overhead.
Furthermore, compared to the CNN, the SCNN provides a
more readily understandable processing stage, where features are
sparse and more visually interpretable.

3.2. Perception
A key element in producing a low latency system with a low
computational overhead is to have a sensor that can exploit the
sparse and asynchronous computational elements of an SNN
while still giving a detailed recording of the scene. Neuromorphic
Vision Sensors (NVS) (event-based Vision Sensors) (Lichtsteiner
et al., 2008; Brandli et al., 2014) have recently become more
popular and widespread. These camera-like devices are bio-
inspired vision sensors that attempt to emulate the functioning
of biological retinas. They differ from conventional cameras
in that, they don’t record all the information the sensor
sees at set intervals. Instead these sensors produce an output
only when a change is detected. This in turn means they
are capturing the luminosity at a set point in time, meaning
a continuous temporal derivative of luminosity is output.
Whenever this happens, an event e = [x, y, ts, p] is created,
indicating the x and y position along with the time ts at
which the change has been detected and its polarity, where
p ∈ {1,−1} is a positive or negative change in brightness.
This change in operation not only increases the sparsity of the
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FIGURE 1 | Perception understanding action framework, with internal system diagrams showing the perception input [image from Caltech Dataset (Li et al., 2004),

the Understanding network SpikeSEG (Kirkland et al., 2020), and the Action controller method].

signal but allows for it to output asynchronously. Resulting
in microsecond temporal resolution and considerably lower
power consumption and bandwidth. These parameters make
the NVS an ideal candidate for object tracking, especially of
fast moving objects (Delbruck and Lichtsteiner, 2007; Glover
and Bartolozzi, 2017), however many methods are still yet to
utilize this spiking sensor within a match spiking processing,
such as SNNs.

3.3. Understanding Through Spiking
Segmentation
The Understanding of this system is inferred from the semantic
segmentation operation carried out by the SpikeSEG network
(Kirkland et al., 2020), seen in Figure 1within the Understanding
block. The SpikeSEG segmentation network has received a
number of improvements and upgrades along with its integration
within the PUA framework.

3.3.1. Network Architecture
The network architecture illustrated within Figure 1

(Understanding) is made up of two main sections seen in
green and orange, that relate to the encoding and decoding
layers, respectively. The network is split into these two
sections where training only occurs on the encoding side,
while the weights are tied to the mirrored decoding layers.
This allows a integrate and fire neuron with layer-wise STDP
mechanism with adaptive thresholding and pruning to be used
to help compress the representation of the input to allow the
decoding layer to segment the image based on the middle
pseudo classification layers. This encoding-decoding structure
symbolizes a feature extraction then shape generation process.
The learning of the encoding process aims to extract common
spatial structures as useful features, then decode those learned
features over to the shape generation process, unraveling the
latent space classification representation but with a reduction
in spike due to the max pooling process. The network has
nine computational layers (Conv1-Pool1-Conv2-Pool2-Conv3-
TransConv3-UnPool2-TransConv2-UnPool1-TransConv1)
as seen in Figure 1. Between the Conv3 and TransConv3
layers, there is a user-defined attention inhibition mechanism,
which can operate in two manners: No Inhibition, which

allows semantic segmentation of all recognized classes from
the pseudo classification layer; or With Inhibition, that
only allows one class to propagate forward to the decoding
layers. This attention not only provides a reduction in the
amount of computation, but also simplifies the input to
the controller.

3.3.2. Encoding
The encoding part of this system is derived from a basic
SpikeCNN with a simplified STDP learning mechanism
(Kheradpisheh et al., 2018). To allow the network to better suit
the framework and encoding decoding structure a number of
modification are applied. As the structure of the network is now
fully convolutional there is no longer a requirement for a global
pooling layer for classification. Instead the final convolution layer
is utilized as a mock classifier by mapping the number of known
classes to the number of kernel used for feature learning. This
method is also used to help the interperitability of the system as
having one kernel per classes allows for better visualization of
the network features. Through the use of a modified STDP rule
and adaptive neuron thresholding, the encoder aims to capture
the reoccurring features that are most salient through the event
stream inputs. The input events are fed into the network via a
temporal buffering stage, to allow for a more plausible current
computing solution, such as on the Intel Loihi Neuromorphic
chip (Davies et al., 2018), while ideally they would just be a
constant stream. To internally mimic the continuous data, 10 ms
of event data is buffered into 10 steps, representing 1 ms each
(this value of 10 ms is chosen to empirical testing and based
on the input spike count of the N-Caltech Dataset); this input
data stream is shown in Figure 2. Figure 2, also illustrates what
1 ms of data looks like over the 10 ms (A) and how it looks if
accumulated over 10 ms (B). Figure 2 then demonstrates how
added noise affects the input stream, repeating the images in
Figures 2A,B with noise in 1 ms steps in (C) and accumulated
over 10 ms in (D). For each time step in the encoding processing,
a spike activity map Skmt is also produced, wherem is the feature
map and t is the time step. This allows an account of the exact
spatial time location of each active pixel used in the encoding
processing, which helps allow the decoder to map these active
areas back into the pixel space.
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FIGURE 2 | Input event streams from N-Caltech Dataset “Face,” with (A,B) showing a 10 ms clip over 10 steps going from left to right. (A) Showing the input to the

network per step and (B) showing the accumulated inputs for easier visualization. (C,D) Show a 10 ms clip over 10 steps with additive noise to show how extra noise

affects the input stream, with (C) showing per step and (D) showing accumulated.

