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The elderly population has rapidly increased in past years, bringing huge demands for

elderly serving devices, especially for those with mobility impairment. Present assistant

walkers designed for elderly users are primitive with limited user interactivity and

intelligence. We propose a novel smart robotic walker that targets a convenient-to-use

indoor walking aid for the elderly. The walker supports multiple modes of interactions

through voice, gait or haptic touch, and allows intelligent control via learning-based

methods to achieve mobility safety. Our design enables a flexible, initiative and reliable

walker due to the following: (1) we take a hybrid approach by combining the conventional

mobile robotic platform with the existing rollator design, to achieve a novel robotic system

that fulfills expected functionalities; (2) our walker tracks users in front by detecting

lower limb gait, while providing close-proximity walking safety support; (3) our walker

can detect human intentions and predict emergency events, e.g., falling, by monitoring

force pressure on a specially designed soft-robotic interface on the handle; (4) our walker

performs reinforcement learning-based sound source localization to locate and navigate

to the user based on his/her voice signals. Experiment results demonstrate the sturdy

mechanical structure, the reliability of multiple novel interactions, and the efficiency of

the intelligent control algorithms implemented. The demonstration video is available at:

https://sites.google.com/view/smart-walker-hku.

Keywords: elderly safety, human-robot interaction, intelligent control, falling protection, soft-robotic interface,

coaxial front following, sound source localization

1. INTRODUCTION

Over the last few decades, the elderly population has rapidly increased globally and is expected
to exceed 2 billion by 2050 (WHO, 2018). While constrained physical and cognitive abilities leave
many older adults dependent, most of them prefer to continue living in their homes rather than
moving into nursing homes, because the opportunity to stay in a familiar home environment offers
them greater privacy and autonomy (Garçon et al., 2016).

For patients with Parkinson’s disease, movement disorder can severely disrupt the performance
of daily activities and increase the risk of falling. Despite various existing walkers are owned by
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seniors, reported statistics show that 33% of people over 60 years
fell at least once (Luz et al., 2017). We argue that intelligence is
essential for an elderly walker to detect abnormal user behaviors
and provide timely safety support, since primitive assistance
devices, such as rollators and walkers, are much likely to
fail (Bertrand et al., 2017). Exoskeleton (Tucker et al., 2019) is
another approach with multiple robotic joints and links worn
onto the user body, effective but less practical for daily wearing
by older persons. Moreover, rather than merely using remote
button (Glover, 2003), voice (Gharieb, 2006), or gesture (Gleeson
et al., 2013) to achieve user interaction, older persons need
various modes of human-robot interaction for convenience and
efficiency. These motivate us to seek a solution of equipping
the robotic walker with sufficient intelligence and interaction to
guarantee mobility safety of older users.

In this paper, we propose a novel smart robotic walker that
targets a convenient-to-use indoor walking safety aid for the
elderly. Present-day assistant devices require attentive control
of the user while moving (Di et al., 2015; Xu et al., 2018),
which could raise safety issues for many elderly people with
executive dysfunction or dementia. Although a few studies have
investigated the task enabling the walker to follow behind the
user (Moustris and Tzafestas, 2016), the problem is simplified
since the human intention is known a posteriori by inspection
of his/her trajectory. We take the approach of adopting a co-
axial differential drive with sufficient braking force and enabling
our walker to monitor and predict the movement trend of the
user by detecting gait posture, our walker can then automatically
move in front of the user, providing mobility support. With the
walker moving in the front, we can enforce the elderly walking
in a forward-learning position, preventing retropulsion falls,
while our walker can support propulsion falls; with auto moving
functionality, our walker alleviates the older users from attentive
control of the walker.

As a service robot for the older users, the user interface
(UI) provides the fundamental information acquisition for any
intelligence and human-robot interaction. The vast majority of
existing service robots often choose a touch-screen panel for
touch input (Hans et al., 2002; Graf, 2009). However, there
are severe limitations for touch-screen UI, from not being able
to provide user motion data, to only detecting user command
with a pre-defined set of items. Given that soft robotics has
become a new trend to design and fabricate robots from a very
distinctive approach than conventional robotics (Yi et al., 2018),
we propose to use a soft robotic layer to be the user interface
in constructing the handles due to its inherent safety (lack of
rigid components) (Chen et al., 2018) and intelligence add-ons.
To measure user intention and detect emergency event (e.g.,
falling) in a timely manner, we embed a sensor network inside
the soft chamber to monitor force pressure on the handles. After
conditioning and asynchronous filtering of the pressure data, our
walker generates the appropriate output for system execution to
meet user demand or provide safety support.

We also consider the very likely scenario that the elderly
user and the walker are located in different locations in a
household (e.g., the walker being charged and the user in bed).
The autonomous mobility of an elderly walker through user

voice summoning becomes essential to provide ready assistance
to users with mobility impairment, which is often neglected in
existing design (Mukai et al., 2010; Xu et al., 2018). To localize
the sound source for autonomous mobility, existing methods
have used Time Difference of Arrival (TDOA) (Valin et al., 2003)
or deep neural network (DNN) (Ma et al., 2018), which are
often ineffective in long distance or a multi-room environment.
Recently, reinforcement learning (RL) has been widely applied in
robotics. The mobility system based on RL (Zhang et al., 2015),
for the first time, learns robotic manipulator motion control
solely based on visual perception. Tai et al. (2017) learn to
navigate by training a policy end-to-end, but the solution is only
validated on a robotic platform with low degrees of freedom. A
novel DRL approach (Choi et al., 2019) with LSTM embedded is
proposed to learn efficient navigation in a complex environment.
For multi-robot motion control, a decentralized RL model is
presented to learn a sensor-level collision avoidance policy in
multi-robot systems (Fan et al., 2020). Domains like UAVs (Hu
et al., 2020; Wan et al., 2020) and underwater vehicles (Carlucho
et al., 2018; Chu et al., 2020) have also exploited RL for motion
control for various purposes, e.g., robust flying, path planning
and remote surveillance. In our work, we present a novel
approach of exploiting mobility of the walker and RL techniques
for efficient sound source localization (SSL).

We conduct extensive experiments to demonstrate the
efficiency of our smart walker for elderly mobility safety in the
following aspects:

(1) A sturdy mechanical structure that fulfills expected
functionalities and supports a user of average weight in
home scenarios or outdoor sites with slopes ≤ 16◦, which
outperforms the safety requirement of the related ISO
standard (ISO, 2003).

(2) Ability to track the user in the front to provide close-
proximity walking safety support and turn according to
user’s turning intention with small error, through detecting
lower limb gait of the user.

(3) Soft robotic user interface with a finite-state machine
(FSM) model to detect user intention and emergency event
effectively, ensuring timely safety protection.

(4) Autonomous mobility through RL to locate the user (sound
source) and navigate to the user, in a multi-room household
with environmental noises, reverberations, and long distance
(over 10 m).

2. MATERIALS AND METHODS

2.1. System Overview
An overview of the proposed smart robotic walker with novel
functionalities is shown in Figure 1. Our walker consists of
a sturdy body frame with sensors deployed at appropriate
positions, a motion system with differential driver and
emergency brake, and a soft robotic interface with haptic
monitor. A user staying in a different room from where the
walker is can summon it to come close with the help of RL-based
SSL technique, and the brake will be activated to prevent
slipping once user intention of entering the front-following
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FIGURE 1 | System overview of the smart robotic walker.

status (AKA user walking stage) is detected by the soft interface;
then the walker enters front-following walking-assistance status,
when a DNN-based method predicts movement of the user
to achieve smooth front following with close-proximity safety
protection. The force pressure applied on the soft interface
is always monitored and analyzed. If an emergency event
is detected (e.g., falling), the brake will be activated, and
the sturdy body frame and the soft interface will serve as a
safety support.

In this section, we will briefly describe our objectives of
hardware design and the technique roadmap of software control
in order to achieve the proposed functionalities.

2.1.1. Hardware: Smart Walker With Soft Sensing

Handle
The hardware design of our smart walker takes cues from both
the conventionalmobile robotic platform and traditional rollator.
Several requirements are met in terms of structural stability,
human-robot formation and human-robot interaction.

2.1.1.1. Structural stability
Designing a mechanical structure that is sturdy, strong, and
agile enough to provide the safety support for the human user,
is a fundamental requirement of the walker. Loading capacity
should be sufficient to withstand a human user of≤85 kg leaning
against the top handle, with minimum tipping or sliding. To
allow the device suitable for home usage, the maximum width
of the walker should be no more than 700 mm, to ensure agility
when navigating through narrow places.

2.1.1.2. Mobility system
Proposed functionalities require the walker to freely turn into
any direction at any time. The walker should achieve zero
turning radius or small radius turning in order to navigate within
confined spaces. The standard solutions to omni-turning, i.e.,
omni-wheels or Mecanum wheels, have very limited rigidity
against tipping disturbances. Besides, holonomic drive is not
required as elders rarely walk sideways. In this work, to combine
multi-terrain adaptability and standing support, a differential
drive is ideal as it is the most widely used mechanism for
moving robots and the most effective in terms of control
strategy. To further increase safety, a brake mechanism that
can respond to emergency in a timely manner is implemented
as well.

2.1.1.3. Sensing network
The platform is equipped with a sensing network that enables the
walker to perceive and interact with users. Sensing the status of
the walker and the user are crucial for intelligent control to ensure
user’s safety and maximize system performance. This requires
equipped sensors to achieve precision, timeliness, and robustness
when dealing with various situations. We use optical, thermal,
force, and vocal sensors to create a multi-modal sensing network,
achieving effective human-robot interaction.

As the most direct way of haptic interaction, we adopt a novel
soft-robotic technology (Chowdhary et al., 2019) to construct
user interface on the handles for better and safer interacting
experience comparing to the existing products.The handles are
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designed to be soft with certain elasticity to withstand falling
shock and provide comfortable touch. With the physical data
(force, pressure, etc.) collected by high-sensitivity sensors inside
the soft chamber, the system can acquire some useful information
about the user all the time.

2.1.2. Software: Intelligent Control
We adopt learning-based methods to achieve intelligent control
of the walker, based on signals obtained during human-robot
interactions.

2.1.2.1. Soft haptic monitor
The soft interface on handles can detect user’s intention and
status. With pressure data collected from embedded sensors,
we design a finite-state machine (FSM) model to analyze the
temporal and spatial characteristics of the pressure data. Based
on these characteristics, the intelligent framework is able to infer
current status of the user and produce corresponding system
actions to support the user in case of potential emergency (e.g.,
teetering, falling). The touch history of the handles can also
be recorded as less privacy-sensitive health data for healthcare
personnel to inspect.

2.1.2.2. Close-proximity coaxial front following
To achieve user tracking from the front, the gait information is
collected by an infrared temperature sensor and a lidar sensor.
We train a neural network (NN) model to learn the intention of
the user from time-serial gait data. After obtaining the intention
of the user, we compute a target position of the walker to ensure
that one foot of the user is on the rear-wheel axis of the walker and
the forward direction of the walker is parallel with the orientation
of the foot. Such close-proximity and coaxiality between the
walker and the user provide timely protection when the user is
walking with the walker.

2.1.2.3. RL-based SSL
To achieve autonomous mobility in case that the walker
and the user are located at different places (e.g., two rooms
in a household), voice signals are monitored by deployed
microphone array in a low-power state. Time-delay features of
each microphone pair are extracted to estimate the direction
of the sound source, and then the walker can move toward
it, when the user summons the walker to come close with
certain keywords. Before usage, we first train a NN model
using supervised learning, on dataset collected from GSound
simulator (Schissler and Manocha, 2011). Trained NN model is
then fine-tuned through online RL, in daily usage of the walker.
Note that during autonomous movement of the walker, once
haptic touch is detected by the soft interface (i.e., when the walker
reaches the user), the walker can provide sturdy support for the
user to recover from sitting or lying status (if he/she has fallen on
the floor).

2.2. Hardware Design
Hardware structure of the proposed smart robotic walker
prototype is shown in Figure 2, consisting of the chassis and the
upper handle, with basic parameters given in Table 1.