FIGURE 3 | Decoding using transposed convolutions with spike activity mapping, resulting in active pixel saliency mapping.

3.3.3. Decoding
The Decoding Process makes use of the same unpooling and
transpose convolutions as (Simonyan et al., 2013; Zeiler and

Fergus, 2014; Long et al., 2015; Badrinarayanan et al., 2017)
taking pixels in the latent classification space back into the
original pixel space. However, no learning mechanism is used,
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as the mapping is based on temporal activity and pixel saliency
mapping, utilizing a similar method to tied weights (Hinton
et al., 2006) and switches (activations within the pooling layers)
from the encoding layer to map directly to the decoding such
that Wij(encoding) = Wji(decoding). This modification is required
to deal with the temporal component of the spiking network,
as now the latent pixel space representation must be unraveled
with the constraints and context of space and time. Changes are
made to both the transposed convolutions and the unpooling
layers. The transposed convolution still functions as a fractionally
strided convolution of the weight kernel as normal. However,
now an extra step of comparing the output mapping with a
temporal spike activity map of the post-convolution pixel space
is required as illustrated in Figure 3, where the conventional
Input via Kernel to Output stage remains, with an added
Spike Activity Map check on each term in the output for
temporal causality.

Since the encoding neurons emit at most one spike per
buffered time input, the Spike Activity Map is used to keep
track of the first spike times (in time-step scale) of the
neurons. Every stimulus is represented by M feature maps,
each constitutes a grid of neurons seen as a kernel value
K, equal to the row-major linear indexing of the kernel. Let
Tp be the processing steps between the tied encoding and
decoding layer with a maximum possible difference of nine
processing time-steps (five encoding and decoding layers each).
While each encoding layer has a value Tem,k, which denotes
the spike time of the encoding neuron placed at position
(k) of the feature map m, where 0 ≤ m < M, 0 ≤

k < K. The individual decoding layer then considers this
stimulus as a three-dimensional binary spike tensor S of size
Tpmax × M × K where a spike in the decoding layer Sd is a
function of:

Sd(Tp,Te,m, k) =

{

1 Tdm,k = Tem,k + Tp

0 otherwise
(1)

Where the decoding time Tdm,k for each map and kernel value
is compared to the equivalent encoding layer Tem,k offset by the
processing time Tp. It is this Tem,k+Tp that is represented by the
Spike Activity Map shown in Figure 3 where Skm,t is illustrated
as the process ensuring Tdm,k = Tem,k + Tp while “Output”
demonstrates an example of the transposed convolution process.
To reduce memory overhead only the last 9 Spike Activity Maps
as this is the minimum requirement to ensure temporal causality.
Within Figure 3, the green and orange squares represent the
transposed convolution outputs and the green, orange and black
outputs represent the outputs from the transposed convolution
decoding that also matched up with encoding layer, through
correlation with the Spike Activity Map. This demonstrates how
the Spike Activity Map reduces the “Output” values to only
those with equivalent temporal values. The saliency mapping
occurs within the unpooling layers which operate on a similar
manner in order to keep temporal causality, but due to the max
pooling operation working in reverse only one pixel per pooling
kernel is processed. With reference to Figure 3, this would mean
the orange kernel would only have one active square, which

reduces the output significantly. The measure allows only the
most salient features to propagate through the decoding layers,
resulting in the segmentation with only those features that best
fit the pseudo classification. A verbal illustration being, if there
are nine time steps between Conv-1 and TConv-1, while only five
steps between Conv-2 and TConv-2 and one step between Conv-
3 and TConv-3. So, if a spike occurs at time step 2 within Conv-1,
the temporal check will only allow TConv-1 to allow a spike at
that location at time step 11.

3.3.4. Adaptive Neuron Thresholding
The adaptive neuron thresholding used within this paper builds
upon the Pre-Emptive Neuron Thresholding (Kirkland et al.,
2019, 2020). Improvements are made by no longer solely
relying on synaptic scaling from the input number of spikes
as a means of homoeostasis. Although this was successful
in stopping the progression of less structured noise features
within the first convolution layer and structured noise when
synaptic scaling was applied to all layers. Along with the
structured noise filtering process, this homoeostasis rule also
accidentally removes some of the less common desired features
from propagating as discrimination between these and noise
from input spike count is insufficient. The update to the
algorithm sees an adaptive element in the form of intrinsic
layer-wise synaptic scaling (a layer-wise spike counter) added
to the thresholding parameter to potentially counter this less
common feature removal. During training the thresholding is set
as follows

Vthr(Sin , Sl) =































Kl
4 for Sin < Sin(min)

c+mVthr + h− for Sl < Hl

c+mVthr + h0 for Sl = Hl

c+mVthr + h+ for Sl > Hl















for Sin(min) < Sin < Sin(max)

Kl
2 for Sin > Sin(max)

(2)

Where Vthr is the neuron threshold, dependent on both the
spiking input rate, Sin, and the layer-wise spike rate, Sl. m is
gradient of the linear relationship between Vthr and Sin, with c
being the y-intercept. h the homoeostasis offset is determined
to be either positive, negative or zero dependent on the layer-
wise spike count, Sl when compared to the set homoeostasis
value Hl. While Kl is the convolution kernel size within that
layer. The equation follows a piecewise function such that Vthr

is described as {Vthr ∈ N |
Kl
4 < Vthr <

Kl
2 }. When the

spike input rate Sin is within a normal range, the function is then
defined by the bounded linear relationship with the homoeostasis
offset. The values of h−, h0, h+ and Hl are set through empirical
testing by monitoring the range of Sl and Sin values from the
N-Caltech dataset.