2.2.1. Body Frame and Actuation
The design of the body frame takes many safety issues into
consideration. For static and dynamic stability, weight is
concentrated low into the chassis. The resulting center of gravity
(CG) height HCG as estimated in Solidworks (Dassault Systems
S.A.) is 156 mm, i.e., 18.8% of the walker’s total height. The
maximum tilt angle8max before the CG goes over the supporting
point (assuming the CG is located at the center point in the lateral
direction) can then be calculated as:

8max = arctan
l/2

HCG

where l = 540 mm is the length of wheel base. Calculated 8max is
approximately 60◦, which is significantly larger than the tilt angle
that human can incur before losing balance. Thus, before the tilt
angle of walker reaches 8max, walker’s weight (37 kg) would help
elderly users resume to an upright position.

The walker protects the user from his/her front and both
lateral sides to prevent falling, forming a “C” shape from the
top view (Figure 2C). To maximize the space for the user to
walk within the range of support (green area in Figure 2C) while
constraining the maximum length of the walker, two wheel-hub
motors (Zhongling Technology Ltd., China) are used as the rear
driving wheels due to their lateral compactness. This results in
providing a 420 × 436 mm walking space with the maximum
walker width of 660 mm.

Both wheels are equipped with individual emergency brakes,
modified from bike brakes, actuated by two individual linear
actuators with 0.4 s of lead time to maximum break force,
ensuring fast emergency response (Ahn et al., 2019).

2.2.2. Sensor Arrangement
To measure the movement of the walker, each wheel is
equipped with a high-precision rotary encoder (4,096 ticks per
revolution) and a wheel encoder odometer is implemented as
well. The odometer yields the position of the walker (x, y, δ)walker ,
where (x, y)walker indicates the position and δwalker indicates the
orientation of the walker in the global frame, and the moving
state (v,ω)walker , where v is the linear velocity andω is the angular
velocity of the walker, over time. An inertial measurement unit
(IMU) is used to correct the orientation as it uses magnetometer
to measure the yaw movement, which is more robust to dynamic
disturbance as compared to the odometer.

Multiple sensors are used to acquire user states in order to
achieve functions such as hand-free front following and SSL. The
lidar used for leg detection is placed lower than the user’s knees to
ensure a good leg separation result. It is mounted in the front at
a height of 410 mm, which is about the height of the upper calf of
humans. An IR thermometer which has a 120◦ field view is placed
at an angle that can cover most of the walking area and the user’s
front foot when walking. Four microphones are installed at the
top of the walker with fixed spacing between each other. This will
lead to different input signals at the microphones received from
the same sound source, helping the controller to locate the source.
All the readings from various sensors will be sent to a small form
factor PC (NUC, Intel Co.) for processing.
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FIGURE 2 | The overview of the smart walker: (A) Front view; (B) Rear view; (C) Top view; (D) Soft sensing handle; (E) Section view of the handle.

TABLE 1 | Basic parameters of the smart walker.

Parameter Value

Width * Length * Height 660 mm * 626 mm * 832 mm

Weight 37 kg

Minimum Turning Radius 622 mm

Speed 0–5.34 m/s

2.2.3. Soft Sensing Handle
We use a soft robotic layer to be the user interface when
constructing the handles (Figure 2D) as a safe and friendly
approach of interaction. In the core of a handle, the rigid base
made of acrylic board is used to transfer the load to the main
frame. The interior of the handle consists of multiple air pressure
sensing bellows connected with air pressure sensors (Figure 2E),
and sponge infills to provide a consistent handle surface. The
pressure sensors detect the normal air pressure inside the bellow
when the user is not holding the handle. When the user grabs
onto the handle, a sudden change in air pressure will be read

almost instantly through an MCU (Arduino Mega 2560). By
deciphering the air pressure signal, the system calculates whether
the user is or is not holding, or how firm the grip is. The
handle is covered with a layer of artificial leather providing
comfortable texture.

From each pressure bellow we can extract the information of
pressure changes and the rate of changes. To enrich the sensing
capability of the handle, the slight rigidity of the covering leather
acts as a linkage between separated bellows. In this case, even
when a force is not directly exerted on a bellow, it will also
cause a less significant pressure change in the adjacent bellows
(Figure 2E). Hence, one more dimension of signal, which is the
position of the exerted force, is added to the sensing network. The
reliability of this prototype handle will be tested in section 3.

2.3. Software Design
We next present the detailed design of software techniques to
achieve intelligent control: (i) soft haptic monitor to recognize
pressure pattern, (ii) close-proximity front following, and (iii)
sound source localization through a reinforcement learning
(RL) model.
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2.3.1. Soft Haptic Monitor
Pressure data collected by sensors on the soft haptic handle with
temporal and spatial characteristics can be analyzed to monitor
the state of the user.

2.3.1.1. Position adjustment
After the walker navigates to proximity of the user (through
SSL), the walker needs to know how itself is positioned against
the user, and adjusts itself to be well-positioned as the user’s
walking support, before it enters the walking-support status (i.e.,
starting close-proximity front following of the user). Figure 3A
illustrates the relative positioning of the user and the walker
when the walker has moved up to the user through SSL. The
user is likely to be in the Expected Zone because the walker
keeps heading to the sound source. Even if the user is not in the
Expected Zone, he/she can call the walker through voice control
and the walker will adjust its direction again and eventually the
user will be in the Expected Zone. The user can press his/her
nearest part on the soft haptic handle to let the walker know
where he/she is. Taking the midpoint of the line connecting the
two sensors at the two ends of the handle as the origin O and the
connection line as the y axis, a rectangular coordinate system is
established. The connection line between the origin O and the
center of a sensor has an angle α with the y axis. According
to α, the walker will rotate at a calculated angle of β so that
the walker and the user will be facing the same direction. The
rotation angle β and the rotation direction are calculated as
follows:

β =

{

π
2 + α right, 0 < α < π

2 ,
3π
2 − α left, π

2 6 α < π .