Once training is complete and the features within the
convolution kernels are known, the thresholding changes to take
into account the size of the feature, as the range of threshold
values might now be smaller than in the training stage. This
modification changes the outer bounds of the threshold as shown

Vthr(Sin , Sl) =































Fmin
2 for Sin < Sin(min)

c+mVthr + h− for Sl < Hl

c+mVthr + h for Sl = Hl

c+mVthr + h+ for Sl > Hl















for Sin(min) < Sin < Sin(max)

Fmin for Sin > Sin(max)

(3)

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2020 | Volume 14 | Article 568319

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Kirkland et al. Perception Understanding Action

Where Fmin is the smallest feature size within that layer. This
parameter change ensure the threshold value does not exceed the
smallest feature size, which would result in that neuron being
unable to reach firing potential. In both cases the training and
testing the input spike count Sin value affects the threshold for
each input spike buffer, while the layer-wise spike count Sl is
average over 10 inputs.

This allows a layer-wise adaptability dependent on the amount
of spiking within the previous layer. The algorithm now permits
a high volume of spiking activity at the input to be initially pre-
emptively dealt with, ensuring a large amount of spiking activity
does not reach the controller, causing an undesired response.
Then adapting the thresholds to allow sufficient spiking activity
ensures a smoother and more robust controller output of the
system. The key element of thismethod is to ensure amore robust
and predictable outcome when a noisy, corrupt or adversarial
input is received. With this being more of a concern due to the
system be asynchronous end to end, a high volume incoherent
input could directly lead to a wild or undesired response from
the controller. This approach errs on the side of caution with the
sudden increase in input spikes being inhibited first, and then
excited to a desired level, in contrast to a typical intrinsic response
of allowing the activity, and then inhibiting to a desired response.

3.3.5. Changes to STDP Training With Active Pruning
A simplified unsupervised STDP rule (Bi and Poo, 1998;
Kheradpisheh et al., 2018) is used throughout the training
process, including a Winner Take All (WTA) approach to STDP,
that operates by only allowing one neuron (feature) in a neuronal
map (feature map) to fire per time constant; this is viewed as
an intra map competition. This WTA approach then moves onto
the inter map inhibition, only allowing one spike to occur in any
given spatial region, typically the size of the convolution kernel,
throughout all the maps. As a result of these inhibition measures,
two features can tend toward representing the same feature until
such point where one becomes more active, while the other
gets inhibited to the point of infrequent or no use. At this
stage the feature representation has become obsolete and can be
pruned or reset, allowing the opportunity to form another more
useful feature. To capture this information the layer-wise training
method make use of the training layers convergence values

Cl =
∑

k

∑

i

wki(1− wki)

nwki

(4)

Where Cl is the convergence score for the layer and wki is the
ith synaptic weight of the kth convolution kernel. The nwki

is the
number of individual weights contained with the layer calculated
by kernel size and the number of kernels in the previous and
current layers, nwki

= K × kpre × kcur . The pruning function
makes use of the convergence score that is typically used to
indicate when training is complete, as the convergence tends to
zero due to the weights tending to 0 or 1. Noticing that the
layer-wise convergence is just a sum across all the kernels allows
a modification to calculate the convergence across each kernel

within that layer with respect to all previous maps.

Ckcur =
∑

kpre

∑

i

wkprei(1− wkprei)

nwkprei

(5)

This new terms Ckcur allows monitoring of each kernel during
the learning process, as previously mentioned obsolete kernels
that learned similar features are less active, resulting in higher
convergence numbers while maintaining a high spiking activity.
The high spiking activity is due to the kernel maintaining the
high starting weight value which are random values drawn from
a normal distribution with the mean of µ = 0.8 and standard
deviation of σ = 0.05. However, the kernel does not exhibit
a feature that allows it to spike quick enough to receive a
weight update from the STDP WTA rule. As the kernel had
already started a convergence to a particular feature, once under-
active it then attempts to convergence to another commonly
occurring feature. However, the kernel often convergences to
a useless feature representation that is unhelpful to the final
result of the network. This pruning method, rather than simply
removing the kernel, gives it the chance to learn a new feature
from scratch by resetting the kernels weights. Thus, allowing
the best chance of convergence to a useful feature. This pruning
process takes place once the convergence value of the layer Cl
drops below the original starting value. As initially the weights
are deconverging from the mean weight initialization, before
returning to the original convergence value on the way to zero.
Once this milestone has been reached the pruning function
in activated

Prunekcur (Ckcur ,Cl , Sk) =

{

1 for Ckcur > C̄l + 1σCl
and Sk > S̄l + 3σSl

0 otherwise
(6)

where C̄l is the mean convergence for that layer, σCl
is the

standard deviation of that layers values, Sk is the spike activity
within an individual kernel. S̄l is the mean spike count of that
layer and σSl is it standard deviation. If a kernel value has a
convergence score higher than 1 STD from the mean while
having a spiking activity 3 STD higher than the mean spike
rate in that layer, the kernel is reset with the initial weight
distribution. Since many of the kernels are already converging to
useful features this newly reset kernel will convergence to a new
unrepresented feature.

3.3.6. Latent Space Inhibition for Attention
In order to have the network change its focus or attention, the
latent space pseudo classification layer also acts as an inhibition
layer for this mechanism. This operates by inhibiting other
neurons in that layer if a specific neurons feature is chosen to
be the attention. This is an external mechanism to the network as
otherwise, the network will give equal attention to the full scene
and semantically segments all known objects within a scene. This
allows a simplification of the output of the network fed to the
controller, allowing the attention of the system to be narrowed to
that particular pseudo-class. This segmentation-based attention
can then be used to follow a given class dependent on the
output of the controller. It operates between convolution layer
3 and trans-convolution layer 3 with the same principals as the
inter map inhibition with the encoder, though now the spatial
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region is the whole latent space. This inhibition can also work
autonomously where the pseudo-class with the most activity is
the attention of the network, allowing the network to switch
attention to known classes based on their prevalence within
the scene.

3.4. Tracking With Attention
The Action part of the system with its spiking controller is
directly influenced by the attention mechanism, as when no
attention is chosen the controller acts on all the segmented
data being output by the SpikeSEG network. This could cause
unwanted control output if the scene contained more than one
known class, as unknown classes should still be removed by
the process. Once a class has been chosen as the attention, the
segmentation output is reduced to only that class, as illustrated
in Figure 1 (Action), which allows for simple spike counter
controller to produce a more robust and reliable output. The
reduction in information initially by the NVS which then further
reduces through the semantic segmentation and attention, allow
the implementation of this simple spike counter. This is due to
the segmentation output only containing information relating
to the attention of the network, the controllers task is just to
keep this in the center of the field of view. The simplicity of the
controller also allows it to take advantage of the asynchronous
event-driven system to provide low latency tracking updates a
key element of the system. However, if there was more than one
instance of a class in a scene there is no way to separate the two
instances, so tracking would be based off all instances of a class.
Nevertheless, this system would make an improvement over the
purely spiking activity tracking systems by adding some semantic
context to the activity, while the simplified spike counter in this
instance allows class based tracking could be enhanced withmore
complex spike tracking, such as dynamic neural fields (Renner
et al., 2019)

4. RESULTS

In this section, a series of experiments on individual and multi
event-stream recordings are presented. The metric used in this
paper is the Intersection over Union (IoU, also known as the
Jaccard Index) to grade the segmentation, which guides the
control system of the network and ultimately, with user choice,
the Attention of the system. This metric was used due to the
availability of the bounding box annotations within the subset
of the N-Caltech dataset that was used within the experiments.
The feasibility of the attention-based tracking is also encapsulated
within the IoU value, though due to the small saccademovements
of the camera within the N-Caltech dataset, it is infeasible to
use this to highlight spike-based tracking. This is due to two
issues throughout the movements. The first is the IoU value only
receives a small change as the displacement is often <10 pixels.
The second is that the occurrence of segmented spike activity in
the controlled regions, is due to the tight field of view around
the class in scene. This results in the testing of the Perception
and Understanding system only with this data. To ensure testing
of the full Perception, Understanding, and Action system, two
further experiments were carried out. The first with multi input

streams on a large input space and the second using our own
captured DVS data of a desk ornament with a hand held sensor.
Lastly, the results sections show how the system is more robust
and interpretable than alternative models, with the use of the
Pre-Empt and Adapt Thresholding and the contour like sparse
features within the weights of SpikeSEG.

Within these experiments the step time for any processing is
now linked to the input time step, meaning internal propagation
of spikes takes one step (or 1ms) per layer, resulting in a 11ms lag
to get the segmented results. This allows for better visualization
of the asynchronous manner of the processing and control for
each step. However, this does not reflect the actual processing
time of the network which, given its complexity compared to
similar models ran on neuromorphic hardware, would most
likely be able to execute this task in real-time for the 1 ms step,
meaning a full pass through the network per input step. However,
testing in this manner would not fully highlight the asynchronous
advantage especially within a dynamic environment.

One further note is that throughout all the testing the features
of Convolution Layer 1 are pre-set to best found features for
initial edge detection, which results in a horizontal, vertical and
two diagonal lines which can be see later in the Interpretablity
section 4.3.2 within Figure 14.

4.1. Perception to Understanding With
Segmentation
Initially two subset classes from the N-Caltech dataset (Orchard
et al., 2015) are used to evaluate the Understanding section of
the system. On this single stream input typically only containing
a singular class with variable amounts of background noise and
clutter, the network is able to gain an accuracy of 96.8% within
the pseudo classification layer and a 81% mean Intersection
over Union score over each of the 10 ms buffered input that
resulted in successful segmentation, results are also shown in
Table 1. This is an improvement on the single results seen within
(Kirkland et al., 2020) of 92 and 67% for accuracy and IoU,
with the improved feature creation allowing a more detailed
representation allowing an improvement in both the accuracy
and segmentation. The test results are based on training with 200
samples from the Face and Motorbike classes with another 200
used for testing. This number was limited as the “Easy Faces”
has just over 400 images and was converted into “Faces” within
the N-Caltech dataset with the “Faces” category being removed.
Four hundred images provided an equal training set between
the Face and Motorbike classes. The images in Figure 4 shows
how the segmentation process was completed firstly through
encoding the event stream input through three convolution and
two pooling layers (Figures 4B–D,I–K), resulting in a sparse
latent space representation used to provide a classification of
this binary task (Figures 4D,K). Figure 4, then shows how the
classification locations are thenmapped back onto the pixel space
through the undoing of the three convolutions and two pooling
layers (Figures 4E–G,L–N). For illustrative purposes, both the
face and motorbike are accumulations of the network activity
according to 10 ms input buffer and full propagation of spikes
through the network. Each convolution process is shown, with
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TABLE 1 | Results from each of the experimental setup, listing both the accuracy

and intersection over union.