2.3.1.2. State monitor and falling protection
When the user is operating the walker, the soft haptic handle
will monitor the state of the user. Different states are related to
different intentions of the user. As an interface, the soft haptic
handle collects the pressure data to infer the states of the user.
For example, when there is a fall, there will be an abnormally
high pressure or a rapid pressure change. Also, multiple sensors
may be pressed since the user tends to lean on the handle when
he/she falls. To detect user’s intention and falling, the pressure
data from different sensors of the soft haptic handle are analyzed
independently or collectively: independent analysis concerns the
pressure on one specific sensor, while the collective analysis
focuses on comparing the pressure and changes of pressure on
different sensors.

(1) Abnormal Maximum Pressure: One case of independent
sensor analysis is that we calculate the maximum pressure
value Pmax of all pressure values of all sensors at the
same time. According to Pmax, the motor brake and the
mechanical brake will be activated differently. The former
can be activated instantly but is not sturdy enough to support
the user, while the latter needs time to be fully activated
but can provide more satisfying braking force. Especially, if
Pmax is normal (e.g., Pmax is below the pressure generated
by the user when he/she is grabbing the handle but is not

FIGURE 3 | (A) Walker position adjustment upon reaching user after SSL; (B) FSM of the soft haptic monitor.
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leaning on it), the user is in a safe situation and the walker
operates normally. When Pmax becomes higher but still in an
acceptable range, the user is at the boundary state between
a normal situation and an accident, e.g., the case when
the user stops and leans a little on the walker for a rest.
In this range the user can recover to safe situation easily
just by straighten his/her body without pushing the walker
hard. In such a situation, the motor brake will be activated
and the mechanical brake will change to a readiness state.
The threshold that differentiates the normal range and the
acceptable range is about 5% of user weight. If the value
of Pmax falls and becomes in the normal range again, the
motor brake will be released and the mechanical brake will
cancel the readiness state; the walker can move again. On the
other hand, if Pmax keeps raising and becomes unacceptable,
representing the user leans more heavily on the walker, the
mechanical brake will be fully activated and the walker will be
locked to offer stable support for the user; the walker will not
be unlocked until the soft haptic handle identifies an unlock
intention from the user (to be detailed later). The threshold
that differentiates the acceptable range and the unacceptable
range is about 8.5% of user weight. The two thresholds can
be changed by the user within 2% of his/her weight for better
user experience. For privacy concern, user can choose one
of the preset levels of weight range for threshold calculation.
The preset levels consist of low weight (e.g., 40–55 kg),
medium weight (e.g., 55–70 kg), and high weight (e.g., 70–85
kg). We use the average weight of each level range to decide
the thresholds.

(2) Abnormal Pressure Change: Another independent analysis
situation focuses on the maximum change rate of R′max of all
pressure values of all sensors. For each sensor, the current
pressure value is used to minus the previous pressure value.
Then the difference is divided by the time in between, about
three sampling periods, to get all the change rates of all the
sensors. Among all these change rates, the maximum change
rate R′max is calculated. With R′max, the walker can detect
an accident and offer protection sooner. For example, in
cases of a stumble or a fall when the user is walking, the
change rate R′max is very large (regardless of Pmax’s value);
this is considered as an accident and both two brakes will
be activated immediately, and the walker will be locked. The
threshold for detecting the accident is about 15% of user
weight per second. The sudden change of pressure can be
detected within 0.2 s.

(3) Multiple Sensors Simultaneously Pressed: One collective
analysis situation is that when too many sensors are being
pressed at the same time, a falling tendency can be detected.
Among the pressed sensors, if there are only sensors from
the left and right sides of the soft handle, the user is inferred
to be holding the two sides; if there are sensors from the
front part of the soft haptic handle triggered, the user is
assumed to lean on the front part of the handle and need
support from the walker. In this situation, both brakes of
the walker should be fully activated and the walker should
be locked.

(4) Pressure Change Comparison: Another collective analysis
situation focuses on temporal characteristics of pressed
sensors. By comparing different pressure changes on
different sensors, we can detect the strength and direction
of the force applied by the user to the soft haptic handle.
There are different cases: (a) When the two brakes are fully
activated, if the user grabs the handle for recovery from fallen
or sitting status, the direction and the strength of the force
applied on the handle changes over time. If the change rates
and the time for pressure value reaching the peak of different
sensors are different or Pmax is very high, we infer that the
user needs support, and the two brakes will not be released.
(b) If the user gently puts his/her hands on the left and
right sides of the handle, the pressure data collected from
different sensors on the two sides vary a bit over time, while
the change rates and the time for reaching the peak will
be similar among the sensors because the direction of the
force remains unchanged and Pmax is also at an acceptable
level.We regard these characteristics as a signal of unlocking,
and the walker will be unlocked and the two brakes will be
released. (c) When the handle detects that the pressure of the
left side is a bit higher than that on the right side, the user
may want the walker to turn to the left. We will use such a
pattern to decide turning radius of the walker.

By analyzing these pressure data patterns, falling and other user
intentions can be recognized. Therefore, the walker can monitor
the state of the user and provide falling protection, or respond to
other user intentions.

2.3.1.3. The FSM of the soft haptic monitor
An FSM is embedded to control the working of the walker based
on user states, as shown in Figure 3B. There are three states:
unlocked state, locked state, and ready state. When the walker
is in the unlocked state, the motor brake and the mechanical
brake are released, and the walker is movable. When the Soft
Haptic Monitor detects an accident, such as in cases of an
unacceptable large maximum pressure Pmax, a sudden change
in the pressure, or multiple sensors are being pressed at the
same time, the motor brake and the mechanical brake will be
fully activated immediately and the walker will be in the locked
state. At this state, the walker will be stable enough to offer
support for the user, and will not respond to other signals except
the unlocking pressure pattern. The other signals include not
only those that activate the conversion from unlocked state to
locked state, but also the patterns that cannot be analyzed as
the unlocking pressure pattern such as the pressure pattern of
recovery from falling. When the unlocking pattern is detected,
the walker’s state changes from the locked state to the unlocked
state, when the two brakes will be released. When the walker is in
the unlocked state, if an abnormal but acceptable Pmax is detected,
the walker will be in the ready state: at this state, the motor brake
will be activated so the walker can not move; the mechanical
brake will be ready for further protection. If Pmax drops back to
a normal value, the walker will go back to the unlocked state; if
Pmax keeps rising and finally becomes unacceptable, the walker
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will enter the locked state. Since the mechanical brake is ready, it
will take less time for the mechanical brake to be fully activated.
Accidents like a sudden change in pressure and multiple sensors
pressed will also activate this conversion.

2.3.1.4. Speed control
As the interface of the walker, the soft haptic handle allows the
user to control the speed of the walker for effective walking
assistance. Five speed-levels are preset and the user can select
their preferred one by pressing two sensors on the handle. The
two sensors are the sensors at the end of the left and right sides of
the handle. One is used for acceleration and the other is used for
deceleration. For the safety of the user, if one button is pressed,
the walker will not respond to the other sensor, i.e., the walker will
only respond to one button at a time. If one button is pressed and
not released, the speed level of the walker will not keep changing.
When the user presses the speed control button, there will be a
unique peak of pressure value on that sensor while the pressure
on other sensors will be weak. Therefore, this pattern of pressure
data is different from other patterns and can be used while the
FSM is monitoring the state of the user.

2.3.2. Close-Proximity Front Following
The walker tracks the user in the front through an NN-
based intention detecting approach and generates movement
through building a virtual target position. See Figure 4A for
an illustration.

2.3.2.1. Sensor data processing
The IR sensor returns a 32 × 24 thermal image (see Figure 4B

as an example), which can be flattened to a temperature vector
Eu with dimension of 768. Compared with an RGB camera, a
low-resolution IR sensor as a visual sensor is less costly and
more privacy preserving. We normalize data in the temperature

vector Eu into image data in a vector Eg, where umin and umax

are the maximum value and the minimum value in this vector,
respectively:

g[i] =
u[i]− umin

umax − umin
.

Meanwhile, we identify the user leg positions in relation to the
walker using data from the lidar sensor. We set a baseline to be
the straight line connecting the two rear wheels of the walker, and
the origin as the midpoint of this baseline. The forward direction
is the positive x-axis, and the left direction is the positive y-axis.
In this way, we define a coordinate system relative to the origin
with the right-hand system, and calculate the coordinates of user
leg (x, y) relative to the walker as follows:

[

x
y

]

=

[

cos θwalker − sin θwalker
sin θwalker cos θwalker

] [

xleg − xwalker
yleg − ywalker

]

where (xobj, yobj) and θobj describe the coordinates and
orientation of user leg or the walker relative to the initial
starting position of the walker, respectively.

We distinguish the computed leg positions into two classes
using a k-means algorithm (Krishna and Murty, 1999), and use
the prior condition that the y value of the left foot is more than
that of the right foot to tell which class represents the left or right
foot. The image of the two feet and the leg positions relative to
the walker are output of sensor data processing.

2.3.2.2. Movement intention detection
Front following is essentially replacing the need of user pushing
the walker, such that the walker can move automatically
according to user’s movement intention.We design an NNmodel
to learn the relationship between user gait and user intention
using time-serial data.

FIGURE 4 | (A) Workflow of front following; (B) IR image frame; (C) gait samples with labels; (D) movement control of the walker.
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Each input sample to the NN is a sequence of 8 data points,
where each data point contains vector Eg and leg positions
(xleg , yleg) computed from the corresponding IR image. Each
sample is labeled with the respective movement according to the
user’s gait, out of 6 cases (as illustrated in Figure 4C):

(1) Left foot turns left, with left foot in the front 1© and right foot
at the back 8©;

(2) Left foot steps forward, with left foot in the front 2© and right
foot at the back 8©;

(3) Left foot turns right, with left foot in the front 3© and right
foot at the back 8©;

(4) Right foot turns left, with left foot at the back 7© and right
foot in the front 4©;

(5) Right foot steps forward, with left foot at the back 7© and
right foot in the front 5©;

(6) Right foot turns right, with left foot at the back 7© and right
foot in the front 6©.

In addition, for the straight-backward case, we can easily tell
whether the user is moving backward based on the lidar data, and
hence it is not included as one output class from the NN. We use
an NN consisting of two 512-unit hidden layers with ReLU as
the activation function. The output is the probability distribution
over the above six cases from a Softmax function.

2.3.2.3. Walker movement
Based on the leg positions (xleg , yleg) and inferred movement
intention from the NN, we then compute a virtual position that
the walker should move to, to achieve front following.

We use the turning radius r and a forward or backward
distance h to decide the moving trajectory (arc length L) and
the target position of the walker, as illustrated in Figure 4D.
Figure 4D demonstrates the rear wheels in the origin and in the
target position, respectively. The intersection of the extension of
the rear wheels is the turning center Oturning . The distance from
the center of rotation Oturning to the center of the walker O is the
radius of rotation r.

L =
θexp · π · r

180
θexp = arcsin(

h

r
)

l is the length of the driving wheel base; we ensure that there is
one foot on the baseline and the orientation of the foot is parallel
with the forward direction of the walker. There are three cases:

(a) When the NN output is case (1) or (6), the user is making
a left or right turn. The range of this turning radius r is l to
2 · l, as determined by the probability p corresponding to this
case: when the probability is large, the turning intention is
obvious, and the walker is given a relatively small turning
radius r; when the probability is relatively small but is still
higher than that of the forward case, the user’s intention is
to move forward with a turn, and the walker will be given
a relatively large turning radius r. When the turning center
corresponding to the turning radius r is on the left side of the
walk O, the turning radius r is positive; for symmetry, when
the turning center Oturning is on the right side of the center

of the walker O, turning radius r is negative. Therefore, there
are two cases of the turning radius:

r = ±(l · p+ l)

(b) When the inferred movement is (2), (5), or moving
backward, the turning radius r is positive infinity, i.e., r =
+∞.

(c) When the NN output is case (3) or (4), the user is marking a
sharp right or left turn. Generally, these two situations occur
after case (a) and are to further complete a sharp turning
process. Therefore, we set the turning radius to one half of
the walker width to provide a maximum rotation space. We

have two cases of the turning radius: r = ±
l

2
.