Dataset Classification

accuracy (%)

Intersection over

union (%)

N-CalTech (2 class) 96.8 81

N-CalTech (5 class) 86 76

N-CalTech (10 class) 75 71

Multistream N-CalTech 96.8 81

Multistream N-CalTech with noise 95.1 79

Panda 94 75

pooling omitted, Convolution Layer 1 is shown in Figures 4B,I

while layer 2 (Figures 4C,J,D,K) showing the third convolution
also used as pseudo classification. Figures 4E,L show the second
transposed convolutional layer, named to mirror the encoding
side, while Figures 4F,M show transposed convolution 1 and
Figures 4G,N display the segmented outputs. This segmentation
result is shown overlapped onto the input for two examples
within Figure 4. The colors used within Figure 5 are linked to
the corresponding feature that was activated in that layer with
Figures 4C,J showing different colored features active for each
the face and motorbike, with section 4.3 exploring what the
feature maps contain. This output from the SpikeSEG network
can feed directly into the spiking controller of the PUA system,
guiding any movement that would be required to follow the
attention of the system. Although the controller in this context
is unable to operate due to the narrow field of view and limited
movement, the Understanding section of the system does still
capture this small saccade movement of the camera within the
segmented output as seen in this overlapped output image,
Figure 6A showing a downward and right shift of the segmented
pixels over time, relating to the inverse movement performed by
the camera, while Figures 6B,C show the two further saccade
movements. The segmentation also maintains an IoU value of
above 0.7 throughout the movement, meaning the segmentation
is of good quality throughout (0.5 being acceptable, 0.7 being
good, and 0.9 being precise) (Zitnick and Dollár, 2014), for
reference if the full input size is used for IoU the average output is
∼0.57. Consequently, this means tracking would still be possible
through alternative non-spiking methods such bounding boxes
or centroid/center of mass calculation, but would remove the all
spiking asynchronous feature of this system.

4.1.1. N-Caltech Dataset Extended
To further evaluate the scalability of the model, a further two
experiments are carried out with 5 and 10 classes. This allowed
testing the model with 2, 5, and 10 classes within the same
experimental parameters, that being 16 features per class in
second convolution layer and 1 per class in the third convolution
layer, with active thresholding and pruning. Sixteen features was
found to be a suitable value for number of features through
prior empirical testing, where more features gave no further
improvement, while less features was unable to capture the

variation of some classes. The further classes added are: Inline
Skate, Watch and Stop Sign for the 5 class, while Camera,
Windsor Chair, Revolver, Stegosaurus and Cup are added for
the 10 class experiment. These classes are chosen due to low
variability in image spatial structure. As the network is only
looking for natural spatial structural similarity avoidance of
classes which have a large intraclass variance compared to the
overall interclass relationship (Zamani and Jamzad, 2017). With
this in mind and due to some the additional classes having
a smaller number of sequences, the number of training and
testing instances was changed to suit, at 20 training and 10
testing. Overall the network was able to achieve classification
accuracies of 86 and 75% and IoU values of 76 and 71% for
the 5 and 10 classes, respectively, results are shown in Table 1.
The decrease in overall accuracy with additional classes is to
be expected at the features built in the second convolution
layer tend to get more similar. This is visually detailed in
section 4.3.2 with the Interpretability showing the different
features learned in the convolution layers. With this closer
similarity of layer-wise features, an example of how the active
pruning mechanism is shown in Figure 7, where a number of
the features within the second convolution layer have a slower
convergence rate while maintaining a high spike activity. This
typically suggests the feature is not very discriminative and
is an ideal candidate for being reset to learn a new feature.
Figure 7, shows the original features just prior to reaching the
pruning check point within (A), then indicates which features
are chosen to prune with the feature being reset to random
initialization within (B), the finally resulting in new features
shown in (C).

Drawing insight from the result, within the 5 class experiment
the inter class variance was high. However, once the 10 classes
were added this inter and intra class variances seems to overlap.
Resulting in many of the classes relying on similar features
constructed from circles, with Motorbike, Cup, Camera, Watch,
Stop Sign, and Face at times producing features are that
undistinguishable from one another. It was also noted that as
the number of classes increased the difference between average
number of features in a kernel per class (that is ones that can be
recognized as belonging to a particular class) leads to a higher
likelihood that the class with the highest average feature number
will be the most active. Within the last experiment with the 10
classes this was prevalent within the Revolver class as it had an
average feature count in convolution layer 2 of around 200, while
the average for camera was 110. This results in a higher chance
that the revolver was classified by mistake ultimately bringing the
overall accuracy down.

4.2. Perception, Understanding, and Action
This section is split into two parts both further testing the full
PUA system, the first continues using the N-Caltech Dataset,
however with multiple simultaneous inputs. The second part
makes use of recorded data of desk ornament from a hand-held
NVS to provide a further example of how the systemworks within
another test environment and how the action part of the system
deals with a moving class.
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FIGURE 4 | Segmentation performance of the network on an example face (A–G) and motorbike (H–N), highlighting the encoding transition into the latent space

used for pseudo classification (A–D,H–K), then retracing of chosen features back to pixel level (D–G,K–N).

FIGURE 5 | Segmentation overlays for the (A) Face and (B) Motorbike class from the N-CalTech dataset.