Due to differential drive control, two velocities vl and vr are
calculated to control the walker to move to the target position.
In practice, a walker is typically assigned with a linear velocity
v. The two velocities vl and vr of each of the rear wheels can be
calculated as follows:

vl = v−
v · l

2r
vr = v+

v · l

2r

2.3.3. RL-Based SSL
Our walker monitors audio signal received by a 4-channel
microphone array, and can be waked up by customized keywords
through a simple keyword spotting system. We choose 1 s of
raw audio as input signal. In particular, 40 MFCC features are
extracted from a frame of length 40 ms with a stride of 20 ms,
which gives 1960 (40×49) features for each 1-s audio clip. We
use Google speech commands dataset to train an NN model
with three hidden layers, each with 128 neurons, to classify
the incoming audio clips into one of the predefined words in
the dataset, along with the default class “silence” (i.e., no word
spoken) and “unknown” (i.e., word not in the dataset). Once
waked up, our walker performs SSL following an RL model as
follows (see Figure 5 for an overview of the workflow).

2.3.3.1. State space
We define the input state s of the RL model to be an m × c
matrix, where m is the total number of microphone pairs [e.g.,
m =

(4
2

)

if the walker is installed with four microphones],
and c is the length of the feature vector of one pair. The input
state indicates the time difference of arrival (TDOA) of sound
signals received at each pair of microphones. The generalized
cross correlation (GCC) of two sound signals is a measure of
similarity. To accurately calculate the TDOA from the received
signals, we firstly perform spectral subtraction (Martin, 1994) to
raw audios for the purpose of de-noise and then calculate the
GCC-Phase Transform (GCC-PHAT) (Knapp and Carter, 1976)
as follows:

GPHAT(f ) =
Xi(f )[Xj(f )]

∗

∣

∣Xi(f )[Xj(f )]∗
∣

∣

,

where f is a series of sound data after denoising, Xi(f ) denotes
the Fourier transformation of the signal of the ith microphone,
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FIGURE 5 | The workflow of sound source localization (SSL) with a series of pre-processing and a reinforcement learning (RL) model.

and []∗ represents the complex conjugate. Then we compute
the c-dimensional vector Esn in s as the c-dimensional subset
of GPHAT(f ), which indicates near-central part of a pair’s GCC
vector (Knapp and Carter, 1976). We empirically set c = 61 to
make Esn contain the most useful information of TDOA.

The objective of our SSL module is to output the Direction
of Arrival (DOA) of the sound source. Traditional DOA
estimation approaches such as the Azimuth Method (Wikipedia
contributors, 2020) are often unreliable under high reverberation
conditions (as in our scenario) and with complex structures
between microphones (as on our walker) (Xiao et al., 2015). We
enable the walker to learn the nonlinear mapping from the input
GCC features to the DOA output through RL.

2.3.3.2. Action space
After collecting state s, the controller selects a horizontal angle
(i.e., the DOA) as action a based on policy πγ (a|s), which is a
probability distribution over action space. The policy is produced
by a neural network with γ as the set of parameters. We use a
discrete action space including eight angles which are 45◦ apart:
0◦, 45◦, 90◦, . . . , 315◦.

In output layer of the policy NN, we mask invalid actions,
which points to a direction of obstacles within one meter from
the walker, by setting their probability to 0 in the probability
distribution. Then we re-scale the probabilities of all actions such
that the sum still equals 1 (Bao et al., 2019). The walker will then
move one meter toward the chosen direction. Note that, while
approaching the user, the infrared distance sensors deployed in
the front part of the walker will keep feeding distance data (to
objects ahead) to the control module. If the walker detects that
the user is 5–10 cm in front of it, the walker stops immediately to
avoid collision with the user.

2.3.3.3. Reward
We carefully design a reward to use in RL, addressing variability
of sound intensity and unknown location of the sound source.
Consider a home with one hall and K rooms. At the beginning,
the walker estimates the user to be in each room or hall with
an equal probability, which is the confidence on which room
(or hall) the sound source is located in. The walker updates its
confidence on each room k in every time step:

Belt+1(k) = ρ(zt+1, z
′
t+1) ∗ Belt(k),

where zt+1 is the vector of relative intensity collected at the
microphones during real usage, z′t+1 is a relative intensity vector
of simulated signals when putting sound source at the center of
room k in our GSound simulator (which emulates the impact of
reflection, diffraction and reverberation on sound propagation.),
and ρ denotes the Pearson Coefficient. By comparing the
similarity of received signals and simulated signals, the walker
accumulates probability on each room. Note that after every
update, we re-scale Bel(k)’s to make their sum remains to be 1.

Our reward functions are defined in four cases:

(1) When the walker is located in a different room from the
sound source, the reward should encourage the walker to
step out of the current room k:

rt = 1−
dk

∑

i∈K\k Belt(i)

Max

where dj is the shortest distance from the walker to the door
of room k andMax is a constant value for normalization.
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(2) When the walker is located in the hall, we encourage the
walker to explore rooms with higher Bayesian Confidence:

rt = 1−

∑

i∈K diBelt(i)

Max

(3) When the walker is located in the same room with the
sound source, the difference between direction estimations
of consecutive inferences is used as the reward:

rt = 1−
|at − at−1|

315◦

(4) When the walker has reached the sound source, it receives a
relatively large reward rt = 5.

2.3.3.4. Offline training and online tuning
The policy NN used by the walker is trained with SGD
method (Sutton et al., 2000) by updating the NN parameters γ

using policy gradients computed with samples 〈s, a, r, s′〉: a is the
chosen direction for the walker to step forward, s and s′ are the
input state before and after action a is taken, and r is the reward
computed in the current inference.

We collect samples using the GSound simulator (Schissler
and Manocha, 2011) for offline training of the NN model, by
specifying the locations of a sound source and recording received
signals in arbitrary other locations in the multi-room setting.

Then we use the trained model in the online setting: during real-
world usage of the walker, the NN model is further fine-tuned
with collected realistic samples.

3. EXPERIMENTS

In this section, we first conduct experiments to evaluate the
mechanical structure of our walker and test sensors deployed
on the soft handle. Usability test is also done to prove that our
walker can achieve expected functionalities though intelligent
control. Specifically, we evaluate walker’s ability and efficiency
to monitor user intention through soft interface, track user in
front within close proximity, navigate to the user based on voice
signals. All these demonstrate that our walker is sturdy and
agile, with learning-based algorithms implemented to provide
elderly users with sufficient mobility safety and effective human-
robot interactions.

3.1. Mechanical Structure Test
The structural stability is validated according to requirements
in ISO (ISO, 2003). For static stability, the ISO standard states
that the walker should be placed on a slope in certain ways
and it should remain stable without tipping. The slope angle
requirement and the corresponding results under different test
situations (see Figure 6A) are listed in Table 2. For dynamic
stability (see Figure 6B), the self-modified brake mechanism is

FIGURE 6 | Stability tests; (A) Static stability test, from left to right: forward, backward, sideways; (B) Dynamic stability; (C) Tipping resistance test.
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TABLE 2 | ISO.11199-2 stability test.

Test ISO requirement Result

Forward stability ≥15◦ ≥16◦±1◦

Backward stability ≥7◦ ≥14◦±1◦

Sideways stability ≥3.5◦ ≥12◦±1◦

Brake test No sliding or 100 mm

in not <1 min

No sliding

also reliable as the walker stays stationary when it is placed on a
6◦ slope with a subject weighing 63 kg leaning on it.

Moreover, a series of static load tests from the front and
lateral directions are conducted (see Figure 6C) to find out how
resistant the walker is to the external tipping force. Themaximum
force exerted on the handle, measured by a spring scale, when the
walker starts tipping are 180 N forwardly and 182.5 N laterally.
The actual maximum resistance should be larger since the fall
rarely happens horizontally.

Overall, our walker passed all the tests with equal or
better performance than that required in the ISO standard.
It also has good tipping resistance against external push
or pull force which plays an important roll in the fall
prevention function. Therefore, our structure has strong
advantages over those traditional mobility-assistant products, by
implementing intelligent autonomous control based on better
structural stability.

3.2. Soft Handle Evaluation
3.2.1. Sensitivity
To measure the modulus of each pressure sensing bellow and
the relation between the load and the pressure detected on it, we
implement a dedicated testing platform as shown in Figure 7A.
Both pressure change 1P and compression force F are measured
together and the results are shown in Figure 7B. The maximum
load force when the bellow reaches maximum compression (25
mm) is 140 N, giving a modulus of approximately 5.6 N/mm. The
normal interaction force in the non-emergency scenarios should
be <5 kg. The plot shows that 1P corresponds well with the
force exerted on it, laying a good foundation for monitoring user
interaction for intelligent control.

3.2.2. Repeatability
The soft handle is expected to have long-term reliable
performance and consistency. In the repeatability test, the bellow
is gradually pressed until reaching maximum load Fmax, then
it was released to the normal state, and the same process was
repeated. The results are passed through a 2nd Order Low-
pass Filter (LPF) with a cutoff frequency of 1.50 Hz to remove
high frequency noise. The repeatability test plot in Figure 7C

shows that 1P and F have an almost linear correlation with
little deviation throughout the repeated compression. This also
indicates that the bellow has good sealing as no negative effect
due to air leakage showed up in the test.

3.3. Usability Test
We next perform usability tests to evaluate efficiency
and practicality of our design in achieving the
expected functionalities.

3.3.1. Soft Haptic Monitor
Experiments are conducted to collect the pressure data of
different patterns of touching and grabbing the soft haptic
handle. These patterns represent different interactions when the
user is operating the walker. The pressure value is transformed
from a physical quantity to a raw programmable digital quantity.
We record the raw digital quantities of the pressure values from
all sensors and their changes over time. A sliding mean filter
is applied to pre-process the raw data. The window size of
the filter is 5. Figure 8 illustrates the data of different patterns.
Figures 8A–C show three possible pressure data patterns when
there is a fall or a potential fall. Figures 8D,E illustrate how to
detect the unlock intention of the user. Figure 8F shows the
position of each sensor on the handle.

Figure 8A shows that when the user is falling, he/she leans
more and more onto the left front part of the handle. The
maximum pressure Pmax of all pressure values at the same time is
detected on sensor 4, which rises slowly and eventually exceeds
the unacceptable anomaly threshold of the pressure value 120
(e.g., about 8.5% of the user’s weight). At the beginning of this
process, the walker is in the unlocked state. Pmax first exceeds
the acceptable abnormal threshold of the pressure value 70 (e.g.,
about 5% of the user’s weight), and then the walker goes into
the ready state for further protection. There is a pause after that,
corresponding to the situation where the user is not leaning
more onto the handle. Then the user continues leaning more on
the walker by putting most of his weight on the handle; Pmax

keeps increasing and finally reaches the unacceptable abnormal
threshold, which brings the walker to the locked state.

Figure 8B corresponds to the case of a fall or stumble, with
a sudden change in the pressure values. The fastest pressure
change rate is about eight times of the change rate of Pmax as in
Figure 8A, while the peak pressure value in Figure 8B is only half
of that in Figure 8A. Such a characteristic can be easily detected
and the walker can react promptly to the locked state without
waiting for the pressure to rise beyond the anomaly threshold.

Figure 8C shows that when the user falls onto the front part
of the handle, multiple sensors (sensors 3–11) are being pressed
simultaneously.When the user lies on the front part of the handle
for rest and contacts multiple parts of the handle, the pattern of
pressure data will be similar. Under these situations, the walker
should offer falling protection.

Figures 8D,E show two patterns of user grabbing the handle
when the walker is locked and stable. Figure 8D is the case that
the user uses the walker for recovery support (from sitting or
lying status), when the pressure changes of different sensors and
the moments when their pressures reach the peaks are different.
The reason is that during recovery, the gesture of the user keeps
changing, resulting in the changes of the pressure values and the
direction of the force applied to the handle. Figure 8E is the case
that the user is ready to walk and gently puts his/her hands on the
handle and grabs it. The pressure changes on different sensors
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FIGURE 7 | Evaluation of the pressure sensing bellow; (A) Testing platform; (B) Modulus test; (C) Repeatability tests under different external force, from left to right:

Fmax ≈ 20N, 30N, 40N, 50N.

and the time of their pressures reaching the peaks are similar.
Such a pattern can be used by the user to unlock the walker.