4.2.1. N-Caltech Mutli-Stream Input
Building upon the results gathered from the successful process
in section 4.1, this experiment looks at how the system would
deal with multiple input streams. This allows the network to
demonstrate the segmentation ability in the face of multiple
distractors and spatio-temporal Gaussian noise with an average
PSNR of 18 dB, an example of the input with and without noise is
shown in Figures 8A,B, respectively. Figure 8 also demonstrates
the layout of the new input image, which is based on the Face
class subset, but is three times the size to make a 3 × 3 grid
where each corner and the center will host an input stream.
Each stream is presented for 300 ms (dictated by the recording
length in the dataset) then some of the locations are changed

and the next stream is played. The input streams illustrated
in Figures 8A,B, consist of one face and two motorbikes for
the known classes and two Garfield streams for the unknown,
with Figure 8B demonstrating the affect of noise on the input.
This gives an opportunity to display the asynchronous layer-wise
spike propagation once thresholds have been surpassed, while
also offering an insight into how an SNN reduces computational
throughout with this thresholding value.

Figure 9 displays both this asynchronous throughput of
activity and how the network reduces the numbers of
computations, even when presented with noise and distractors,
with the time axis showing an accumulation of spikes to ease with
visibility. Figure 9 shows that by Conv 1 the added noise is mostly
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FIGURE 6 | Overlapped Segmentation output over the complete event stream, showing the triangle of movements over the three saccades, (A) first movement, (B)

second movement, (C) third movement.

FIGURE 7 | Features from the second convolution layer during training highlighting the pruning process. (A) Highlights the features prior to pruning, (B) shows which

feature were reset to initial parameters, and (C) shows the newly learned features.

removed as it lacks any real structured shape, but the distractor,
Garfield, remains and progresses onto Conv 2. During this layer
though, due to its low saliency with any of the learned features for
the classes of Face or Motorbike the distractor is removed from
the processing pipeline. This leaves only the two known classes,
which then progress onto the Conv3 layer, then through the
decoder layers to the output where they are successful segmented.
When testing the multi-stream input without any noise the
accuracy and IoU value is identical to the single stream instance
at 96.8 and 81%. Then with added noise this value sees a slight
reduction to 95.1 and 79% for accuracy and IoU, these results
are also shown in Table 1. The decreases being attributed to
the noisy pixels directly contacting or occurring within the class
boundary, as the network has no real way to discern this noise
from actual data. This is clearly shown within the segmented
output comparisons shown in Figure 10, where the noiseless

output (A) and the noisy (B) show considerable difference in their
respective segmentations with far more diagonal lines present in
the noisy output (B) in comparison to (A). This outcome could
have been predicted and will be highlighted in section 4.3 as the
first layer of the network has a larger feature representation for
the diagonal line when compared to the horizontal and vertical
lines, withmore pixels allocated to representing the diagonal lines
rather than horizontal and vertical, due to the larger variety of
edges this feature had to represent. Meaning relatively with the
same threshold the diagonal feature is more likely to be activated
than the horizontal and vertical.

With the segmentation successfully output the spiking
controller now has less spiking activity so should find it easier
to be able to track a given class. The tracking starts once the user
has made a selection of which class is to become the attention
of the network. Experimentally this was tested by selecting the
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FIGURE 8 | Example of input for the Multi-Stream Input without noise (A) and with noise (B), both with extra gridlines indicating the 3 × 3 grid which determines the

initial location of the inputs.

attention after two successful multi class segmentation examples
where the stream inputs were repositioned. Figure 11 displays
the outputs of the three inputs (A–C) with their subsequent
paths to segmentation. Figure 11 shows that for inputs (A,B)
the network is correctly segmenting the input and displaying an
output with a highlighted segment displayed in the 3 × 3 grid.
It is only in Figure 11C that the guided attention mechanism
is triggered causing the inhibition of the other class in the
propagation between layer Conv 3 and T-Conv 3. This feature
is highlighted with the red circle showing which neurons are
now no longer represented in the subsequent layer and thus no
longer computed out to the segmentation, highlighting part of
the efficiency in SNN. The last section of the diagram in Figure 11
highlights the attention of the network being drawn to the face
located on the bottom left of the grid, which in the spiking
controller would result in an output of left and down to ensure
the face is located within the central region. The arrow within
the Figure 11C also indicated the movement of the track update,
which is based off the central region as within the previous two
sequences the multiclass attention doesn’t give a control output.
This attention-based tracking update is delivered within 34 ms
or 34 input steps, which with the 11 ms processing lag with
each layer to propagate through the network results in a 31 ms
delay within the 300 ms input stream. This may seem like a
considerable amount of time, but as shown in both Figures 2,
9 due to the way the N-Caltech dataset was recorded, the first
30 ms of the recording contains very little information due to
the lack of movement with the main concentration of spiking
activity during the middle of each of the saccade movements.

To test this the first 30 ms of events were removed from all the
input streams which result in a reduction in track update to 15
ms and with the offset of 11 ms to progress through the network
means a 4–5 ms latency to get from input to a control output
if the processing could be done in real-time. However, even this
latency is mainly from the initial delay in spiking activity within
the network first layer, suggesting once running the latency would
decrease. This would make it a highly competitive alternative or
efficient middle ground between highly precise CNNs and low
latency edge detection systems. Furthermore, the total number of
average calculations represented by the images seen in Figure 11

is only ∼9% of the total available calculations (equivalent CNN)
due to the sparse nature of both the features and the SNN
thresholding processing. Approximately 10% of capacity is used
in the encoding process and∼5% in the decoding process, which
is visualized in both Figures 9, 11.