All these results show that the pressure data can be used to
detect different states of the user, including falling and other
user intention. By analyzing the pressure data, the walker can
monitor the user’s state to offer falling protection or respond to
other user intention. In further development, more applications
can be designed to make the walker more intelligent and safer
comparing to the current version. For example, by comparing the

changes in the pressure over a long period, the walker can detect
whether the user is getting tired. Also, more advanced models
such as NNs can be applied to learn from the pressure data and
extract more information for medical observation.

3.3.2. Front Following
We experiment with user moving forward, turning and
moving through narrow space without pushing the
handle, as the Supplementary Video 1 demonstrated. For
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FIGURE 8 | Different patterns of pressure data corresponding to different user interactions and position of each sensor. (A–C) Are three possible pressure data

patterns when a fall occurs. (D,E) Show two types of data patterns when the walker is detecting the user’s unlock intention. (F) Shows the position of each sensor on

the handle.

FIGURE 9 | (A) Leg position trajectory; (B) Orientation of the walker as compared to the user; (C) RL training curve of SSL in simulator.

evaluation purpose, we also record actual orientation of
the user during front following by having the user wearing
an IMU.

Figure 9A shows user leg positions collected. The x and y axes
represent the spatial position, and the unit is meter. Scatter points
represent leg locations; we draw a box to represent the walker for
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every 60 leg points; the center of the walker and corresponding
leg positions are highlighted. From the highlighted points, we
observe that the walker area always covers both legs and there
is always one leg on the baseline. This shows that our front
following achieves coaxial following, which is a novel practical
function for older persons who cannot consistently push the
walker well, but rely on the walker’s fall support functionality
while walking.

Figure 9B compares the orientation of the user with that of
the walker. The range of orientation θ is −180 to 180◦ and the
starting position where the walker enables front following is 0◦.
We observe that the two lines follow a similar trend, and overlap
at some peak points. The average error is 5.5◦ approximately.
It demonstrates that the walker can change direction promptly
according to the user’s expected angle.

Most existing human-following studies consider robot
following the human from the back; in case of robot front-
following a human, existing systems assume that the robot is a
distance away from the person, and the robot can easily amend
its route on the go. In our scenario, the robotic walker and the
user are within close proximity (user walking with feet along
the rear axis of the walker). While this functionality enables

elderly users to achieve hands-free walking, we also consider the
situation that elderly users still need physical support with hands
touching on soft handles. The intention of turning will then be
detected and analyzed through haptic monitor, to cooperate with
movement prediction of hands-free front-following to generate
better tracking strategy.

The robustness of the proposed NN to predict lower leg
gesture can be enhanced in the product usage phase, through
collecting diverse and long-term training samples: walkers used
by elderly users are allowed to compute and push their model
gradients to the cloud periodically, and pull updated model
parameters after aggregation is done in the backend cloud.

3.3.3. Autonomous Mobility Through SSL
We experimented in a real-world home-like setting with one hall
(maximum length over 10 m causing strong reverberation) and
four separate regions (similar as rooms). The signal-to-noise ratio
(SNR) can reach as low as 7 dB. Environment layout is given in
Figure 10.

We first build the same environment in the GSound simulator.
A microphone array with four microphones, whose maximum
distance is 0.75 m, records sound data generated from one sound

FIGURE 10 | Walker routes in real-world tests, as compared to paths produced by basic TDOA method (geometric azimuth), simulator, and optimal shortest paths.
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source. The length of each step of the walker is 1 m. By changing
the positions of the walker and the sound source, we simulate in
total 4,000 raw data samples (90% used as training dataset, 10%
as test dataset) for training of the RL model. Figure 9C shows the
training convergence curve, where a higher average reward per
step indicates that the walker produces a better route toward the
sound source.

The offline trained model is then deployed to the real-
world scenario. In Figure 10, we compare the routes performed
in reality to the routes derived by the simulator, as well as
the optimal shortest routes computed. The difference between
simulator paths and the shortest paths is mainly due to our
defining eight discrete directions for the walker to move on. Our
RL-based approach outperforms the basic geometric azimuth
method (which directly uses calculated time-delay of each
microphone pair to generate the basic TDOA path): the latter
often makes the walker lost in the hall (due to high reverberation
and the lack of reward mechanism), especially when the user
summons the walker in different rooms. The “reality gap” (Tan
et al., 2018) between real paths and simulator paths stems
from the difference between the simulator and real-world
environments: especially, for sound propagation in a multiple-
room home with high reverberation, physical parameters of the
real world are hard to be simulated exactly. Even so, our smart
walker with RL model is able to automatically approach the user
located in another room only based on voice signals. Our RL
model is robust as it only needs offline training using data from
the simulator and slight online tuning to achieve autonomous
mobility in new environments.

4. CONCLUSION

This paper proposes a novel smart robotic walker platform to
assist the elders with mild mobility impairment. We design a
unique and sturdy mechanical structure that cooperates with
sensors, and apply soft-robotic technology on the walker’s handle
to achieve better protection and richer sensing capabilities. A
series of stability tests show that the walker has good resistance
against external disturbance. The soft handle prototypemeets our
expectation and can provide useful information about the user
with a low-cost solution.

We design a comprehensive finite-state machine model
to detect user intention and emergency events in a timely
manner through analyzing spatiotemporal pressure data
collected from soft handle. We also develop a hands-free
close-proximity front-following function through intelligent
control using an IR sensor, a lidar, and NN-based gait classifier.
A reinforcement learning-based sound source localization
approach is implemented for summoning the walker to
the user through voice signals. Field tests show that our

walker can actively approach the user in a complex indoor
environment through an acceptable path. All these intelligent
functionalities achieved enables our walker to provide an
elderly user with sufficient mobility safety and rich modes of
human-robot interaction.

As future work, we will further investigate learning-based
algorithms to learnmore of user behavior through the soft handle
interface. To make our front following more generic, we seek to
collect data on more walking styles. For SSL, we plan to further
reduce the “reality gap” when applying the RL model in the
real world.
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