4.2.2. Tracking From Handheld NVS
For this section, the SpikeSEG network was retained to be
able to identify a panda desk ornament and aims to better
highlight the control and tracking aspects of the PUA system.
The input stream recorded from DVS346 NVS has the panda
start on the far left in the field of view then the camera pans
to the left resulting in the panda being on the far right, with
an example of the input images shown in Figure 12A. The
results detail how well the segmentation would work within this
example, with the extra complexity of 3D shapes and natural
indoor lighting conditions. Overall the results of the 1 s test
stream, show that only 60 ms (6%) of streaming footage failed
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FIGURE 9 | Full Layer-wise spiking activity for the system, showing the progression of spikes through the network encoding then decoding section into the

segmentation output.

to produce a segmentation output. This also occurs at the points
where the least amount of movement of the camera happens,
the turning points, subsequently producing fewer output spikes.
Nevertheless, this results in no actual loss in tracking accuracy
as the panda object stayed within the previous segmentations
IoU bounding box. Furthermore, the IoU for this test stream
was 75%, shown in Table 1, perhaps lower than expected given
the high level of accuracy within the classification/segmentation

process. This is illustrated in Figure 12A where the middle
section of the panda is not well-resolved by the sensor, meaning
on occasion the segmentation output was only of the top
or bottom section. Figures 12B–D also show the full system
process for the two different control outputs of moving left (D)
and right (C), that is when the segmentation area enters the
proximity of the spike counter at the edges of the output image.
Within Figure 12D there is also an example of how the system
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FIGURE 10 | Segmentation overlays for the (A) Multi-Stream Input and (B) Multi-Stream Input with noise, including the classes Face, Motorbike, and Garfield from the

N-CalTech dataset.

overcame a background object that could have affected simpler
approaches, as originally the input image had a background
object on the right hand side of the image. Due to the feature
extraction and segmentation, the background object was unable
to influence the controller which without the Understanding-
based segmentation would have had spiking activity in both left
and right spike counters.

4.3. Robustness and Interpretability
This section highlights two key features of utilizing an SNN
approach for this framework, the first is system robustness,
especially that pertaining to Perception and Understanding (the
sensor and processing) and how that affects the Actions of the
system. The second feature is that of interpretability something
that is not often not associated with CNN type approaches.

4.3.1. Robustness
The added robustness of the PUA approach comes from
the Understanding section within the PEAT (Pre-Empt then
Adapt Thresholding) mechanism. As mentioned in section
3.3.2, the buffering of input spikes allows a spike counter to
be implemented, allowing a pre-emptive rather than reactive
approach to the thresholding within the network. Permitting
synaptic scaling homoeostasis to increase the threshold values

on all layers, ensuring noisy or adversarial inputs are mitigated
first. Subsequently, if the spike level persists the threshold levels
using an intrinsic homoeostasis may be adapted. An example
of this system at work is illustrated within Figure 13, with (A)
showing a multi-stream input with no noise, then the input is
corrupt with noise in (B–D) showing the resulting effects of
the noise throughout the system with and without the PEAT
mechanism active. The PUA framework implements the regime
that no output is better than an incorrect output, especially
when the input is degraded due to noise or adversarial sensor
values. This robustness features is highlighted in the output of
Figure 13B which is incorrect and if passed to the controller
could cause an undesired response, meanwhile in Figure 13C the
PEAT is seen to allow the network to threshold the noise level
resulting in no segmentation output. Incidentally, Figure 13D
could be the adaptive outcomes of both approaches (B,C), it is
just intermediate control output suppression that adds an extra
level of robustness to the system.

4.3.2. Interpretability
The interpretability of a system is often overlooked when values
of accuracy or precision appear to be high. But understanding or
gaining some insight into how the system got to an answer could
be a valuable advantage for SCNN compared to conventional
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FIGURE 11 | Image showing three separate multi input data streams. (A,B) both representing the full system layer-wise computations when no attention is selected,

while (C) shows the layer-wise computation after the Face class has been selected as the attention of the network, thus enabling a simplification of the output and

activating the action part of the system with a tracking controller update.

FIGURE 12 | (A) Panda Input Image, (B) Panda being in the middle in the field of view, (C) Panda reaching rightmost boundary triggering a control action, (D) Panda

reaching leftmost boundary triggering a control action.
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FIGURE 13 | Highlighting the Robust noise suppression with the Pre-Empt then Adapt Thresholding mechanism. (A) Showing no noise input as reference, (B)

Showing noisy input without PEAT active, resulting in noisey output, (C) Pre-Emptive Thresholding causing over suppression of neurons resulting in no output, (D)

Shows the input to output with PEAT active, suppressing the noise but allowing the useful data to pass through.

CNNs. As SCNN trained using STDP happen to produce a
sparse feature variation of typical CNN outputs, the SCNN
results in features that are more akin of those from contour
matching papers (Barranco et al., 2014) while CNNs typically
take on features that resemble textures (Olah et al., 2017). These
texture maps are often hard to interpret, although modern
approaches have found ways to highlight the most salient parts
of an input with reference to these texture maps. Nevertheless,
it is still often difficult to predict how the system might react
to an unknown input. The features that were learned for
the testing of the N-Caltech dataset used within this work
is shown in Figure 14. Figure 14A, illustrates the differences
between the previous version of the model and the current
implementation with PEAT and pruning improving the feature
extraction, using the same Conv-1 features representing simple
edge detection structure of horizontal, vertical and two diagonal
lines. Figure 14A then shows the mapping those features onto
the weights of the Conv-2 resulting in the features that resemble
shapes and objects before the classification stage in Conv-3.
It can be seen that half of the 36 features in Conv-2 relate

to the Face class and the other half the Motorbike, with
these features helping to build up the classification layers with
two features either Face or Motorbike. This image helps to
explain what the network has learned and how it appears
to be looking for contour like shapes to help it distinguish
between inputs. Along with this insight into how the network
operates, it also allows the user to perhaps understand why
it might not always give the correct answers. Similar to how
if creating a system using hand-crafted contours features,
you would understand the limitation this allows a similar
understanding to be had. This could allow manual manipulation
of features or manual pruning throughout the training if the user
happens to have expert knowledge of the task, bringing neural
networks closer to known computer vision-based techniques,
which could provide an interesting overlap, especially in the
robotics domain.

In order to perceive how the additional classes affects the
interpretability of the system Figures 14B,C highlights a sub-
selection of the features within the 5 and 10 class models. This
highlights how the interpretability is still there for some of the
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FIGURE 14 | (a) Features map representations of the convolution layers, with coloring to match the latent space representation from the two class experiment,

showing prior and current results of the Conv-2 features and Class features. The Figure also shows a selection of features from both the Five Class (b) and Ten Class

(c) experiments. Top half showing the Conv-2 features and the bottom showing the Class Features. (a) Classes shown in Class Features are Motorbike-Face then

Face-Motorbike for the previous and current results. (b) Classes shown in Class Features order are: Face, Motorbike, In-line Skate, Stop Sign, and Watch. (c) Classes

shown in Class Features order are: Stegosaurus, Watch, Cup, In-line Skate, Motorbike, Revolver, Camera, Face, Stop Sign, and Windsor Chair.

features while others have become more difficult to understand,
perhaps due to overlapping features from two classes. Overall,
Figures 14B,C highlight how reviewing of the features within
a Spiking Neural Network can help to gain understanding
about parts of the network, with the classification layers features
representing each of the 5 and 10 classes. The visualizations help
to explain why certain classes might struggle vs. others due to
similar sub classification features.

5. DISCUSSION

The understanding method shown in this work details an
unsupervised STDP approach. To fully utilize the spiking nature
of the processing it is paired with the perception method of
spiking input sensor. Together this perception understanding
pair can successfully semantically segment up to 10 classes of the
N-Caltech dataset. The output of this process is a spiking grid
indicating the location of the class within the scene, which can
be interpreted by the action system to allow the objects to be
followed if attempting to leave the field of view.

The full PUA process is completed in a spiking and
fully convolutional manner. This ensures all calculations are
either spiking or spike counting. Allowing the network to
maintain the temporal and processing advantages, along with
the asynchronicity associated with neuromorphic vision sensors,
from input to output. However, this method of processing

is not without its drawbacks, as there is an overall decrease
in accuracy associated with this adding of extra classes. That
perhaps indicates the limitation with this unsupervised method
in terms of problem scaling. For instances with the 100
classes available within the N-Caltech dataset, the system would
only be able to learn the most common features that occur
within each class, but only if they present a large enough
variance. That is it will only learn common class features as
long as they look different enough from the other classes.
Which is essentially what can be seen happening with the
5 and 10 class experiments visualized in Figures 14, 7C.
Figure 7C highlights that even with a high inter class variance
the kernels sometimes learn differentiating features from all
other classes, while other times learns features that are an
amalgamation of two or more classes. The 5 class experiment
displays this most prominently with the Bike and In-Line Skate
classes, as there are similarities between the outline shape of
both objects.

Nevertheless, this ability to find most common features
that express the highest variance from others, is both the
limitation and strength of this STDP approach. Limiting in
that this approach might not scale to larger datasets, but a
strength in that it made the network asynchronous, adaptable,
computational sparse and visually interpretable. This highlights
that the STDP method used might not be suitable for all
problems, but serves as a indication of the benefits if the
problem is appropriate. This work demonstrates that STDP
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alone can be used to find the most common features of a
dataset. Which in turn, can be used to successfully perform
image classification and semantic segmentation. However, a
further learning rule to help focus on more discriminative
features, such as R-STDP (Izhikevich, 2007; Legenstein et al.,
2008; Mozafari et al., 2018) would be a useful extension. This
could help in tackling the main issue of inter to intra class
variance differentiation. This could allow not only the most
common feature to be discovered, but the most common
discriminative feature.

6. CONCLUSION

We proposed a new spiking-based system, the Perception
Understanding Action Framework, which aims to exploit the
low latency and sparse characteristic of the NVS in a fully
neuromorphic asynchronous event driven pipeline. Using the
understanding gained through the SpikeSEG segmentation, the
network is able to detect, classify and segment classes with
high accuracy and precision. Then from this understanding,
the system makes a more informed decision about what action
is to be taken. In this context, the framework was able to
show a semantic class tracking ability that combines feature
extraction capability of CNNs and low latency and computation
throughput of line and corner detectionmethods. The framework
also explores the unique benefits that can be gained through
utilizing SNNs with interpretability and robustness, with the use
of thresholding algorithms and sparse feature extractions. The
PUA framework also shows off the unique attention mechanism,

emphasizing how simple local inhibition rules when combined
with an encoder decoder structure; this can help reduce the
computation overhead of the semantic segmentation process.
This research highlighted the series of benefits when utilizing
a fully neuromorphic approach with a pragmatic engineering
and robotics outlook, looking at the biologically inspired
mechanisms, features and benefits, then combining them with
modern deep learning-based structures.
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